[bookmark: h.1ck3g82d1k6m]MifosX Functional Test Strategy
3 June 2014

[bookmark: h.s7r7dtw4fgx0]High-level system architecture

MifosX Application follows a 3-tier architecture: 

· UI: The Community UI app, written in AngularJS. Talks to the backend server over REST.
· Server: Java app running on Tomcat. 
· Database: MySQL server cluster (supporting Multi-tenancy).

[bookmark: h.jxz66jrzzar5]Assumptions: 

We are assuming that the Functional Testing is being done for the UI application, and the backend server will be independently tested using Service Tests which hit the services directly. Unit Tests, and Service Tests will cover most business logic scenarios, whereas the UI Functional Tests will be written to check most-frequently used paths from a UI testing perspective. 

We will need more discussion on exact scenarios for UI Functional Tests. 

[bookmark: h.c5cvtoffxzwn]Approach 1: Using cucumber-jvm
[bookmark: h.echlzxs72fb]Test Tech-Stack
· Cucumber-jvm / java / apache-logger / test data in json / cucumber-pretty reports
· webdriver to interact with browser
· cxf library to interact with webservices (to validate business functionality by avoiding going through UI layer all the time, and also for data setup - which will be faster by web services instead of UI)

[bookmark: h.pgaokh61w5m]Sample code:
https://github.com/anandbagmar/cuke-jvm-sample/tree/mifosx
[bookmark: _GoBack]Details about the cuke-jvm framework can be found here.

[bookmark: h.hf4oyt5oemyx]Pros
· Tech-stack learning curve is very simple (test implementation using Java, test specification using cucumber-jvm)
· Mature tech-stack and good support in open-source community
[bookmark: h.y6esns7d3dzx]Cons
· All test implementation will be in Java (even though the UI is developed using AngularJS)

[bookmark: h.hf9rxj5twsms]Approach 2: Using cucumber-protractor
[bookmark: h.row2fxcbwqiu]Test Tech-Stack
· Cucumber.JS - for specifying the intent of the test scenarios
· Programming in Javascript (implementing the Cucumber steps)
· WebDriverJS - for interacting with the browser

[bookmark: h.ikaso6xigjwt]Pros
· Having tests in the same tech stack as development makes Continuous Integration and Continuous Deployment easy.
[bookmark: h.xsah80xm6boe]Cons
· WebDriverJS (selenium-webdriver to be precise) is based on JavaScript Promises. Promises are cryptic for newbies to JavaScript and it is a difficult learning curve.
· General JavaScript Programming could also be difficult to learn, with the many differences that JavaScript has from other Object oriented languages like Java.

Assumptions
· The test framework developers are not proficient in JavaScript.

[bookmark: h.d1cad06k2rkr]Recommended approach:
Given the above findings, we feel Approach 1 - using cucumber-jvm with WebDriver is a good approach to proceed with. One thing remaining to validate is to embed the cucumber-jvm tests with the community-app code and ensure there is no conflict / un-expected behavior from the same. If this approach is approved, we can do a quick spike on the same.
