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In this paper, we develop and examine a mathematical model of human melioidosis transmission with 
asymptomatic cases to describe the dynamics of the epidemic. The basic reproduction number (𝑅0) of the model 
is obtained. Disease-free equilibrium of the model is proven to be globally asymptotically stable when 𝑅0 is less 
than the unity, while the endemic equilibrium of the model is shown to be locally asymptotically stable if 𝑅0 is 
greater than unity. Sensitivity analysis is performed to illustrate the effect of the model parameters influencing on 
the disease dynamics. Furthermore, numerical experiments of the model are conducted to validate the theoretical 
findings.

1. Introduction

Melioidosis is a tropical infectious disease caused by an aerobic, gram-negative bacterium called Burkholderia pseudomallei (Ross et al., 2018; 
Mahikul et al., 2019; Saechan et al., 2022). It is reported mostly known as endemic, with a high number of cases and rate of mortality in numerous 
nations of the world including Thailand, Singapore, Malaysia, India, Bangladesh and China (Currie and Kaestli, 2016; Luangasanatip et al., 2019; 
Chowdhury et al., 2022). A recent report suggests that Burkholderia pseudomallei causes an estimated 165,000 human infections and 89,000 (54%) 
deaths annually all over the world (Limmathurotsakul et al., 2016; Wiersinga et al., 2018; Sullivan et al., 2020). B. pseudomallei is mainly found 
in contaminated environments (soil or water) (Currie and Kaestli, 2016; Luangasanatip et al., 2019). Infection commonly occurs by ingestion, 
percutaneous inoculation and inhalation of the organism from a contaminated environment (Luangasanatip et al., 2019; Chowdhury et al., 2022). 
Although human-to-human transmission is rare, it has been documented through contact with reproductive fluid, blood or other body fluids of an 
infected person (Benoit et al., 2015; Singh and Mahmood, 2017). Transmissions from humans to animals and vice versa are extremely uncommon 
and both animals and humans are susceptible to the B. pseudomallei (Currie, 2015; Phillips et al., 2016; Mahikul et al., 2019). However, we do not 
incorporate zoonotic infection of humans in this work.

Melioidosis is a serious infection in humans and it can be presented in a variety of clinical forms, septicemia, asymptomatic infections, localized 
with/without septicemia, visceral abscesses and can involve any organ (Benoit et al., 2015; Karunarathna et al., 2018; Chakravorty and Heath, 2019). 
Currently, there is no vaccine available for the disease (Mahikul et al., 2019; Terefe and Kassa, 2020). Arise up from the clinical manifestation of the 
melioidosis, a two-phases therapy for the treatment of the B. pseudomallei is recommended. An intensive phase of intravenous antibiotics including 
ceftazidime (CAZ), imipenem, or meropenem for a minimum of 10-14 days, followed by an eradication phase to prolonged oral trimethoprim-

sulfamethoxazole (TMP-SMX) drug for 3-6 months (Ross et al., 2018; Mahikul et al., 2019; Fen et al., 2021). However, recent studies reported that 
B. pseudomallei is intrinsically susceptible to several classes of antimicrobial agents that are recommended for treatment of the disease including 
newer 𝛽-lactam antibiotics, especially to all intravenous antibiotics (Phillips et al., 2016; Dutta et al., 2017; Sengyee et al., 2017; Fen et al., 2021). 
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Further, the epidemiology, clinical manifestations and risk factors of the disease are studied in (Tauran et al., 2015; Limmathurotsakul et al., 2016; 
Currie and Kaestli, 2016; Hinjoy et al., 2018; Wiersinga et al., 2018; Chakravorty and Heath, 2019).

A mathematical model is an essential tool for understanding and explaining the transmission dynamics of disease by using mathematical language. 
The model helps in forecasting the consequences of diseases in the populations, elucidating crucial aspects of the disease transmission process, 
recommending effective control and preventative interventions and providing an assessment of the severity and possible scope of the diseases (Li, 
2018; Libotte et al., 2020). Some compartmental models have been proposed to address the dynamics of melioidosis transmission from different 
perspectives. The authors in (Mahikul et al., 2019) studied a susceptible-exposed-infected-recovered-susceptible (SEIRS) model with an asymptomatic 
class to predict the burden and future trends of the disease incidence in Thailand taking into account population dynamics, seasonal movements, 
and incidence of diabetes in the human population. In their model the total population is subgrouped into eight classes namely, the susceptible, 
exposed, asymptomatic infected, symptomatic infected, recovered, diabetic susceptible, severe, and treatment. The authors determined key factors 
of the disease incidence patterns. The researchers in (Tavaen and Viriyapong, 2019) proposed a susceptible-latently infected-infectious-recovered 
(SEIR) model for melioidosis transmission by incorporating control factors such as hygiene care and treatment. The results of their work show that 
both hygiene care and treatment controls should be encouraged to reduce the spread of the disease. An SEIR model for the transmission dynamics of 
melioidosis is formulated and analyzed in (Terefe and Kassa, 2020). They were incorporated two recrudescence cases of the disease such as relapse 
and reinfection of individuals from the recovered class in their model.

Motivated by the literature mentioned above, we aim to propose and analyze a compartmental model for the dynamics of melioidosis transmission 
with an asymptomatic class. We also considered temporary immunity for recovered class in the disease transmission process. The remaining sections 
of the paper are structured as follows: we present the formulation of the model in Section 2. The qualitative properties of the model solutions, the 
basic reproduction number and the stability analysis of the steady states are given in Section 3. The sensitivity analysis of the model parameters is 
performed in Section 4. The numerical results are carried out in Section 5. The concluding results are provided in Section 6.

2. Model formulation

We formulate a compartmental model that describes the dynamic behavior of melioidosis. The model includes two population groups: the human 
population (host population) and the bacterial (pathogenic) population. The total human population at time 𝑡 represented by 𝑁(𝑡), is subdivided 
into five distinct classes; susceptible individuals (𝑆(𝑡)), latently-infected individuals (𝐸(𝑡)), infectious individuals without symptoms (𝐴(𝑡)), infectious 
individuals that are showing symptoms (𝐼(𝑡)), and recovered individuals (𝑅(𝑡)). Mathematically, the total human population is described as:

𝑁(𝑡) = 𝑆(𝑡) +𝐸(𝑡) +𝐴(𝑡) + 𝐼(𝑡) +𝑅(𝑡). (1)

In the formulation of the model, the following assumptions are made:

(i) The new entry for the susceptible human population may be newborns or immigrants at a constant rate of 𝛱 .

(ii) The susceptible humans acquire infection of melioidosis through either percutaneous inoculation, inhalation and ingestion of the pathogen from 
the contaminated environments (soil or water) or direct contact with infectious (asymptomatic and symptomatic) individuals, and negligible 
transmission from infected animals.

(iii) The incidence from the environment to humans is assumed to be modeled logistically (saturating), and assumed homogeneous mixing for 
human to human interaction.

(iv) The symptomatic infectious are greater in number than asymptomatic infectious.

The probability of contact between susceptible humans and contaminated environment is represented by 𝜆1(𝐵𝑚) =
𝐵𝑚

C+𝐵𝑚
, which is a nonlinear 

function in 𝐵𝑚. The constant C is the pathogen concentration that yields 50% chance of catching melioidosis. Thus, the number of contact between 
the environment and susceptible humans is given by 𝜆1(𝐵𝑚)𝑆. Therefore, the number of infections per unit time due to the environment is given 
by 𝛽1𝜆1(𝐵𝑚)𝑆, where 𝛽1 is the transmission rate due to the environment-to-susceptible human interaction. Whereas, the number of infections per 
unit time due the infectious individuals (asymptomatic and symptomatic) is given by 𝛽2(𝐼 + 𝜎𝐴)𝑆, where 𝛽2 is the transmission coefficient of the 
disease due to human-to-human interaction and 𝜎 is the reduction in infectivity of 𝐴 with, 0 < 𝜎 < 1. Therefore, the number of susceptible humans 
infected by the disease per unit time given by 𝜆𝑆 and join 𝐸, where 𝜆 = 𝛽1𝜆1(𝐵𝑚) + 𝛽2(𝐼 + 𝜎𝐴) is the force of infection. The individuals in 𝐸 progress 
to 𝐼 with probability 𝜃, and to the 𝐴 with probability (1 − 𝜃). 𝐵𝑚 increases its size in the contaminated environment by 𝐴 and 𝐼 with the shedding 
rate 𝜂. Further, the description of the model parameters is summarized in Table 1. We obtained the following system of differential equations from 
schematic diagram of the melioidosis model in Fig. 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆

𝑑𝑡
=𝛱 + 𝛼𝑅− (𝜆+ 𝜇)𝑆,

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝜌+ 𝜇)𝐸,

𝑑𝐴

𝑑𝑡
= (1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜇)𝐴,

𝑑𝐼

𝑑𝑡
= 𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾1𝐴+ 𝛾2𝐼 − (𝛼 + 𝜇)𝑅,

𝑑𝐵𝑚

𝑑𝑡
= 𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚.

(2)

Where, 𝜆 = 𝛽1
𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴).

With the initial conditions:

𝑆(0) = 𝑆0 ≥ 0, 𝐸(0) =𝐸0 ≥ 0, 𝐴(0) =𝐴0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑅(0) =𝑅0 ≥ 0, 𝐵𝑚(0) = 𝐵𝑚,0 ≥ 0.
2
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Table 1. Description of parameters of model.

Parameter Description

𝛱 Human recruitment rate.

𝛽1 Transmission rate among environment and susceptible humans.

𝛽2 Transmission rate among susceptible and infectious humans.

𝜇 Natural death rate of individuals.

𝜇𝑏 Natural death rate of bacteria.

𝛼 Disease waning immunity.

𝛿 Disease-induced death rate of 𝐴 and 𝐼 .

𝜌 Progression rate from latent infected to infectious classes.

𝛾1 Recovery rate from asymptomatic infectious.

𝛾2 Recovery rate from symptomatic infectious.

𝜂 Rate at which bacteria increase by 𝐴 and 𝐼 .

Fig. 1. Schematic diagram for Melioidosis disease dynamics.

3. Model analysis

3.1. Positivity of solutions

For our model (2) to be epidemiologically meaningful, we have established the following nonnegativity result for all of its state variables.

Theorem 3.1. If 𝑆(0), 𝐸(0), 𝐴(0), 𝐼(0), 𝑅(0), and 𝐵𝑚(0) are positive initial conditions for the melioidosis model (2), then the solution
(
𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡),

𝑅(𝑡), 𝐵𝑚(𝑡)
)

of the model (2) is positive for all 𝑡 > 0.

Proof. Let 𝑡1 = sup
{
𝑡 > 0 ∶ 𝑆(𝑡0), 𝐸(𝑡0), 𝐴(𝑡0), 𝐼(𝑡0), 𝑅(𝑡0), and 𝐵𝑚(𝑡0) are all positive, ∀𝑡0 in [0, 𝑡]

}
. Note that 𝑡1 > 0 for non-negative initial conditions. 

From the first equation of (2), we have

𝑑𝑆

𝑑𝑡
+ (𝜆+ 𝜇)𝑆 =𝛱 + 𝛼𝑅. (3)

Now using the variation formula to the equation (3) at 𝑡1 > 0, we get

𝑆(𝑡1) = 𝑒
∫ 𝑡1
0 (−𝜇−𝜆)(𝜏)𝑑𝜏 ×

𝑡1

∫
0

𝑒∫ 𝜏
0 (𝜇+𝜆)(𝜏)𝑑𝜏 × (𝛱 + 𝛼𝑅)(𝑠)𝑑𝑠+𝑆(0)𝑒−∫ 𝑡1

0 (𝜇+𝜆)(𝜏)𝑑𝜏
> 0.

In the same manner, it can be demonstrated that 𝐸(𝑡) > 0, 𝐴(𝑡) > 0, 𝐼(𝑡) > 0, 𝑅(𝑡) > 0 and 𝐵𝑚(𝑡) > 0, ∀𝑡 > 0. As a result, for all positive initial conditions, 
all solutions of the model (2) remain positive.

3.2. Invariant region

In this section, we need to establish a biologically feasible region in which the model (2) solution is bounded. The feasible region of the model 
equation (2) is stated as follows.

Lemma 3.2. Every solution of the model (2) remains in the closed set, 𝛺𝑚 =
{(

𝑆, 𝐸, 𝐴, 𝐼, 𝑅, 𝐵𝑚

)
∈𝑅6

+ ∶ 0 ≤𝑁(𝑡) ≤ 𝛱

𝜇
, 0 ≤𝐵𝑚(𝑡) ≤ 𝜂𝛱

𝜇𝑏𝜇

}
.

Proof. From the equations (1) and (2), we obtain

𝑑𝑁 =𝛱 − 𝜇𝑁 − 𝛿(𝐴+ 𝐼) ≤𝛱 − 𝜇𝑁 = 𝜇(𝛱 −𝑁). (4)

𝑑𝑡 𝜇

3
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Note that if 𝑁 ≤ 𝛱

𝜇
, then 𝑑𝑁

𝑑𝑡
≥ 0 and 𝑑𝑁

𝑑𝑡
< 0 whenever 𝑁 >

𝛱

𝜇
. Thus, by using the standard comparison theorem in (Lakshmikantham et al., 1989) 

and variation of formula to the differential inequality (4), we get

𝑁(𝑡) ≤𝑁(0)𝑒−𝜇𝑡 + 𝛱

𝜇
(1 − 𝑒−𝜇𝑡).

It follows that,

0 ≤ lim
𝑡→∞

sup𝑁(𝑡) ≤ 𝛱

𝜇
.

In particular, if 𝑁(0) ≤ 𝛱

𝜇
, then 𝑁(𝑡) ≤ 𝛱

𝜇
∀𝑡 > 0. Similarly, from the last equation of (2), we found that

𝐵𝑚(𝑡) ≤𝐵𝑚(0)𝑒−𝜇𝑏𝑡 +
𝜂𝛱

𝜇𝑏𝜇
(1 − 𝑒−𝜇𝑏𝑡) ∀𝑡 > 0.

This implies that

0 ≤ lim
𝑡→∞

sup𝐵𝑚(𝑡) ≤ 𝜂𝛱

𝜇𝑏𝜇
.

Therefore, 0 ≤ 𝐵𝑚(𝑡) ≤ 𝜂𝛱

𝜇𝑏𝜇
whenever, 0 ≤𝐵𝑚(0) ≤ 𝜂𝛱

𝜇𝑏𝜇
∀𝑡 > 0.

Furthermore, if 𝑁(0) > 𝛱

𝜇
(𝐵𝑚(0) >

𝜂𝛱

𝜇𝑏𝜇
, respectively), then either the solution enters the region 𝛺𝑚 in finite time or 𝑁(𝑡) ⟶ 𝛱

𝜇
(𝐵𝑚(𝑡) ⟶

𝜂𝛱

𝜇𝑏𝜇
, 

respectively) asymptotically as 𝑡 →∞. Consequently, the region is positively invariant and attracts all solutions of the system (2) and it suffices to 
consider the dynamics of the model (2) in 𝛺𝑚 .

3.3. Disease free equilibrium

The disease-free equilibrium (DFE) point is a point where no disease is present in the population. Since all states are considered to have a constant 
solution at the equilibrium point, we can then compute DFE by setting the right-hand equations in the system ODE (2) to zero and substituting zero 
for infective and causative agent classes. Therefore, the DFE point of the system (2) is given by

𝜀∗0 =
(
𝑆∗,0,0,0,0,0

)
=
(
𝛱

𝜇
,0,0,0,0,0

)
. (5)

3.4. The basic reproductive number and local stability of the DFE

The basic reproduction (or reproductive) number (𝑅0) is a key concept in epidemiology that provides information on the status of the disease. 
To derive, 𝑅0, we use the next-generation matrix approach introduced in (Van den Driessche and Watmough, 2002). Based on the method of Van 
den Driessche and Watmough in (Van den Driessche and Watmough, 2002) the infected compartments of our model are given in the following 
sub-system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝜌+ 𝜇)𝐸,

𝑑𝐴

𝑑𝑡
= (1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜇)𝐴,

𝑑𝐼

𝑑𝑡
= 𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼,

𝑑𝐵𝑚

𝑑𝑡
= 𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚.

(6)

Consider that 𝐹𝑖(𝑡) is the rate of appearance of new infections in compartment i and 𝑉𝑖(𝑡) is the rate of transfer of individuals into and out of 
compartment i, for, 𝑖 = 1, 2, 3, 4. Thus, the column matrices 𝐹 (𝑡) and 𝑉 (𝑡) associated with the system ODE (6), are given by:

𝐹 (𝑡) =

⎡⎢⎢⎢⎢⎣
𝐹1(𝑡)
𝐹2(𝑡)
𝐹3(𝑡)
𝐹4(𝑡)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝜆𝑆

0
0
0

⎤⎥⎥⎥⎥⎦
, 𝑉 (𝑡) =

⎡⎢⎢⎢⎢⎣
𝑉1(𝑡)
𝑉2(𝑡)
𝑉3(𝑡)
𝑉4(𝑡)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
(𝜌+ 𝜇)𝐸

−(1 − 𝜃)𝜌𝐸 + (𝛿 + 𝛾1 + 𝜇)𝐴
−𝜃𝜌𝐸 + (𝛿 + 𝛾2 + 𝜇)𝐼
−𝜂(𝐴+ 𝐼) + 𝜇𝑏𝐵𝑚

⎤⎥⎥⎥⎥⎦
.

Thus, the associated Jacobian matrices of 𝐹 (𝑡) and 𝑉 (𝑡) at 𝜀∗0 are found as follows:

𝐹 =

⎡⎢⎢⎢⎢⎣
0 𝛽2𝜎𝛱

𝜇

𝛽2𝛱
𝜇

𝛽1𝛱
𝐶𝜇

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
and 𝑉 =

⎡⎢⎢⎢⎢⎣
𝜌+ 𝜇 0 0 0

−(1 − 𝜃)𝜌 (𝛿 + 𝛾1 + 𝜇) 0 0
−𝜃𝜌 0 (𝛿 + 𝛾2 + 𝜇) 0
0 −𝜂 −𝜂 𝜇𝑏

⎤⎥⎥⎥⎥⎦
.

Now, the next generation matrix of the model (2) is the product of 𝐹 and 𝑉 −1. Computing the product 𝐹𝑉 −1, yields

𝐹𝑉 −1 =

⎡⎢⎢⎢⎢⎣
0 𝛽2𝜎𝛱

𝜇

𝛽2𝛱
𝜇

𝛽1𝛱
𝐶𝜇

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
𝜌+𝜇 0 0 0

(1−𝜃)𝜌
(𝜌+𝜇)𝜖1

1
𝜖1

0 0
𝜃𝜌

(𝜌+𝜇)𝜖1
0 1

𝜖2
0

𝜂 ( (1−𝜃)𝜌 + 𝜃𝜌 ) 𝜂 𝜂 1

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛼1 𝛼2 𝛼3 𝛼4
0 0 0 0
0 0 0 0
0 0 0 0.

⎤⎥⎥⎥⎥⎦

𝜇𝑏(𝜌+𝜇) 𝜖1 𝜖2 𝜇𝑏𝜖1 𝜇𝑏𝜖2 𝜇𝑏

4



H.A. Engida, D.M. Theuri, D. Gathungu et al. Heliyon 8 (2022) e11720
Where,

𝛼1 =
𝛱𝜌

[
𝜃𝜖1(𝐶𝛽2𝜇𝑏 + 𝜂𝛽1) + (1 − 𝜃)𝜀2(𝐶𝛽2𝜎𝜇𝑏 + 𝜂𝛽1)

]
𝐶𝜇𝜇𝑏𝜖1𝜖2(𝜌+ 𝜇)

, 𝛼2 =
𝛱(𝛽1𝜂 +𝐶𝛽2𝜎𝜇𝜇𝑏)

𝐶𝜇𝜇𝑏𝜖1
,

𝛼3 =
𝛱(𝛽1𝜂 +𝐶𝛽2𝜇𝜇

2
𝑏
𝜖1)

𝐶𝜇𝜇2
𝑏
𝜖1𝜖2

, 𝛼4 =
𝛱𝛽1
𝐶𝜇𝜇𝑏

, 𝜖1 = 𝛿 + 𝛾1 + 𝜇, 𝜖2 = 𝛿 + 𝛾2 + 𝜇.

Thus, the eigenvalues of the next generation matrix (𝐹𝑉 −1) are

𝜆1 =
𝛱𝜌

[
𝜃𝜖1(𝐶𝛽2𝜇𝑏 + 𝜂𝛽1) + (1 − 𝜃)𝜀2(𝐶𝛽2𝜎𝜇𝑏 + 𝜂𝛽1)

]
𝐶𝜇𝜇𝑏𝜖1𝜖2(𝜌+ 𝜇)

, 𝜆2 = 𝜆3 = 𝜆4 = 0.

The required basic reproduction number of the model equation (2) is found through the spectral radius of the matrix 𝑅0 = 𝜌(𝐹𝑉 −1) = 𝜆1. Hence,

𝑅0 =𝛱𝜌

(
𝛽1𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2) +𝐶𝜇𝑏𝛽2(𝜃𝜖1 + 𝜎(1 − 𝜃)𝜀2)

(𝜌+ 𝜇)𝐶𝜇𝜇𝑏𝜖1𝜖2

)
(7)

The equation (7) can be written as

𝑅0 =𝑅0ℎ +𝑅0𝑏.

Where,

𝑅0ℎ =
𝛱𝜌𝛽2

[
𝜃(𝛿 + 𝛾1 + 𝜇) + 𝜎(1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝜇(𝜌+ 𝜇)(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

,

is the basic reproduction number due to human-to-human transmission, and

𝑅0𝑏 =
𝛱𝜌𝛽1

[
𝜃(𝛿 + 𝛾1 + 𝜇) + (1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝐶𝜇𝜇𝑏(𝜌+ 𝜇)(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

,

is the basic reproduction number due to environment-to-human transmission.

Based on the Theorem 2 by (Van den Driessche and Watmough, 2002), we have the following standard result for the local stability of the DFE, 
𝜀∗0 .

Theorem 3.3 (Local stability of the DFE). The DFE, 𝜀∗0 , of the model (2) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

3.5. Global stability of the DFE

We use the method presented in (Castillo-Chavez et al., 2002; Liao and Wang, 2011; Kanyi et al., 2021) to examine the global stability of the 
DFE of the model (2). We first denote the system (2) by

⎧⎪⎨⎪⎩
𝑑𝑋1
𝑑𝑡

=𝐺1(𝑋1,𝑋2),

𝑑𝑋2
𝑑𝑡

=𝐺2(𝑋1,𝑋2),𝐺(𝑋1,0) = 0,

where 𝑋1 = (𝑆, 𝑅) denotes uninfected classes and 𝑋2 = (𝐸, 𝐴, 𝐼, 𝐵𝑚) represents the infected classes including the bacterial population class. The DFE 
point of the model, 𝜀∗0 = ( 𝜋

𝜇
, 0, 0, 0, 0, 0), is guaranteed to be globally asymptotically stable (GAS) if 𝑅0 < 1 (which is locally asymptotically stable) and 

the following two conditions 𝐶1 and 𝐶2 hold:

𝐶1: For 𝑑𝑋1
𝑑𝑡

=𝐺1(𝑋1, 0), if 𝑋∗
1 =

(
𝜋

𝜇
,0
)

is GAS, where 𝑋∗
1 is DFE point of the system 𝑑𝑋1

𝑑𝑡
.

𝐶2: 𝐺2(𝑋1, 𝑋2) = 𝐴𝑋2 −𝐺⋆
2 (𝑋1, 𝑋2), 𝐺⋆

2 (𝑋1, 𝑋2) ≥ 0, ∀(𝑋1, 𝑋2) ∈𝛺𝑚, where 𝐴 is an M-matrix which is given by 𝐴 = 𝜕𝐺2(𝑋∗
1 ,0)

𝜕𝑋2
. Note that (𝑋∗

1 , 0) = 𝜀∗0 =
( 𝜋
𝜇
, 0, 0, 0, 0, 0).

Theorem 3.4. The DFE, 𝜀∗0 , given by (5), is GAS (2) provided that 𝑅0 < 1.

Proof. We simply need to demonstrate that the criteria 𝐶1 and 𝐶2 are true when 𝑅0 < 1. In the system of the model equation (2), we have

𝐺1(𝑋1,0) =
[
𝛱 + 𝛼𝑅− 𝜇𝑆

−(𝛼 + 𝜇)𝑅

]
, 𝑋∗

1 =
(
𝜋

𝜇
,0
)
.

We note that 𝑅′(𝑡) = −(𝛼 + 𝜇)𝑅 is linear ODE and its solution can be easily found as

𝑅(𝑡) =𝑅0𝑒
−(𝛼+𝜇)𝑡. (8)

Also, 𝑆′(𝑡) =𝛱 + 𝛼𝑅 − 𝜇𝑆, and equation (8) yields, 𝑆′(𝑡) =𝛱 + 𝛼𝑅0𝑒
−(𝛼+𝜇)𝑡 − 𝜇𝑆 and its solution is given by

𝑆(𝑡) = 𝛱

𝜇
+𝑆0𝑒

−𝜇𝑡 −𝑅0𝑒
−(𝛼+𝜇)𝑡.

Now, consider t →∞, to show 𝑋1 →𝑋∗
1 . Clearly, 𝑅(𝑡) → 0 and 𝑆(𝑡) → 𝛱

𝜇
as t →∞, regardless of the values of 𝑅0 and 𝑆0. As a result, all points that 

satisfy these criteria converge to 𝑋∗ = ( 𝜋 , 0). Hence, 𝑋∗ = ( 𝜋 , 0) is GAS.
1 𝜇 1 𝜇

5
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Next, consider

𝐺2(𝑋1,𝑋2) =

⎡⎢⎢⎢⎢⎣
𝐺21(𝑋1,𝑋2)
𝐺22(𝑋1,𝑋2)
𝐺23(𝑋1,𝑋2)
𝐺24(𝑋1,𝑋2)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛽1(

𝐵𝑚

𝐶+𝐵𝑚
)𝑆 + 𝛽2(𝐼 + 𝜎𝐴)𝑆 − (𝜌+ 𝜇)𝐸

(1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜇)𝐴
𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼
𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚

⎤⎥⎥⎥⎥⎦
,

and 𝐺2(𝑋1, 𝑋2) =𝐴𝑋2 −𝐺⋆
2 (𝑋1, 𝑋2). Where,

𝐴 =

⎡⎢⎢⎢⎢⎣
−(𝜌+ 𝜇) 𝛽2𝜎𝛱

𝜇

𝛽2𝛱
𝜇

𝛽1𝛱
𝐶𝜇

(1 − 𝜃)𝜌 −(𝛿 + 𝛾1 + 𝜇) 0 0
𝜃𝜌 0 −(𝛿 + 𝛾2 + 𝜇) 0
0 𝜂 𝜂 −𝜇𝑏

⎤⎥⎥⎥⎥⎦
and 𝐺⋆

2 (𝑋1,𝑋2) =

⎡⎢⎢⎢⎢⎣
𝛥

0
0
0

⎤⎥⎥⎥⎥⎦
,

with, 𝛥 = 𝛽2(𝐼 + 𝜎𝐴) 
(
𝛱

𝜇
− 𝑆

)
+ 𝛽1𝐵𝑚

𝐶

(
𝛱

𝜇
− 𝐶𝑆

𝐶+𝐵𝑚

)
.

We have, 0 ≤ 𝐶𝑆

𝐶+𝐵𝑚
≤ 𝑆 ≤ 𝛱

𝜇
(∵ 𝐶

𝐶+𝐵𝑚
≤ 1 and all parameters are nonnegative). As a result, 

(
𝛱

𝜇
−𝑆

) ≥ 0 and 
(
𝛱

𝜇
− 𝐶𝑆

𝐶+𝐵𝑚

) ≥ 0. Thus, 𝐺⋆
2 (𝑋1, 𝑋2) ≥ 0

∀(𝑋1, 𝑋2) ∈𝛺𝑚. Therefore, the DFE, 𝜀∗0 = ( 𝜋
𝜇
, 0, 0, 0, 0, 0), of the system (2) is GAS.

Remark 1. The model (2) does not show a backward bifurcation at 𝑅0 = 1 when 𝑅0 < 1. According to Theorem 3.4, the only positive (or sta-

ble) steady state for 𝑅0 < 1 is DFE. This is because some typical cases of backward bifurcation in epidemic models weren’t considered in our 
model.

The common causes for the existence of backward bifurcation in some standard deterministic models including reinfection have been studied in 
(Elbasha et al., 2011; Gumel, 2012). For instance, backward bifurcation has been seen in the melioidosis epidemic model (Terefe and Kassa, 2020) 
due to reinfection and relapse of recovered individuals.

3.6. Endemic equilibrium

An endemic equilibrium (EE) point is a state where the disease remains in the population. By setting the system (2) equal to zero at steady state, 
the EE point of our model is obtained. Thus,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆∗

𝑑𝑡
=𝛱 + 𝛼𝑅∗ − (𝛽1

𝐵∗
𝑚

𝐶 +𝐵∗
𝑚

+ 𝛽2(𝐼∗ + 𝜎𝐴∗) + 𝜇)𝑆∗ = 0,

𝑑𝐸∗

𝑑𝑡
= (𝛽1

𝐵∗
𝑚

𝐶 +𝐵∗
𝑚

+ 𝛽2(𝐼∗ + 𝜎𝐴∗))𝑆∗ − (𝜌+ 𝜇)𝐸∗ = 0,

𝑑𝐴∗

𝑑𝑡
= (1 − 𝜃)𝜌𝐸∗ − (𝛿 + 𝛾1 + 𝜇)𝐴∗ = 0,

𝑑𝐼∗

𝑑𝑡
= 𝜃𝜌𝐸∗ − (𝛿 + 𝛾2 + 𝜇)𝐼∗ = 0,

𝑑𝑅∗

𝑑𝑡
= 𝛾1𝐴

∗ + 𝛾2𝐼
∗ − (𝛼 + 𝜇)𝑅∗ = 0,

𝑑𝐵∗
𝑚

𝑑𝑡
= 𝜂(𝐴∗ + 𝐼∗) − 𝜇𝑏𝐵

∗
𝑚
.

(9)

From the equations in (9), solving the other state variables in terms of 𝐼∗, we found the EE of the model (2) as:

𝜀∗1 =
(
𝑆∗,𝐸∗,𝐴∗, 𝐼∗,𝑅∗,𝐵∗

𝑚

)
=
(
𝛱 + 𝛼𝑅∗

𝜇 + 𝜆∗
,
𝜖2
𝜌𝜃

𝐼∗,
(1 − 𝜃)𝜖2
𝜃𝜖1

𝐼∗, 𝐼∗,

(
𝛾1(1 − 𝜃)𝜖2 + 𝛾2𝜃𝜖1

(𝛼 + 𝜇)𝜃𝜖1

)
𝐼∗,

(
𝜂(1 − 𝜃)𝜖2 + 𝜂𝜃𝜖1

𝜇𝑏𝜃𝜖1

)
𝐼∗

)
.

(10)

Where, 𝜖1 = (𝛿 + 𝛾1 + 𝜇), 𝜖2 = (𝛿 + 𝛾2 + 𝜇). Then by substituting all the right-hand side expressions in (10) into the second equation of the system (9), 
we found the following quartic equation for 𝐼∗:

𝑃𝑚(𝐼∗) = 𝐼∗
(
𝐴(𝐼∗)3 +𝐵(𝐼∗)2 +𝐶𝐼∗ +𝐷

)
= 0. (11)

Where,

𝐴 = −𝛽2𝜖1𝜃2𝜂2
[(
𝜃𝜖1 + (1 − 𝜃)𝜖2

)2(
𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2

)][
𝛼𝜌(𝛾1(1 − 𝜃)𝜖2 + 𝛾2𝜃𝜖1) − (𝜌+ 𝜇)(𝛼 + 𝜇)𝜖1𝜖2

]
,

= −𝛽2𝜖1𝜃2𝜂2
[(
𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2

)(
(1 − 𝜃)𝜖2 + 𝜃𝜖1

)2] ×𝛹1 < 0,

𝐵 = −𝜃3𝜖21𝜂
(
𝜃𝜖1 + (1 − 𝜃)𝜖2

)[
𝛹1 ×𝛹2 +𝛹3

]
< 0, if 𝑅0 ≤ 1,

𝐶 = −𝜃4𝜖31C𝜇𝑏
(
𝛹1 ×𝛹4 +𝛹5

)
< 0, if 𝑅0 ≤ 1,

𝐷 = 𝜃5𝜖41(𝛼 + 𝜇)(𝜌+ 𝜇)C2𝜇2
𝑏
𝜇𝜖1𝜖2(𝑅0 − 1) > 0 if 𝑅0 > 1,

with,
6
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Table 2. Possible positive real roots of 𝑃𝑚(𝐼∗ℎ ) for 𝑅0 > 1, 𝑅0 < 1 and 𝑅0 = 1.

Cases A B C D 𝑅0 No. of sign changes No. of possible positive real roots

1 - + + + 𝑅0 > 1 1 1

2 - - - + 𝑅0 > 1 1 1

3 - - + + 𝑅0 > 1 1 1

4 - + - + 𝑅0 > 1 3 1, 3

5 - - - - 𝑅0 < 1 0 0

6 - - - 0 (No sign) 𝑅0 = 1 0 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛹1 = 𝛼𝜌

(
𝛾1𝜃(𝛿 + 𝜇) + 𝛾2(1 − 𝜃)(𝛿 + 𝜇) + (𝛿 + 𝜇)2

)
+ 𝜇𝜖1𝜖2

(
𝜌+ 𝛼 + 𝜇

)
,

𝛹2 = 𝛽1𝜂
(
𝜃𝜖1 + (1 − 𝜃)𝜖2

)
+ 2𝛽2C𝜇𝑏

(
𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2

)
,

𝛹3 = 𝜂(𝛼 + 𝜇)(𝜃𝜖1 + (1 − 𝜃)𝜖2)(𝜌+ 𝜇)𝜇𝜖1𝜖2(1 −𝑅0ℎ),

𝛹4 = 𝛽1𝜂
(
𝜃𝜖1 + (1 − 𝜃)𝜖2

)
+ 𝛽2C𝜇𝑏

(
𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2

)
,

𝛹5 = 𝜂(𝛼 + 𝜇)(𝜃𝜖1 + (1 − 𝜃)𝜖2)(𝜌+ 𝜇)𝜇𝜖1𝜖2(1 −𝑅0ℎ + 1 −𝑅0).

𝜖1 = (𝛿 + 𝛾1 + 𝜇), 𝜖2 = (𝛿 + 𝛾2 + 𝜇).

The zero root of the equation (11) corresponds to the DFE. It is worth noting that the coefficient A is always negative, the coefficients B and C 
are negative if 𝑅0 ≤ 1, and D is negative or positive if 𝑅0 is less than unity or greater than unity, respectively. Moreover, when 𝑅0 = 1, then 𝐷
is zero (or has no sign) and the equation (11) is reduced to quadratic equation, 𝐴(𝐼∗)2 + 𝐵𝐼∗ + 𝐶 = 0. So that the quartic equation (11) can be 
analyzed for the possibility of multiple equilibria. We used the Descartes’ rule of signs presented in (Levin, 2020) to analyze the existence of possible 
positive roots of the polynomial equation (11). This is described in Table 2. Hence, we have established the following result for the existence of the 
EE.

Theorem 3.5 (Existence of the EE). The model (2)

(i) has a unique positive endemic equilibrium if the case (1, 2, or 3) is satisfied,

(ii) has a unique positive endemic equilibrium or three positive endemic equilibria if the case 4 is satisfied,

(iii) has no positive endemic equilibrium if 𝑅0 ≤ 1.

Theorem 3.6 (Local stability of the EE). The endemic equilibrium, 𝜀∗1, of the model (2), described in the equation (14), is locally asymptotically stable for 
𝑅0 > 1.

Proof. We use the technique presented in (Castillo-Chavez and Song, 2004), to show the existence of forward bifurcation. The following change for 
the state variables of the model (2) is performed to implement the procedure. Suppose, 𝑆 = 𝑥1, 𝐸 = 𝑥2, 𝐴 = 𝑥3, 𝐼 = 𝑥4, 𝑅 = 𝑥5, and 𝐵𝑚 = 𝑥6.

Thus, the vector notation for the variables is given by

X =
(
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6

)𝑇
. (12)

Using the vector notation in (12), the system (2) can be expressed as

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋), where 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)𝑇 . (13)

Hence, the equation (13) can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

=𝛱 + 𝛼𝑥5 −
(
𝛽1

𝑥6
𝐶 + 𝑥6

+ 𝛽2(𝑥4 + 𝜎𝑥3) + 𝜇

)
𝑥1 = 𝑓1,

𝑑𝑥2
𝑑𝑡

=
(
𝛽1

𝑥6
𝐶 + 𝑥6

+ 𝛽2(𝑥4 + 𝜎𝑥3)
)
𝑥1 − (𝜌+ 𝜇)𝑥2 = 𝑓2,

𝑑𝑥3
𝑑𝑡

= (1 − 𝜃)𝜌𝑥2 − (𝛿 + 𝛾1 + 𝜇)𝑥3 = 𝑓3,

𝑑𝑥4
𝑑𝑡

= 𝜃𝜌𝑥2 − (𝛿 + 𝛾2 + 𝜇)𝑥4 = 𝑓4,

𝑑𝑥5
𝑑𝑡

= 𝛾1𝑥3 + 𝛾2𝑥4 − (𝛼 + 𝜇)𝑥5 = 𝑓5,

𝑑𝑥6
𝑑𝑡

= 𝜂(𝑥3 + 𝑥4) − 𝜇𝑏𝑥6 = 𝑓6.

(14)

Suppose that 𝛽1 = 𝛽∗1 is chosen as bifurcation parameter and computing for 𝛽∗1 for 𝑅0 = 1, we found that

𝛽∗1 =
(𝜌+ 𝜇)C𝜇𝜇𝑏𝜖1𝜖2 −𝐶𝜇𝑏𝛽2𝛱𝜌(𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2)

𝛱𝜌𝜂(𝜃𝜖1 + (1 − 𝜃)𝜖2)
.

Then, the Jacobian matrix of the system of equations (14) computed at (𝜀∗ , 𝛽∗) is given by
0 1

7
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𝐽 (𝜀∗0 , 𝛽
∗
1 ) =

⎡⎢⎢⎢⎢⎢⎢⎣

−𝜇 0 −𝐽1 −𝐽2 𝛼 −𝐽3
0 −𝐽4 𝐽1 𝐽2 0 𝐽3
0 𝐽5 −𝐽6 0 0 0
0 𝐽7 0 −𝐽8 0 0
0 0 𝛾1 𝛾2 −𝐽9 0
0 0 𝜂 𝜂 0 −𝜇𝑏

⎤⎥⎥⎥⎥⎥⎥⎦
.

Where, 𝐽1 =
𝛽2𝜎𝛱
𝜇

, 𝐽2 =
𝛽2𝛱
𝜇

, 𝐽3 =
𝛽∗1𝛱

𝐶𝜇
, 𝐽4 = (𝜌 + 𝜇), 𝐽5 = (1 − 𝜃)𝜌, 𝐽6 = 𝛿 + 𝛾1 + 𝜇, 𝐽7 = 𝜃𝜌, 𝐽8 = 𝛿 + 𝛾2 + 𝜇, 𝐽9 = (𝛼 + 𝜇).

The characteristic polynomial equation of 𝐽 (𝜀∗0 , 𝛽
∗
1 ) is obtained as

𝑃 (𝜆) =∣ 𝐽 (𝜀∗0 , 𝛽
∗
1 ) − 𝜆𝐼 ∣= 𝜆(𝜆+ 𝜇)(𝜆+ (𝛼 + 𝜇))𝑃0(𝜆).

Where,

𝑃0(𝜆) = 𝜆3 +𝐵1𝜆
2 +𝐵2𝜆+𝐵3. (15)

With,

⎧⎪⎪⎨⎪⎪⎩
𝐵1 = 𝐽4 + 𝐽6 + 𝐽8 + 𝜇𝑏,

𝐵2 = 𝐽4𝜇𝑏 + 𝐽6𝜇𝑏 + 𝐽8𝜇𝑏 + 𝐽4𝐽6 + 𝐽4𝐽8 + 𝐽6𝐽8 − 𝐽1𝐽5 − 𝐽2𝐽7,

𝐵3 = 𝐽4𝐽6𝐽8 + 𝐽4𝐽6𝜇𝑏 + 𝐽4𝐽8𝜇𝑏 + 𝐽6𝐽8𝜇𝑏 − 𝐽1𝐽5𝐽8 − 𝐽2𝐽6𝐽7 − 𝐽1𝐽5𝜇𝑏 − 𝐽2𝐽7𝜇𝑏 − 𝐽3𝐽5𝜂 − 𝐽3𝐽7𝜂.

Obviously, 𝜆1 = 0, 𝜆2 = −𝜇, 𝜆3 = −𝛼 − 𝜇 are the three eigenvalues of 𝐽 (𝜀∗0 , 𝛽
∗
1 ). The other eigenvalues are the roots the polynomial 𝑃0(𝜆). Based on 

the Routh’s criterion in Theorem 5.1 by (Martcheva, 2015), for the roots of the polynomial 𝑃0(𝜆) in (15) to have negative real parts the following 
conditions must be satisfied: 𝐵1 > 0, 𝐵2 > 0, 𝐵3 > 0 and 𝐵1𝐵2 −𝐵3 > 0. Clearly, the first condition, 𝐵1 = 𝐽4 + 𝐽6 + 𝐽8 + 𝜇𝑏 = (𝛿 + 𝛾1 + 𝜇) + (𝛿 + 𝛾2 + 𝜇) +
(𝜌 + 𝜇) + 𝜇𝑏 > 0.

Now, we need to show the remaining three conditions. After several algebraic manipulations for the parameters of the coefficients 𝐵2, 𝐵3, and of 
the expression 𝐵1𝐵2 −𝐵3, we found

𝐵2 =𝑄1 +𝑄2 +𝑄3 > 0, if 𝑅0 ≤ 1 where, 𝑄1 = 𝜇𝑏(𝐽4 + 𝐽6 + 𝐽8) + 𝐽6𝐽8 > 0,

𝑄2 =
1
𝜇

(
𝜇𝐽4𝐽6 − 𝛽2𝛱𝜎𝐽5

)
> 0 if 𝑅0 ≤ 1, 𝑄3 =

1
𝜇

(
𝜇𝐽4𝐽8 − 𝛽2𝛱𝐽7

)
> 0 if 𝑅0 ≤ 1.

𝐵3 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 > 0, for 𝑅0 ≤ 1, where, 𝑃1 = 𝐽6𝐽8𝜇𝑏 > 0,

𝑃2 =
1

𝐶𝜇𝑏

(
𝐶𝜇𝑏𝜇𝐽4𝐽6 −𝛱𝐽5(𝐶𝜇𝑏𝜎𝛽2 + 𝛽1𝜂)

)
if 𝑅0 ≤ 1,

𝑃3 =
1

𝐶𝜇𝑏

(
𝐶𝜇𝑏𝜇𝐽4𝐽8 −𝛱𝐽7(𝐶𝜇𝑏𝜎𝛽2 + 𝛽1𝜂)

)
for 𝑅0 ≤ 1,

𝑃4 =
1
𝜇

(
𝜇𝐽4𝐽6𝐽8 − 𝛽2𝛱𝜌(𝜃𝐽6 + 𝜎(1 − 𝜃)𝐽8)

)
for 𝑅0 ≤ 1.

𝐵1𝐵2 −𝐵3 =𝐴2(𝐽5 + 𝜇𝑏) + 𝐽 2
6 (𝐽8 + 𝜇𝑏) + 𝐽8(𝐽6𝜇𝑏 + 𝐽8𝜇𝑏 + 𝐽4𝐽6 + 𝐽6𝐽8)

+ 𝜇𝑏(𝐽1𝐽5 + 𝐽2𝐽7) + 𝐽3𝜂(𝐽5 + 𝐽7) + 𝐽6𝑄2 + 𝐽8𝑄3 > 0 if 𝑅0 ≤ 1.

Consequently, zero is a simple eigenvalue of 𝐽 (𝜀∗0, 𝛽
∗
1 ) and all other eigenvalues of 𝐽 (𝜀∗0 , 𝛽

∗
1 ) have negative real numbers or real parts. Therefore, the 

center manifold theory (Carr, 2012) can be used to study the dynamics of (14) near 𝛽∗1 . Furthermore, it can be computed that 𝐽 (𝜀∗0 , 𝛽
∗
1 ) has a right 

eigenvector corresponding to zero eigenvalue, given by U =
(
𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6

)𝑇
, where

𝑢1 = −
𝑢2

(𝜌+ 𝛼)𝜇𝐽6𝐽8

(
𝛼𝜌𝛾2(𝛿 + 𝜇)(1 − 𝜃) + 𝜌𝛼𝛾1𝜃 + 𝜌𝛼(𝛿 + 𝜇)2 + 𝜌𝜇𝐽6𝐽8 + 𝜇(𝛼𝐽6𝐽8 + 𝜇𝐽6𝐽8)

)
< 0,

𝑢2 = 𝑢2 > 0, 𝑢3 = 𝑢2
(1 − 𝜃)𝜌
𝐽6

, 𝑢4 = 𝑢2
𝜃𝜌

𝐽8
,

𝑢5 = 𝑢2

(
𝛾1𝜌(1 − 𝜃)𝐽8 + 𝛾2𝜌𝜃𝐽6)

(𝛼 + 𝜇)𝐽6𝐽8

)
, 𝑢6 = 𝑢2

𝜂𝜌(𝜃𝐽6 + (1 − 𝜃)𝐽8)
𝜇𝑏𝐽6𝐽8

.

Where, 𝐽6 = 𝛿 + 𝛾1 + 𝜇, 𝐽8 = 𝛿 + 𝛾2 + 𝜇.

Likewise, 𝐽 (𝜀∗0 , 𝛽
∗
1 ) has a left eigenvector, V =

(
𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6

)𝑇
associated with 𝜆 = 0, satisfying the condition U .V = 1, with

𝑣1 = 0, 𝑣2 = 𝑣2 > 0, 𝑣3 = 𝑣2
𝛱(𝛽2𝜎𝜇𝑏C+ 𝛽∗1 𝜂)

C𝜇𝑏𝜇𝐽6
, 𝑣4 = 𝑣2

𝛱(𝛽2𝜇𝑏C+ 𝛽∗1 𝜂)
C𝜇𝑏𝜇𝐽8

, 𝑣5 = 0, 𝑣6 = 𝑣2
𝛽∗1𝛱

C𝜇𝑏𝜇
.

Computations of 𝑎 and 𝑏: The local stability of 𝜀∗1 for 𝑅0 > 1, but near to the unity is determined by the signs of two associated constants 𝑎 and 𝑏, 
where

𝑎 =
𝑛∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝜀∗0 , 𝛽
∗
1 ).

𝑏 =
𝑛∑

𝑘,𝑖=1
𝑣𝑘𝑢𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝛽

∗
1
(𝜀∗0 , 𝛽

∗
1 ).
8
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Fig. 2. Forward bifurcation plot for melioidosis model (2) using parameter values in Table 3.

Since 𝑅0 = 1, 𝑣2 > 0, 1 − 𝜃 > 0, and all parameters are positive. After some algebraic manipulations, we obtained:

𝑎 = −𝑣2𝑢22
⎛⎜⎜⎝𝜙

(𝜌+ 𝜇)𝜇
𝛱

+ 2

(
𝜂𝜌

[
𝜃(𝛿 + 𝛾1 + 𝜇) + (1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝜇𝑏C(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

)2
𝛽1𝛱

𝜇

⎞⎟⎟⎠ < 0, (always)

where,

𝜙 =
(
𝛼𝜌𝛾2(𝛿 + 𝜇)(1 − 𝜃) + 𝜌𝛼𝛾1𝜃 + 𝜌𝛼(𝛿 + 𝜇)2 + 𝜌𝜇𝐽6𝐽8 + 𝜇(𝛼𝐽6𝐽8 + 𝜇𝐽6𝐽8)

)
(𝜌+ 𝛼)𝜇𝐽6𝐽8

> 0,

and,

𝑏 = 𝑣2𝑢6
𝜕2𝑓2
𝜕𝑥6𝜕𝛽

∗
1
(𝜀∗0 , 𝛽

∗
1 ) = 𝑣2𝑢2

(
𝛱𝜂𝜌

[
𝜃(𝛿 + 𝛾1 + 𝜇) + (1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝜇𝜇𝑏C(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

)
> 0. (always)

Based on the computed value of 𝑎 and 𝑏, and with the help of Theorem 4.1 by Chavez and Song in (Castillo-Chavez and Song, 2004), the model 
exhibits a forward bifurcation at 𝑅0 = 1 (see Fig. 2), and hence, the EE is locally asymptotically stable for 𝑅0 > 1, but close to 1. The biological 
consequence of this is that the melioidosis disease can be eliminated from a community as long as if 𝑅0 < 1. This completes the proof.

4. Sensitivity analysis

The sensitivity analysis for the basic reproduction number, 𝑅0, of the melioidosis model parameters is performed following the approach in 
(Chitnis et al., 2008; Rosa and Torres, 2018; Aldila and Angelina, 2021; Purwati et al., 2020; Engida et al., 2022). This helps us to identify the 
parameters with a high impact on 𝑅0 and also helps in providing appropriate intervention strategies. To measure the sensitivity of 𝑅0 with respect 
to the model parameters we use a normalized forward sensitivity index of 𝑅0, which is defined as the ratio of the relative change in the 𝑅0 to the 
relative change in the parameter.

Definition 4.1. The normalized forward sensitivity index of the basic reproduction number, 𝑅0, of the model (2), which is differentiable with 
respect to a given parameter 𝛼, is given by the relation

𝛶
𝑅0
𝛼 =

𝜕𝑅0
𝜕𝛼

× 𝛼

𝑅0
. (16)

Therefore, using the equation (16) in the above Definition 4.1, we can easily derive an analytical expression for the sensitivity index of 𝑅0, using 
the explicit formula (7), to each parameter that it includes.

Let 𝜙0 =𝛱𝜌(𝛽1𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2) +𝐶𝜇𝑏𝛽2(𝜃𝜖1 + 𝜎(1 − 𝜃)𝜀2), 𝜙1 = (𝜌 + 𝜇)𝐶𝜇𝜇𝑏𝜖1𝜖2, 𝜖1 = 𝛿 + 𝛾1 + 𝜇, and 𝜖2 = 𝛿 + 𝛾2 + 𝜇. Thus,

𝛶
𝑅0
𝛽1

=
𝛽1𝛱𝜌𝜂

(
𝜃𝜖1 + (1 − 𝜃)𝜖2

)
𝜙0

, 𝛶
𝑅0
𝛽2

=
𝐶𝜇𝑏𝛽2𝛱𝜌(𝜃𝜖1 + 𝜎(1 − 𝜃)𝜖2)

𝜙0
, 𝛶

𝑅0
𝛱

= 1, 𝛶
𝑅0
𝜌 = 𝜇

(𝜌+ 𝜇)
,

𝛶
𝑅0
𝜎 =

𝛽2𝛱𝜌𝜎(1 − 𝜃)
𝜙0

, 𝛶
𝑅0
C

= −
𝛽1𝛱𝜌𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2)

𝜙0
, 𝛶

𝑅0
𝜇𝑏

= −
𝛽1𝛱𝜌𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2)

𝜙0
,

𝛶
𝑅0
𝜃

=
𝛱𝜌𝜃

[
𝛽1𝜂(𝛾1 − 𝛾2) +𝐶𝜇𝑏𝛽2(𝛾1 − 𝜎𝛾2)

]
𝜙0

, 𝛶
𝑅0
𝜂 =

𝛽1𝛱𝜌𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2)
𝜙0

,

𝛶
𝑅0
𝜇 =

𝛱𝜌𝜇𝜙1
[
𝛽1𝜂 +𝐶𝜇𝑏𝛽2(𝜃 + 𝜎(1 − 𝜃)

]
− 𝜇𝐶𝜇𝑏𝜙0

(
(𝜌+ 2𝜇)𝜖1𝜖2 + (𝜌+ 𝜇)𝜇(𝜖1 + 𝜖2)

)
𝜙0𝜙1

, (17)

𝛶
𝑅0
𝛿

=
𝛿𝜖1𝜖2𝛱𝜌

[
𝛽1𝜂 +𝐶𝜇𝑏𝛽2(𝜃 + 𝜎(1 − 𝜃))

]
−𝜙0𝛿(𝜖1 + 𝜖2)

,

𝜙0𝜖1𝜖2

9
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Table 3. Sensitivity indices of 𝑅0 to the model parameter values.

Parameter Value Sensitivity index Source

𝛱 𝜇 ×𝑁0 1 (Terefe and Kassa, 2020)

𝛽2 0.00077 0.9437 Assumed

𝜇 0.000396 −1.0089 (Tavaen and Viriyapong, 2019)

𝜃 0.5125 0.2238 Assumed

𝛿 0.0732 −0.8148 (Terefe and Kassa, 2020)

𝛾2 0.0157 −0.1498 (Mahikul et al., 2019)

𝛽1 0.0183 0.0563 Assumed

𝜇𝑏 0.0185 −0.0563 (Tavaen and Viriyapong, 2019)

C 5000 −0.0563 Assumed

𝜂 0.13 0.0563 (Tavaen and Viriyapong, 2019)

𝜎 0.0493 0.0047 Assumed

𝛾1 0.0248 −0.0147 (Mahikul et al., 2019)

𝜌 0.088 0.0045 (Tavaen and Viriyapong, 2019)

Table 4. Values and description of parameters of the model.

Parameter Description Value Unit Source

𝛱 Human recruitment rate 𝜇 ×𝑁0 Humans day−1 (Terefe and Kassa, 2020)

𝛽1 Human transmission rate due to pathogen 0.0183 Day−1 Assumed

𝛽2 Human transmission rate due to A & I 0.00077 (Humans day)−1 Assumed

𝜃 Probability of progress of E to I 0.5125 Dimensionless Assumed

𝜇 Natural death rate of humans 0.000396 Day−1 (Tavaen and Viriyapong, 2019)

𝛿 Disease-induced death rate of A & I 0.0732 Day−1 (Terefe and Kassa, 2020)

𝛾1 Recovery rate from A 0.0248 Day−1 (Mahikul et al., 2019)

𝛾2 Recovery rate from I 0.0157 Day−1 (Mahikul et al., 2019)

𝜌 The progression rate of E to A & I 0.088 Day−1 (Tavaen and Viriyapong, 2019)

𝜎 Reduction rate of infectivity A 0.0493 Dimensionless Assumed

𝛼 Disease waning immunity 0.0726 Day−1 Assumed

𝜂 Rate at which bacteria increase by A & I 0.13 No. of B. pseudomallei cell

Humans day
(Tavaen and Viriyapong, 2019)

𝜇𝑏 Natural death rate of bacteria 0.0185 Day−1 (Tavaen and Viriyapong, 2019)

C Concentration of B. pseudomallei 5000 No. of B. pseudomallei cell Assumed

𝛶
𝑅0
𝛾1

=
𝜖1𝛾1

[
𝛱𝜌𝛽1𝜂

(
𝜃 + (1 − 𝜃)𝜖2

)
+𝐶𝜇𝑏𝛽2𝛱𝜌

(
𝜃 + 𝜎(1 − 𝜃)𝜖2

)]
− 𝜙0𝛾1

𝜙0𝜖1
,

𝛶
𝑅0
𝛾2

=
𝜖2𝛾2

[
𝛱𝜌𝛽1𝜂

(
𝜃𝜖1 + (1 − 𝜃)

)
+𝐶𝜇𝑏𝛽2𝛱𝜌

(
𝜃𝜖1 + 𝜎(1 − 𝜃)

)]
− 𝜙0𝛾2

𝜙0𝜖2
.

In particular, the sensitivity index of 𝑅0 related to the recruitment rate, 𝛱 , is found in (17) using (16) as 𝛶𝑅0
𝛱

= 𝜕𝑅0
𝜕𝛱

× 𝛱

𝑅0
= 1.

Similarly, the detailed sensitivity indices of 𝑅0 to the parameter values are described in Table 3 from the most sensitive parameter to the least 
sensitive parameter. In Table 3, the positive sign of 𝛶𝑅0

𝛼 shows a positive impact of the parameter 𝛼 on 𝑅0 (directly proportional). Whereas the 
negative sign of 𝛶𝑅0

𝛼 shows a negative impact of 𝛼 on 𝑅0 (indirectly proportional). For instance, decreasing 𝛽2 by 10% results in a decrease 𝑅0 by 
9.44%. Similarly, increasing (or decreasing) 𝛽2 by 15% results in an increase (or decrease, respectively) the value of 𝑅0 by 14.16%. This suggests 
that preventive measures should be provided to reduce the spread of the disease. In contrast, increasing 𝛾2 by 10% results in decreases 𝑅0 by 1.67%. 
Likewise, increasing 𝜇𝑏 by 10% would decrease 𝑅0 by 0.56%. This means that increasing the mortality rate of the Burkholderia pseudomallei in the 
environment by using an appropriate intervention effort would decrease the spread of disease. The results in the Table 3 show that decreasing the 
value of the parameters 𝛱, 𝛽1, 𝛽2, 𝜃, 𝜂, 𝜌, 𝜎 would decrease the value of 𝑅0. Conversely, 𝑅0 decreases when the parameters 𝛿, 𝜇, 𝜇𝑏, 𝛾1, 𝛾2, C increase.

In view of the results of the sensitivity analysis, the most influencing parameters are human recruitment rate (𝛱), human transmission rate (𝛽2), 
the human natural death rate (𝜇), and disease-induced death rate (𝛿) among other parameters. This demonstrates that melioidosis spread can be 
controlled by reducing the human transmission rate, 𝛽2, on susceptible humans. As a result, preventive intervention efforts should be provided to 
combat the burden of the disease in the population. Moreover, when the value of reduction rate of A (𝜎) is 0.5, then the value of 𝑅0 will increase by 
35.22% and if the value of 𝜎 is 1, the value of will increase by 74.28%. Therefore, although the asymptomatic infections are difficult to diagnose 
they have a great impact on the spread of the disease in the population. Also, it has a great role in increasing the growth of Burkholderia pseudomallei

in the environment.

5. Numerical results and discussions

The model (2) is numerically simulated to show the effect of the most influencing parameters on disease dynamics. To accomplish this, the fourth-

order Runge-Kutta method is applied in the Matlab. The parameter values used for simulations are described in Table 4 and the initial conditions 
are considered as (𝑆0, 𝐸0, 𝐴0, 𝐼0, 𝑅0, 𝐵𝑚0) = (700, 20, 0, 10, 0, 300). We used these parameter values and the initial conditions in all simulations of the 
model. In Figs. 3 and 4, it is noted that all model solution trajectories ultimately remain in the positively invariant region 𝛺𝑚 whenever the initial 
values are in 𝛺𝑚. The basic reproduction number of the model (2) is obtained as 𝑅0 ≈ 3.5482 > 1. From the equation (15), we found the unique 
positive endemic equilibrium, 𝜀∗1 =

(
205.7844, 2.976, 1.2975, 1.503, 0.7641, 19.6794

)
for 𝐼∗ ≈ 1.503, which is locally asymptotically stable for 𝑅0 > 1

and the others are negative (unstable). As a result, all model solution trajectories move towards the steady-state 𝜀∗1 as demonstrated in Figs. 3

(a) - 3 (e). In addition, the graphs show that the number of infected classes endures in population and that each one gradually goes to the small 
positive constant (to the corresponding component of 𝜀∗1). However, if we modify the values of 𝛽1, 𝛽2, 𝛾1 and 𝛾2 into 0.015, 0.00027, 0.058 and 0.0527, 
respectively, it gives 𝑅0 ≈ 0.951 < 1. Thus, 𝜀∗ is unstable since the model in this case contains a DFE that is globally asymptotically stable. As a result, 
1
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Fig. 3. Simulations illustrating the asymptomatic stability of the endemic equilibrium (𝜀∗1) of the system (2) for 𝑅0 > 1. (a) The stability behavior of the human 
population components of (𝜀∗1) over the simulation period, (b) The stability behavior of the infected and recovered individual components of (𝜀∗1) over the simulation 
period, (c) The stability behavior of the bacterial population component of (𝜀∗1) over the simulation period, (d) The stability behavior of the human population 
components of (𝜀∗1) as 𝑡 gets large and (e) The stability behavior of the bacterial population component of (𝜀∗1 ) as 𝑡 gets large.

all model solution trajectories move to DFE over time as depicted in Figs. 4 (a) - 4 (e). Biologically implication is that the disease will die out from 
the community over time, while the trajectory of susceptible humans eventually tends to 𝛱

𝜇
= 730 for this particular study. Therefore, in order to 

eliminate the disease rapidly, we should lower the value of 𝑅0 as much as we can.

5.1. Impacts of the parameters 𝛽1&𝛽2 on transmission process of the disease

In this section, we demonstrate the effects of the parameters 𝛽1 and 𝛽2 on the dynamics of melioidosis transmission by varying their values. These 
parameters significantly contribute to the spread of the disease by enhancing the force of infection in the transmission process of the epidemic. From 
Fig. 6 (a), we observed that increasing the value of 𝛽2 will significantly increase the number of susceptible individuals getting infected (or reduce 
the number of susceptible humans). In other words, the number of susceptible individuals is inversely proportional to 𝛽2. However, decreasing this 
parameter’s value will gradually decrease both the size of the bacterial population and the number of infectious humans (both symptomatic or 
asymptomatic) as confirmed in Figs. 6 (b) - 6 (d). In addition, reducing the value of 𝛽2 reduces the value of 𝑅0. As a result, the infectious classes 
could finally vanish by considerably lowering the value of 𝛽2. This can be accomplished by providing appropriate personal preventive interventions 
for susceptible humans and by treating infectious classes. Similarly, in Figs. 5 (a) - 5 (c), we observed the impact of the transmission rate, 𝛽1, on 
classes of susceptible, infectious and bacterial. Furthermore, from the findings of the impacts of the transmission rates, we conclude that reducing 
𝛽1&𝛽2 on susceptible humans is essential for minimizing the spread of disease infection.

5.2. Impact of the shedding rate of Burkholderia pseudomallei (𝜂)

By releasing the organism into the environment, infectious individuals (both asymptomatic and symptomatic) contribute significantly to the 
growth of B. pseudomallei, which in turn increases the rate at which the disease spreads from the environment. Fig. 7 (a) and 7 (b), show the 
impacts of 𝜂 on populations of susceptible individuals and bacterial, respectively. As illustrated in Fig. 7 (b), it is noted that increasing the value of 
𝜂 increases the size of the bacterial population dramatically. Whereas in Fig. 7 (a), the size of susceptible individuals increases as 𝜂 diminishes over 
time. This demonstrates that in order to decrease the rate of shedding of the B. pseudomallei, a control intervention strategy (typically treatment 
control) should be applied to infectious individuals. As a result, there will be a decrease in the growth of B. pseudomallei in the environment. In 
other words, the number of susceptible individuals getting infected will be diminished.
11



Fig. 4. Simulations illustrating the global asymptomatic stability of the DFE = (730, 0, 0, 0, 0, 0) of the system (2) for 𝑅0 < 1. (a) The stability behavior of the human 
population components of DFE over the simulation period, (b) The stability behavior of the bacterial population component of DFE over the simulation period, (c) 
The stability behavior of the susceptible human component of DFE as 𝑡 gets large, (d) The stability behavior of the infected and recovered individual components of 
DFE as 𝑡 gets large and (e) The stability behavior of the bacterial population component of DFE as 𝑡 gets large.

Fig. 5. Simulations illustrating the changing effect of 𝛽1 on the model (2); (a) variation of susceptible individuals for different values of 𝛽1 , (b) variation of infectious 
individuals (𝐼 +𝐴) for different values of 𝛽1 and (c) variation of bacterial population for different values of 𝛽1 .

5.3. Impacts of the recovery rates (𝛾1&𝛾2)

In Figs. 8 (a) & 8 (d), and in Figs. 9 (a) & 9 (e), we observed that the populations of susceptible and recovered humans decrease as recovery rates 
decrease. On the other hand, in Figs. 8 (b), 8 (c) & 8 (e), and Figs. 9 (b) - 9 (d) & 9 (f), we noted that the recovery rates are indirectly related to 
the number of infectious individuals (symptomatic and asymptomatic) and bacterial population. This shows that the number of infectious humans 
will be greatly diminished (or recovered humans will be increased) by providing the intervention control measure (treatment) in the population. 
However, the population of susceptible individuals increases as recovery rates increase because of the disease waning immunity as confirmed in 
Fig. 8 (a) and Fig. 9 (a). Thus, in addition, a preventive intervention strategy should be provided to diminish the disease spread.
H.A. Engida, D.M. Theuri, D. Gathungu et al. Heliyon 8 (2022) e11720
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Fig. 6. Simulations illustrating the changing effect of 𝛽2 on the model (2); (a) variation of susceptible individuals for different values of 𝛽2 , (b) variation of infectious 
individuals (𝐼 + 𝐴) for different values of 𝛽2 , (c) variation of recovered individuals for different values of 𝛽2 and (d) variation of bacterial population for different 
values of 𝛽2 .

Fig. 7. Simulations illustrating the changing effect of 𝜂 on the model (2); (a) variation of susceptible individuals for different values of 𝜂 and (b) variation of bacterial 
population for different values of 𝜂.
13



H.A. Engida, D.M. Theuri, D. Gathungu et al. Heliyon 8 (2022) e11720
Fig. 8. Simulations illustrating the changing effect of 𝛾1 on the model (2); (a) variation of susceptible individuals for different values of 𝛾1 , (b) variation of 
asymptomatic infectious individuals 𝐴 for different values of 𝛾1 , (c) variation of infectious individuals (𝐼 + 𝐴) for different values of 𝛾1 , (d) variation of recovered 
individuals for different values of 𝛾1 and (e) variation of bacterial population for different values of 𝛾1 .

6. Conclusion

Transmission of disease infection in humans that usually occur due to interaction with a contaminated environment can be reduced by avoiding 
contact with the contaminated sources or using treated water for drinking, which, as in the case of melioidosis. In this paper, we proposed a 
compartmental model that explains the dynamics of melioidosis transmission with an asymptomatic class in the human population. The formulated 
model has a disease-free equilibrium (DFE), which is globally asymptotically stable (GAS) whenever the basic reproduction number (𝑅0) is less 
than unity. Whereas the endemic equilibrium of the model is shown to be locally asymptotically stable when 𝑅0 is greater than unity. Sensitivity 
analysis results indicate that the recruitment rate (𝛱) is the most influential parameter followed by the transmission coefficient (𝛽2). Thus, the 
parameter 𝛽2 plays an important role to minimize the spread of disease infection. Furthermore, the numerical simulations of the steady state 
deduced that every solution of the model approaches the unique positive endemic equilibrium, 𝜀∗1 , over time for 𝑅0 ≈ 3.5482 > 1, as confirmed in 
Figs. 3 (a) - 3 (e). From numerical findings, we also noted that the populations of infectious individuals (both asymptomatic and symptomatic) 
and bacterial diminish when transmission rates decrease, see, Figs. 5 (a) - 5 (c) and Figs. 6 (b) - 6 (d). While these population groups increase 
as the recovery rates of infectious individuals decrease. In contrast, the number of susceptible individuals increases as the recovery rates increase 
due to the disease waning immunity (see Fig. 8 (a) and Fig. 9 (a)). Our study suggests that in order to minimize the spread of the disease in the 
population, treatment of both asymptomatic and symptomatic infected individuals needs to be scaled up and human transmission coefficients should 
be reduced.
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