
Bootstrapping Compiler-Verifiers
Mario Carneiro

Carnegie Mellon University
Pittsburgh, PA, USA

mcarneir@andrew.cmu.edu

1 Introduction
Fix an input language L and output set M, and let R ⊆

L × M. We will write M ∈ Rs for (s,M) ∈ R. A compiler-
verifier for R is a program P such that given inputs s,x , if
s ∈ L, then either P(s,x) does not terminate or indicates
failure, or P(s,x) ∈ Rs .

This is a very broad definition, but we are primarily inter-
ested in the case where L is the collection of valid program
specifications in some language, M is the collection of pro-
grams in some formalism (lambda terms, Turing machines,
x86 machine code files), andM ∈ Rs whenever the program
M satisfies the specification s .

The input x does not apparently play a role in the defini-
tion, so one may wonder what its purpose is. The idea is that
x is some kind of “implementation hint” for the compiler
to actually produce anM ∈ Rs . Failure is always an option,
and there is no requirement that there exist an x making
the compiler successful, but the x can play the role of an
oracle to guide the compiler to a solution. The point is that
the compiler only ever produces M ∈ Rs , regardless of the
value of x , although the particularM produced may depend
on x . So x need not be “trusted” to trustM or its behavior.

2 Bootstrapping
With this simple formalization it is easy to describe a boot-
strapping compiler verifier. Let s be an encoding of (L,M, eval,R).
Then P ∈ Rs if eval(P) is a compiler-verifier for R.

Okay, that’s a bit too terse. We have three kinds of encod-
ing happening: s is encoding a (pair of) languages, a property
of (pairs of) strings in those languages, and P is encoding a
program via eval. To encode the language we can use context
free grammars, which are sufficiently general for our pur-
poses. To encode the property we need at least a first order
language; the property of being a compiler verifier is Π1 so
we need at least this much complexity in the specification
language. To encode the machine, we need an evaluation
function eval fromM to partial functions {0, 1}∗ → {0, 1}∗
or similar.
Finally, there is the task of actually making a nontrivial

(not always failing) compiler verifier that is capable of com-
piling itself. We are given an encoding of (L,M, eval,R),
and need to produce a compiler-verifier for R (which is itself

PL’18, January 01–03, 2018, New York, NY, USA
2018. ACM ISBN . . . $15.00
https://doi.org/

nontrivial). Really we don’t need the input x , we can just do
a brute force search for programs provably satisfying R, but
x lets us “brute force” in exponentially less time, by telling
us what decision to make at each turn.
Nevertheless, it is still not an easy task. Note that the

notion of “proof” has appeared now; we have to check a Π1
property in finite time so we need to use proofs to reduce
the search space. But this also means that the program must
be given some axiomatic strength, so it can relate provability
to truth. We aren’t going to completely close the loop here
by Gödel incompleteness.
The axioms here appear in the statement that our pro-

gram indeed produces compiler-verifiers. The property we
need of the proof system is that anything provable is true
(we can relativize this, but then we get statements like “T ⊢

‘the program P is a compiler verifier’” which are harder to
interpret). So let us introduce a proof theory T , with a lan-
guage T of proof terms. The property of P we wish to hold is
“for all s,x ,M , if s ∈ L and eval(P)(s,x) = M terminates suc-
cessfully thenM ∈ Rs ”. We abbreviate this asT ⊢ eval(P)◁R;
note that it depends on an encoding of L, eval, and R in the
language of T .
Thus, we take X , the auxiliary input to our compiler-

verifier generator, to be a pair (p,D), where P = C(p) is
the compiler, and T ⊢ D : p ok ∧ eval′(p) ◁ R is checked.
Then, the assumptions needed for correctness are:

1. If T ⊢ ϕ, that is, T ⊢ D : ϕ for some D, then the
interpretation of ϕ is true. (i.e. T is sound)

2. IfT ⊢ p ok, thenT ⊢ eval′(p) = eval(C(p)). (soundness
of the compiler)

3. If the program verifies that T ⊢ D : ϕ, then T ⊢ D : ϕ.
(correctness of the verifier)

4. If the program computes C(p) = P , then C(p) = P .
(correctness of the compiler)

The first assumption reduces to the truth of all the axioms
and rules of inference of T . This includes the correctness
of the interpretations of constant symbols in T that corre-
spond to L, eval and R. In other words, the execution model
is correct. Also C , which appears both as a function in the
language T and a real function from p to P , should be inter-
preted correctly.
The second assumption is a theorem about programs in

the language used for p; it need not be a separate assumption
(it can be trivially satisfied if C = id and eval′ = eval) but is
useful for when there is a nontrivial compilation component.

1

https://doi.org/

PL’18, January 01–03, 2018, New York, NY, USA Mario Carneiro

We can also dispense with this by proving T ⊢ ∀p, (p ok →

eval′(p) = eval(C(p))).
The third assumption reduces to checking that the pro-

gram adequately manipulates proof steps according to the
rules of T , and the fourth assumption reduces to checking
that the program correctly implements the compilation func-
tion. Only these two require direct inspection of the code of
the compiler-verifier generator itself. The rest requires only
the correctness of the abstract objects with respect to the
theory T .

2.1 Bootstrapping again
Now imagine we step up one meta-level; we wish to describe
a compiler-verifier that produces this compiler-verifier. The
language L̂ is the set of codes for tuples (L,M, eval,R). To
code a language, we can use a CFG written in e.g. Backus-
Naur form. For the relation R, we can use the encoding in
theory T . Everything must be embeddable in theory T , al-
though at this stage we only require it be encoded in some
form.

We can let the set of machines M̂ be the machines in our
favorite interpretation; it can be real computers if you like.
eval in the tuple above is an encoding of a functionM → M̂,
while the interpretation of eval(M) inT will perform steps in
the same way as the program eval(M). The function êval(M)

whereM ∈ M̂ is just evaluation in the chosen metalanguage.
The relation R̂ holds at ((L,M, eval,R), P) if P ∈ M̂ is a

program such that (s, P(s,x)) ∈ R (interpreted), for all s ∈ L

and all x .
Note that we don’t have to mention the theoryT here. We

only care about pure correctness, and the theory and proof
language was only a means to that end, “internal” to the
compiler-verifier implementation. This is important because
it means we can freely change theories from one level to the
next. Additionally, the target languageM is not fixed, so we
can compile from more complicated languages.

Now we have described a specification (L̂, M̂, êval, R̂), so
we can run it through the compiler-verifier of the previous
section with auxiliary input (p̂, D̂) to get a program P̂ such
that êval(P̂)◁R̂. Thatmeans that on input ((L,M, eval,R),x),
if P produces a program M then eval(M) ◁ R. This is the
same property as we started with; we have successfully boot-
strapped.
But there is a catch, of course, as we haven’t dealt with

Gödel yet. For the auxiliary input (p̂, D̂) to work, p̂ should be
a high level description of the operation of the proof checker,
and D̂ should be a proof in T that p̂ is well formed and
eval′(p̂)◁ R̂. But that means that whenever p̂ (or its compiled
counterpart P̂) receives a specification (L,M, eval,R) and a
proof in T that a program meets its specification, then the
program does meet its specification. This is impossible to

prove in T , since it implies the consistency of T , so no such
D̂ exists.

2.2 Relative compiler verifiers
The solution is fairly simple, but it helps to set up some
definitions to express it. Given L, M, eval, R as before, a
relative compiler verifier for R is a program P such that given
s,T ,x , if s ∈ L and P terminates with P(s,T ,x) = M , then
T ⊢ M ∈ Rs .

This is basically just what our compiler verifier was doing
already, although the inputs have been shuffled about a bit.
With minor modifications, we can use the same approach
to make a relative compiler verifier. (Here s,T are “trusted
inputs” and x is “untrusted”, in the sense that the properties
of the resulting program depend on s andT but not x .) Specif-
ically, we take KT (s, (p,D)) to be a function with auxiliary
input (p,D) where T ⊢ D : p ok ∧ eval′(p) ◁ R, and assume
that T ⊢ eval(C(p)) = eval′(p) is proven separately as before
(over some base theory T0 and extended to T , failing if T is
not an extension of T0), then T ⊢ eval(P) ◁ R and hence for
any particular s and x with KT (s,x) = M , reflecting them
into the language ofT , we have thatT ⊢ M ∈ Rs , that is, this
is a relative compiler verifier for R.

But nowwe can saywhat wewanted to in the bootstrapper.
Let the relation R̂ŝ hold of ŝ := (L,M, eval,R) and P ∈ M̂

if for all s ∈ L, and x , T , if P(s,T ,x) = M then T ⊢ M ∈ Rs .
Then we can plug (L̂, M̂, êval, R̂) and T̂ := T + Con(T) into
the relative compiler verifier K , provided we can find the
right auxiliary, and get a program M̂ such that T̂ ⊢ M̂ ∈ R̂ŝ ,
that is, whenever s ∈ L and x ,T ′ are chosen, if M̂(s,T ′,x) =
M then T ′ ⊢ M ∈ Rs . Thus M̂ will be a relative compiler
verifier for R, assuming T̂ is sound.

The auxiliary we need is a pair (p̂, D̂) such that T̂ ⊢ D̂ :
p̂ ok ∧ eval′(p̂) ◁ R̂. We let p̂ = KT , and the first conjunct of
D̂ is straightforward. The second says that T̂ proves that for
all ŝ := (L,M, eval,R) ∈ L̂ and x̂ , if KT (ŝ, x̂) = P then for
all s ∈ L and x ,T ′, if P(s,T ′,x) = M then T ′ ⊢ M ∈ Rs .
This last condition is just saying that P is a relative com-

piler verifier for R, except everything is relativized to T̂ .

2

	1 Introduction
	2 Bootstrapping
	2.1 Bootstrapping again
	2.2 Relative compiler verifiers

