
MeArm Pi
Technical Overview

Table of Contents
Revision History...................................................................................................................................3
Disclaimer.............................................................................................................................................3
Introduction..........................................................................................................................................4
Servos...................................................................................................................................................4

Servos in General.............................................................................................................................4
MeArm Pi Servos.............................................................................................................................5

I2C........................................................................................................................................................6
I2C in General..................................................................................................................................6
MeArm Pi PCF8591 I2C Device.....................................................................................................6

Buttons and LEDs.................................................................................................................................7
Kinematics............................................................................................................................................7

Kinematics in General.....................................................................................................................7
MeArm Pi Kinematics.....................................................................................................................7

Inverse Kinematics...............................................................................................................................9
Inverse Kinematics in General.........................................................................................................9
MeArm Pi Inverse Kinematics........................................................................................................9

Dynamics............................................................................................................................................10
Dynamics in General.....................................................................................................................10
MeArm Pi Dynamics.....................................................................................................................10

MeArm Pi Setup and Calibration.......................................................................................................10
Foreword........................................................................................................................................10
Warning..........................................................................................................................................10
Setup..............................................................................................................................................10
Can You Get There From Here?....................................................................................................12
Calibration in General....................................................................................................................12
MeArm Pi Calibration...................................................................................................................12

For Further Consideration..................................................................................................................13
Issues..............................................................................................................................................13
Additional Information..................................................................................................................14

Figures................................................................................................................................................15
Figure 1 – Servo Control...............................................................................................................15
Figure 2 – Base Dimensions..........................................................................................................16
Figure 3 – Lower Arm Vertical......................................................................................................17
Figure 4 – Lower Arm Vertical, Upper Arm Fully Extended........................................................18
Figure 5 – Lower Arm Vertical, Upper Arm Fully Retracted........................................................19
Figure 6 – Lower Arm Fully Retracted..........................................................................................20
Figure 7 – Lower Arm Fully Retracted, Upper Arm Fully Extended............................................21
Figure 8 – Lower Arm Horizontal.................................................................................................22
Figure 9 – Lower Arm Horizontal, Grip Resting On Mounting Surface.......................................23
Figure 10 – Arms Positioned for Maximum Reach on Mounting Surface....................................24

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 1 of 35



Figure 11 – Arms Positioned for Minimum Reach on Mounting Surface.....................................25
Figure 12 – Simple Kinematic Model............................................................................................26
Figure 13 – Positioning Template (not to scale)............................................................................27
Figure 14 – Setup Graph (Conceptual)..........................................................................................28

Appendix 1: Sample Code..................................................................................................................29
Commented Code..........................................................................................................................29
Code (for cutting and pasting).......................................................................................................33
How to Run the Code.....................................................................................................................34

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 2 of 35



Revision History

Date Who Version Description

1/12/2017 Neil Higgins 0.1DRAFT First draft

14/1/2018 Neil Higgins 0.2DRAFT Changed “python” to “python3” in Appendix 1 
run instructions

Disclaimer
This document is intended to supplement, not supersede, upstage or override, official MeArm Pi 
documentation. It is correct, E&OE (Errors and Omissions Excepted), i.e. only to the extent that it 
is not incorrect. Where this document conflicts with official MeArm Pi documentation, the latter 
should be assumed to be correct. This document is provided free of charge and without 
encumbrance, provided that the user assumes all responsibility for consequent outcomes. The author
may issue updates and/or corrections based reader feedback to the blog posting where this document
was originally posted. All constructive comments are welcome.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 3 of 35



Introduction
The MeArm Pi is the synthesis of a Raspberry Pi computer and a robot arm (a MeArm). The 
MeArm Pi includes a Raspberry Pi-compatible HAT (printed circuit board used for interfacing and 
interconnection). The Raspberry Pi completely controls the motion of the arm; as such the arm 
cannot function without the Raspberry Pi and associated software.

Servos

Servos in General
The MeArm Pi HAT “passes through” four servo control signals from the Raspberry Pi’s general 
purpose input/output (GPIO) pins to the robot arm. One signal controls the angular position of the 
base, two control the angular positions of the lower and upper arms (hence the position of the grip), 
and the other controls the opening of the grip.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 4 of 35



Each servo control signal comprises a train of pulses. A pulse is emitted every twenty milliseconds 
(i.e. 50 pulses per second) and its duration (width) varies between a minimum of 0.5 – 1.0 
millisecond and a maximum of 2.0 – 2.5  milliseconds. The angular position of the servo’s output 
shaft is determined by the pulse width – the longer the pulse, the larger the angular position:

• The minimum position of a servo corresponds with the minimum control signal pulse width 
to which the servo will respond (a smaller pulse width may be received, to no effect).

• The maximum position of a servo corresponds with the maximum control signal pulse width
to which the servo will respond (a larger pulse width may be received, to no effect).

• The difference between the maximum and the minimum position is called the range. It is not
necessary to use the whole range, and indeed this may be impossible due to mechanical 
limitations (as we will see).

See Figure 1.

Servos are only roughly standardised. Operation is usually linear, with the “neutral” position at the 
midpoint of the range, corresponding with a pulse width of about 1.5 milliseconds. Each make and 
model has characteristic values for the minimum and maximum control signal pulse widths, the 
corresponding minimum and maximum angular positions, the direction of rotation from minimum 
to maximum, speed, torque, dimensions, electrical ratings, etc.

The absolute angular position of a servo horn depends on how the horn is positioned on the shaft. 
The shaft has a spline which allows the horn to be positioned at regular intervals over a 360° circle. 
Not surprisingly, the number of teeth on the spline also varies between makes and models – less 
teeth makes for coarser setup and vice versa.

Each “application” (specific use of a servo in a robot arm or elsewhere) has different requirements 
for the minimum and maximum angle. Put these together and we get a specific set of theoretical 
minimum and maximum pulse widths for each servo in the application. These may need to be 
tweaked by “calibration” depending on manufacturing precision and repeatability.

MeArm Pi Servos
The author has been unable to identify the make and model of the MeArm Pi servos, hence has been
unable to access the manufacturer’s data sheets.

The four servos appear to be identical, except that the base servo has a double-ended horn. The 
following characteristics have been inferred from observations and inspection of a software sample 
provided by Mime Industries:

• The angular position increases from minimum to maximum in an anticlockwise direction, 
viewed from the horn side.

• The minimum pulse width is 530 microseconds / 0.53 milliseconds.
• The maximum pulse width is 2 400 microseconds / 2.4 milliseconds.
• The range is 180°.
• The number of teeth on the spline is 20, for a setup precision of 18°.

It is tempting to assume that each servo is manufactured with the spline “precisely” aligned to the 
major axes of the housing when in the minimum position, i.e. such that the horn can be positioned 
at “precisely” 12 o’clock, 3 o’clock, 6 o’clock and 9 o’clock  (and intermediate 18° increments) 
relative to the housing. Observations suggest that this is not a safe assumption.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 5 of 35



Conventional nomenclature for a robot arm would have the upper arm nearest to the “shoulder” and 
the lower arm nearest to the “hand”. The MeArm defies this convention, referring to the lower arm 
as that which is physically lowest,  and the upper arm as that which is physically highest. To avoid 
confusion, I will use MeArm nomenclature. The “base” is the rotating platform on which the arm is 
mounted.

Low-level details of servo control are handled by the Raspberry Pi’s GPIO hardware in combination
with the chosen software library.

I2C

I2C in General
The MeArm Pi HAT also contains a PCF8591 chip which acquires left-right and up-down signals 
from the two joysticks. The PCF8591 chip uses the I2C protocol to communicate with the 
Raspberry Pi. Specific GPIO pins on the Raspberry Pi can be configured as I2C signals.

Each I2C transaction transfers data between a master device and a slave device. Typically the 
master will send a command, and the slave will respond. In the MeArm Pi the Raspberry Pi is the 
master and the PCF8591 chip on the HAT is the slave.

Transferring data involves manipulating the I2C physical signals to:
• Signify the start of a data transmission
• Address the slave device
• Transfer data from master to slave and/or slave to master, and
• Signify (or not) successful transfer of the data (called acknowledgment)

MeArm Pi PCF8591 I2C Device
The PCF8591 is a four channel analog-to-digital (A/D) converter, also having a single digital-to-
analog (D/A) channel. It has a fixed base address and a configurable 3-bit address offset which 
allows up to 8 identical devices to share a common I2C bus. The base address is hexadecimal 48 
(0x48). On the MeArm Pi there is only one such device; its offset is configured to zero by strapping 
all three address offset pins to 0V.

Acquiring analog input data involves, firstly, configuring the device:
• Addressing the device in write mode (master → slave, one byte)
• Sending a control byte to set the conversion mode and select the required channel (master →

slave, one byte)

Secondly, acquiring the data:
• Addressing the device in read mode (master → slave, one byte)
• Reading a channel (slave → master, two* or more bytes); multiple channels can be read if 

the auto-increment bit in the control byte has been set

* Note that the first byte returned after starting acquisition is the value of the previous channel (or a 
dummy value of 0x80, after a reset). This is due to the nature of the A/D conversion process in the 
PCF8591.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 6 of 35



Low-level details of I2C signal manipulation are handled by the Raspberry Pi’s GPIO hardware in 
combination with the chosen software library.

Buttons and LEDs
The MeArm Pi HAT “passes through” three outputs and two inputs from the Raspberry Pi’s GPIO 
pins to the robot arm. The three outputs drive the tricolour LED and the two inputs receive the 
joystick buttons.

Kinematics

Kinematics in General
“Kinematics” is defined as the branch of mechanics concerned with the motion of objects without 
reference to the forces which cause the motion; the features or properties of the motion of an object.

In this section we will derive a formula for the position of the grip relative to a reference point on 
the MeArm base plate, as a function of the servo positions.

In the next section we will look at the “inverse kinematic” question: What servo positions should 
we choose in order to put the grip at a desired position?

MeArm Pi Kinematics
The MeArm is a “double parallelogram” mechanism. The advantage of this arrangement is that the 
servos for both the lower and the upper arm can be mounted on the base while still allowing them to
be moved independently.

The following figures were drawn using an basic CAD package (Autosketch 3 in DOSBox under 
Ubuntu Linux). The MeArm is viewed from the upper servo side. A quick search of the web has 
revealed free kinematics software that could potentially do the same job much more efficiently.

Dimensions were taken off a MeArm to an accuracy of about ±0.5 mm. Exact dimensions could be 
taken from the cutting file (see Further Information). Derived dimensions are represented with 
vastly higher precision than the mechanism can achieve.

The angles of the servo horns are indicated as follows:
• Lower arm servo relative to 12 o’clock, increasing anticlockwise. “Extension” is associated 

with increasing rotation.
• Upper arm servo relative to 6 o’clock, increasing clockwise (anticlockwise viewed from the 

horn side). “Extension” is associated with increasing rotation.

The horizontal dimension for the grip is roughly to the centre of the space between the jaws. For the
distance to the serrations, add another 10mm.

Figure 2 shows the critical dimensions of the base. Note that pivot points / axes are shown, not the 
base outline.

Figure 3 shows the lower arm in the vertical position. Figure 4 adds the upper arm at full extension. 
Extension of the upper arm is limited by interference between the top and bottom upper arms. The 
upper arm rotor could (without other constraints) extend until it interferes with the base servo 

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 7 of 35



housing, as shown by the dashed lines; astute observers will have noted a recess in the base servo 
clamp that catches the screw connecting the upper arm rotor and actuator, preventing this from 
happening.  Figure 5 adds the upper arm at full retraction. Retraction of the upper arm is limited by 
interference between the lower arm and the upper arm actuator.

Figure 6 shows the lower arm at full retraction. Retraction is limited by interference between the 
rear lower arm and the bottom upper arm, at the bell crank. Figure 7 adds the upper arm at full 
extension. Retraction of the upper arm in this case is limited by interference between the grip and 
the body of the base (the servo positions cannot been derived because this kinematic model only 
deals with movable parts).

Figure 8 shows the lower arm in the horizontally extended position. Figure 9 adds the upper arm 
with the grip resting on the mounting surface.

Figure 10 shows that by depressing the lower arm below the horizontal it is possible to increase the 
overall reach slightly.

Figure 11 shows the upper arm at full retraction with the grip resting on the mounting surface. 
Retraction of the upper arm is limited by interference between the top and bottom upper arms.

Because the forward and rear lower arms are the same length and are fixed to points with the same 
separation, they form a parallelogram; hence the orientation of the bell crank remains constant. 
Similarly, because the top and bottom upper arms are the same length and are fixed to points with 
the same separation, they form another parallelogram, so that the orientation of the grip (which is 
tied to the orientation of the bell crank) also remains constant.

We can now derive formulae for the horizontal and vertical positions of the grip, based on the servo 
angles.

The following symbols will be used:
l – the angle of the lower servo, increasing anticlockwise from 12 o’clock
u – the angle of the upper servo, increasing clockwise (anticlockwise viewed from 

the horn side) from 6 o’clock
r – the radial position of the grip relative to the centreline of the base servo
z – the vertical position of the  grip relative to the mounting surface
θ – the angle of the base (not the base servo) relative to neutral, increasing 

anticlockwise viewed from above
x – the position of the grip parallel to the neutral axis
y – the position of the grip perpendicular to the neutral axis
cos() – cosine function
sin() – sin function
sqrt() – square root function
arctan() – inverse tan function
arcsin() – inverse sin function
temp1 – temporary variable
temp2 – temporary variable

See Figure 12 and Figure 13.

Then:
r = 15 + 80 sin(l) + 80 sin(u) + 50 = 65 + 80 ( sin(l) + sin(u) ) … (1)

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 8 of 35



z = 53 + 80 cos(l) – 80 sin(u) = 53 + 80 ( sin(l) – sin (u) ) … (2)
x = r cos(θ) … (3)
y = r sin(θ) … (4)

Note that these formulae work perfectly well for negative values of l, as is the case when the lower 
arm is fully retracted.

There are some mechanical constraints:
• l cannot be less than -48.8°or more than 98.2°.
• u cannot be less than -9.4°or more than 126.5°.
• z cannot be negative (unless the MeArm Pi is mounted near the edge of a table so that the 

grip can descend below the surface of the table).

Inverse Kinematics

Inverse Kinematics in General
“Difficult” sums it up.

The term “degrees of freedom” means the number of independently variable factors affecting the 
range of states in which a system may exist, in particular any of the directions in which independent
motion can occur. As applied to a robot arm, it means the number of independently controllable 
distances or angles in the arm.

A higher number of degrees of freedom increases the likelihood that an object can be reached and 
manipulated by the arm; it also increases, disproportionately, the complexity of positioning and 
motion planning. For positioning, this is because there may be several combinations of controllable 
distances and/or angles that put the grip in the desired position. Some of these alternative solutions 
may be “better” than others for a range of reasons.

For motion planning, it is because (even ignoring obstructions) some pathways between the start 
point and the end point may be highly non-optimal, or even physically impossible to implement.

MeArm Pi Inverse Kinematics
In a real-world application, we may wish to derive the servo angles (l, u, θ) from the Cartesian 
coordinates (x, y, z) of the grip in order to position the arm. To do so, we can proceed as follows:

r = sqrt (x2 + y2) … (5)
θ = arctan(y / x) … (6)

then solve equations (1) and (2) for l and u using r and z as follows:
temp1 = l – u = 2 * arctan((53 – z) / (r – 65)) … (7)
temp2 = l + u = 2 * arcsin((r – 65) / (160 * cos(temp1 / 2)) … (8a), or alternatively
temp2 = l + u = 2 * arcsin((53 – z) / (160 * sin(temp1 / 2)) … (8b)
l = 0.5 * (temp1 + temp2) … (9)
u = 0.5 * (temp2 - temp1) … (10)

The derivation of the above formulae relies on the following trigonometric identities:
tan(x) = sin(x) / cos(x) … (11)
sin(l) + sin (u) = 2 * sin((l + u) / 2) * cos((l – u) / 2) … (12)
cos(l) – cos (u) = -2 * sin((l + u) / 2) * sin ((l – u) / 2) … (13)

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 9 of 35



Dynamics

Dynamics in General
“Dynamics” is defined as the branch of mechanics concerned with the motion of objects under the 
action of forces. Mechanical forces are associated with:

• Friction
• The acceleration of massive bodies (the arm itself, and the object being manipulated)
• Gravity (which for the purists is equivalent to an acceleration)

Although Newton’s laws straight forwardly cover all mundane earthly situations, there is again 
room for the use of advanced mathematical techniques to improve computational simplicity and 
accuracy.

As applied to robot arms, the central problem is often that of moving an object along a desired path 
without damaging the object (by rough handling) or exceeding the ratings of the robot arm.

MeArm Pi Dynamics
This document does not address Me Arm Pi dynamics.

MeArm Pi Setup and Calibration

Foreword
The following may seem an unnecessarily elaborate analysis, given that the MeArm Pi is a hobby-
class robot arm with obvious limitations in the achievable performance. It was carried out for the 
author’s education and is repeated here for what it is worth.

Warning
The Mime Industries setup (it is assumed) will have been conservatively designed to give 
satisfactory out-of-the-box performance with no end-user adjustment.

The following setup is independently derived from the kinematics described above. It is not based 
on the Mime Industries setup, and actually differs from it. It requires the end user to adjust the 
positions of the servo horns. Compatibility with the Mime Industries software is not guaranteed.

Setup
“Setup” (in this case) means the deciding:

• The as-assembled positions of the servo horns.
• The default values of software-based constants for controlling the position of the arm.

The servo positions inherent in the design are as follows.

Element Relative to Full retraction
(degrees)

Full extension
(degrees)

Design range
(degrees)

Lower arm 12 o’clock -48.8 98.2 147.0

Upper arm 6 o’clock -9.4 126.5 135.9

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 10 of 35



Base Neutral -90 +90 180

Jaws Open 0 90 90

To keep things simple initially, we will assume (contrary to observation) that each servo is indeed 
manufactured with the spline “precisely” aligned to the major axes of the housing when in the 
minimum position.

In cases where the design range is less than the range available from the servo, alternative setups 
may be possible. The simplest setups are derived first. The pros and cons of alternative setups will 
be considered later under Calibration.

For the lower arm:
• To allow the full retraction of -48.8° to be achieved, the horn must be assembled at least 

three spline pitches (54°) behind 12 o’clock with the servo in its minimum position.
1. The following rationale applies to all setups. Assuming the servo responds linearly, it will 

deliver 180 / (2.40 – 0.53)  = 96.26 degrees of rotation per millisecond of pulse width. The 
minimum position of -54° will correspond with a pulse width of 0.53ms. To prevent the 
servo from retracting behind -48.8°, the pulse width should never be less than 0.53 + (-48.8 -
(-54)) / 180 * (2.40 – 0.53)  = 0.58ms.

• To prevent the servo from extending beyond 98.2 degrees, the pulse width should never be 
greater than 0.53 + (98.2 - (-54)) / 180 * (2.40 – 0.53) = 2.11ms.

• See Figure 14.

For the upper arm:
• To allow the full retraction of -9.4° to be achieved, the horn must be assembled at least one 

spline pitch (18°) behind 6 o’clock with the servo in its minimum position.
• To prevent the servo from retracting behind -9.4°, the pulse width should never be less than 

0.53 + (-9.4 - (-18)) / 180 * (2.40 – 0.53) = 0.62ms.
• To prevent the servo from extending beyond 126.5 degrees, the pulse width should never be 

greater than 0.53 + (126.5 - (-18)) / 180 * (2.40 – 0.53) = 2.03ms.

For the base, because the design range is equal to the available range, only one setup is possible:
• The horn must be assembled on the relevant major axis with the servo in its minimum 

position.
• The minimum pulse with of 0.53 milliseconds will enable full negative rotation.
• The maximum pulse width of 2.40 milliseconds will enable full positive rotation.

For the jaws:
• If opting for a maximum opening of 90°, the horn must be assembled on the relevant major 

axis with the servo in its minimum position.
• The minimum pulse with of 0.53 milliseconds will enable full opening.
• The prevent the jaws from closing more than 90° and clashing, the pulse width must never 

be greater then 0.53 + 90 / 180 * (2.40 – 0.53) = 1.47ms.

We are fortunate that Mime Industries has provided example Python code, including a servo 
constructor of the form:

Servo({'pin': , 'min': , 'max': , 'minAngle': , 'maxAngle': });
where

• pin is the relevant GPIO  pin number

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 11 of 35



• min and max are pulse widths in microseconds
• minAngle and maxAngle are angles in degrees

We can apply this to setup the MeArm Pi as follows:
lower = Servo({'pin': 17, 'min': 580, 'max': 2110, 'minAngle': -48.8, 'maxAngle': 98.2});
upper = Servo({'pin': 22, 'min': 620, 'max': 2030, 'minAngle': -9.4, 'maxAngle': 126.5});
base = Servo({'pin': 4, 'min': 530, 'max': 2400, 'minAngle': -90.0, 'maxAngle': 90.0});
grip = Servo({'pin': 10, 'min': 530, 'max': 1470, 'minAngle': 0, 'maxAngle': 90.0});

Can You Get There From Here?
If we apply these setups – not forgetting the horns (requiring partial disassembly and reassembly of 
the MeArm) – we can move the arm from one “cardinal” position to the next as shown in the 
figures. Appendix 1 contains the relevant stand-alone Python code and documentation.

Well, almost ...

Amongst other problems, we cannot move the arm smoothly, in one step, between the positions in 
Figures 10 and 11. This is because retraction of the upper servo causes the grip to (try to) go below 
the level of the mounting surface, before the upper arm has had time to retract. This problem can be 
partly addressed though adequate motion planning; however it is made worse on the author’s 
MeArm Pi because the lower spline is very poorly aligned to the major axes of the housing, pushing
the grip even lower. For guaranteed outcomes, we also need to calibrate the arm.

Calibration in General
“Calibration” (in this case) refers to adjustment of the values of software based constants for 
controlling the position of the arm, in order to optimise the arm’s performance.

The need for calibration arises from several causes:
• Manufacturing variations in the components of the arm, including the servos. As previously 

mentioned, the spline does not appear to be precisely aligned, during manufacture, with the 
major axes of the servo housing. In a conventional application of this kind of servo, e.g. a 
model aircraft, this would not matter much – the whole range would not be used, and any 
error would be trimmed out before and/or during flight (trimming being a form of 
calibration).

• Backlash in the servo gears.
• “Slop” (for want of a better term) and deflection under load that are inherent in the 

mechanism.
• Task-specific adjustments.

By definition, then, calibration is specific to each arm, and the task to be performed.

MeArm Pi Calibration
Consider the situation where spline is not aligned at all during manufacture. Its minimum position 
could be anywhere in a range of ±9° from a major axis. For the lower arm, a nominal setting of 
three spline pitches behind 12 o’clock could put the horn anywhere between 45° and 63° from the 
relevant major axis. The latter could be calibrated out; the former is within the design operating 
range!

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 12 of 35



To overcome this, the horn could be set at four spline pitches behind 12 o’clock, but only if there is 
enough unused room at the opposite end of the available range to accommodate the extra offset. For
cases like the base servo, where the design uses the entire available range, any form of calibration 
(say to ensure that the arm is centred for a given control signal pulse width) will result in a loss of 
working range.

In other words, depending on the quality of the components used, there may be a cyclic process of 
setup and calibration – hopefully one that eventually produces a satisfactory outcome.

Clearly calibration involves situation-specific adjustment of the setup constants derived above. This
may be done by trial and error or, in a more professional situation, by using special tools and 
gauges.

For Further Consideration

Issues

Issue In General MeArm Comment

There is nothing to 
prevent human injury 
this might result from a
person interacting with 
the MeArm Pi.

In industrial settings, 
human intrusion into a 
robot’s workspace is 
detected by light beams
(and the like) and 
triggers a safety 
contingency such as an 
immediate shutdown.

It is doubtful that the 
MeArm has enough 
strength to cause 
serious injury. 

Users are advised to 
keep themselves and 
their non-sentient 
offspring, pets, etc. 
clear while the MeArm 
Pi is operating.

There is nothing to 
prevent damage to the 
MeArm that might 
result from 
commanding servos to 
move beyond their 
kinematically allowable
ranges.

There is nothing to 
prevent damage to the 
MeArm that might 
result from attempting 
to move excessively 
massive objects.

In industrial settings, 
robots will be include 
“layered” protections 
such as limit switches, 
mechanical and 
electrical overload 
protections, and 
independent 
supervisory subsystems
to prevent self-harm.

It is doubtful that the 
MeArm has enough 
strength to self-harm, 
albeit attempting to 
move excessive masses
could result in 
overheated servo 
motors, stripped gears 
or broken structural 
members.

Users are advised to 
exercise forethought 
and judgement in their 
use of the MeArm Pi, 
respecting its limited 
capabilities.

When the MeArm to is 
commanded move to a 
new position, each 
servo operates 
independently, 
resulting in a jerky and 
non-optional path.

Motion control 
includes approaching, 
grasping, repositioning 
releasing and leaving 
an object. High quality 
motion control often 
requires position 
feedback from each 

The MeArm has no 
position feedback. 
Provided that the 
MeArm is not 
overloaded, each servo 
should come close to 
its commanded position
eventually; however 

By breaking the desired
path into segments, and
by explicitly taking into
account the mass of the
object, a semblance of 
smooth operation may 
be achievable.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 13 of 35



degree of freedom, 
allowing the robot to 
compensate for the 
effects of inertia and 
gravitation, and thus 
achieve a predictable 
path for the object.

there is no innate 
coordination between 
them.

There is no limit to the 
types and degrees of 
refinement that the user
may experiment with, 
but it might be worth 
doing some research 
before hand, in order to
avoid “dry gulches”.

The MeArm Pi has no 
means of navigating 
spaces containing 
obstructions.

Many industrial robots 
are the same! They 
require a carefully 
controlled environment
in which to work. 
Advanced robots can 
detect obstructions by 
“feel” (e.g. proximity 
sensors), LIDAR, 
SONAR or image 
processing and 
navigate around them.

A quick spin through 
the Mime Industries 
code provides a hint of 
future integration with 
Minecraft Pi. Minecraft
Pi has the ability to 
model a space, and also
the ability to detect  
collisions between 
objects within this 
space (i.e. before the 
physical arm is 
moved).

There’s nothing to 
prevent the user from 
trying his/her own 
approach to workspace 
observation and/or 
modelling. Go boldly!

Additional Information
(Links were correct at the time of access)

Mime Industries MeArm Pi - https://mime.co.uk/products/mearm-pi
MeArm Pi Google Group - https://groups.google.com/forum/#!forum/mearm
MeArm Pi cutting file - https://github.com/mimeindustries/MeArm/blob/v2/MeArm.dxf
Raspberry Pi HAT specification - https://github.com/raspberrypi/hats
Servo tutorial - https://learn.sparkfun.com/tutorials/hobby-servo-tutorial
Servo rotation direction - https://www.servocity.com/servo-direction-information
I2C tutorial - https://learn.sparkfun.com/tutorials/i2c
PCF 8591 device - https://www.nxp.com/docs/en/data-sheet/PCF8591.pdf 
MeArm Pi laser cutting file - https://github.com/mimeindustries/MeArm/blob/v2/MeArm.dxf
Free kinematics software - http://www.kinematics.com/products/robotassist.php
Inverse kinematics - https://en.wikipedia.org/wiki/Inverse_kinematics
Python - https://www.manning.com/books/the-quick-python-book-second-edition

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 14 of 35

https://www.manning.com/books/the-quick-python-book-second-edition
https://en.wikipedia.org/wiki/Inverse_kinematics
http://www.kinematics.com/products/robotassist.php
https://github.com/mimeindustries/MeArm/blob/v2/MeArm.dxf
https://www.nxp.com/docs/en/data-sheet/PCF8591.pdf
https://learn.sparkfun.com/tutorials/i2c
https://www.servocity.com/servo-direction-information
https://learn.sparkfun.com/tutorials/hobby-servo-tutorial
https://github.com/raspberrypi/hats
https://github.com/mimeindustries/MeArm/blob/v2/MeArm.dxf
https://groups.google.com/forum/#!forum/mearm
https://mime.co.uk/products/mearm-pi


Figures

Figure 1 – Servo Control

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 15 of 35



Figure 2 – Base Dimensions

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 16 of 35



Figure 3 – Lower Arm Vertical

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 17 of 35



Figure 4 – Lower Arm Vertical, Upper Arm Fully Extended

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 18 of 35



Figure 5 – Lower Arm Vertical, Upper Arm Fully Retracted

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 19 of 35



Figure 6 – Lower Arm Fully Retracted

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 20 of 35



Figure 7 – Lower Arm Fully Retracted, Upper Arm Fully 
Extended

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 21 of 35



Figure 8 – Lower Arm Horizontal

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 22 of 35



Figure 9 – Lower Arm Horizontal, Grip Resting On Mounting 
Surface

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 23 of 35



Figure 10 – Arms Positioned for Maximum Reach on Mounting 
Surface

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 24 of 35



Figure 11 – Arms Positioned for Minimum Reach on Mounting 
Surface

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 25 of 35



Figure 12 – Simple Kinematic Model

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 26 of 35



Figure 13 – Positioning Template (not to scale)

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 27 of 35



Figure 14 – Setup Graph (Conceptual)

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 28 of 35



Appendix 1: Sample Code

Commented Code

Notes:
1. This example deals with MeArm positioning only. It does not 

acquire joystick data or exercise the tricolour LED.
2. Lines in some cells opposite have wrapped. If running this code, 

make sure they are not wrapped – use the “cut and paste” format in 
the next section.

Remember:
White space is significant in Python – a row beginning with “n” spaces is 
contained within the lexical scope of previous a row containing “n-1” or 
less spaces.

import os Get access to operating system (os) library functions.

import math Get access to math library functions.

import pigpio Get access to pigpio functions.

pi = pigpio.pi() Create an instance of the pigpio class – methods of this object will be used
to exercise the GPIO pins.

class Servo: Start the definition of the Servo class.

Note: In Python and many other languages, class names are capitalised by 
convention.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 29 of 35



  def __init__(self, config):
    self.pin = config['pin']
    self.min = config['min']
    self.max = config['max']
    self.minAngle = config['minAngle']
    self.maxAngle = config['maxAngle']

This is the “constructor” method for Servo. It creates and initialises 
instance-specific variables from a “tuple” called config, supplied by the 
caller.

Note: Python requires each method definition to include a reference to the 
instance, which is called “self” by convention.

  def moveTo(self, angle):
    self.moveToAngle(angle)

This is the moveTo method for Servo. It sets the servo angle to a specific 
value. It calls another method called moveToAngle. See below.

  def moveBy(self, angle):
    newAngle = self.currentAngle + angle
    self.moveToAngle(newAngle)

This is the moveBy method for Servo. It changes the servo angle by a 
specified amount.

  def moveToCentre(self):
    centre = self.minAngle + (self.maxAngle - self.minAngle)/2
    self.moveToAngle(centre)

This is the moveToCentre method for Servo. It sets the servo halfway 
between minAngle and maxAngle (nominally the neutral position).

  def moveToAngle(self, angle):
    if angle > self.maxAngle:
      angle = self.maxAngle
    if angle < self.minAngle:
      angle = self.minAngle
    self.currentAngle = angle
    self.updateServo()

This is the moveToAngle method for Servo. If the required angle is 
outside the range for the instance, it is reset to the minAngle or maxAngle 
as appropriate, and the value is remembered as the currentAngle for later 
use. Then the servo position is updated using another method called 
updateServo.

  def updateServo(self):
    pulseWidth = math.floor(self.min + ((float(self.currentAngle - 
self.minAngle) / float(self.maxAngle - self.minAngle)) * (self.max - 
self.min)));
    pi.set_servo_pulsewidth(self.pin, pulseWidth)

This is the updateServo method for Servo. It calculates the required 
control signal pulse width, then asks the pigpio library to set that up on the
relevant GPIO pin.

class MeArm: Start the definition of the MeArm class.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 30 of 35



  def __init__(self):
    self.lower = Servo({'pin': 17, 'min': 580, 'max': 2110, 'minAngle': -48.8, 
'maxAngle': 98.2});
    self.upper = Servo({'pin': 22, 'min': 620, 'max': 2030, 'minAngle': -9.4, 
'maxAngle': 126.5});
    self.base =  Servo({'pin': 4, 'min': 530, 'max': 2400, 'minAngle': -90, 
'maxAngle': 90});
    self.grip =  Servo({'pin': 10, 'min': 530, 'max': 1470, 'minAngle': 0, 
'maxAngle': 90});

This is the “constructor” method for MeArm. It creates four Servo 
instances called lower, upper, base and grip with appropriate setups. In 
this example, the setups are hard-coded to specific GPIO pins, meaning 
that it is inappropriate to create more than one instance of the class.

  def moveToPosition (self, lower, upper, base, grip):
    self.lower.moveTo(lower)
    self.upper.moveTo(upper)
    self.base.moveTo(base)
    self.grip.moveTo(grip)

This is the moveToPosition method for MeArm. It sends the required 
angle to each of the MeArm’s servos.

myMeArm = MeArm() Here we create an instance of the MeArm class called myMeArm.

while True: Here we kick off an infinite loop ...

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 31 of 35



  var = input ("Press <Enter> to move to the Figure 4 (0, 126.5, 0, 0) 
position")
  myMeArm.moveToPosition(0, 126.5, 0, 0)
  var = input ("Press <Enter> to move to the Figure 5 (0, 19.5, 0, 90) 
position")
  myMeArm.moveToPosition(0, 19.5, 0, 90)
  var = input ("Press <Enter> to move to the Figure 7 (-48.8, 126.5, 0, 0) 
position")
  myMeArm.moveToPosition(-48.8, 126.5, 0, 0)
  var = input ("Press <Enter> to move to the Figure 9 (90, 52, 0, 90) 
position")
  myMeArm.moveToPosition(90, 52, 0, 90)
  var = input ("Press <Enter> to move to the Figure 10 (98.2, 61.6, 0, 0) 
position")
  myMeArm.moveToPosition(98.2, 61.6, 0, 0)
  var = input ("Press <Enter> to move to the Figure 11 (68.5, -9.4, 0, 90) 
position")
  myMeArm.moveToPosition(68.5, -9.4, 0, 90)
  print ("Maybe that worked for you ... maybe")

… which repeatedly cycles through the “cardinal” positions.

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 32 of 35



Code (for cutting and pasting)
import os
import math
import pigpio

pi = pigpio.pi()

class Servo:
  def __init__(self, config):
    self.pin = config['pin']
    self.min = config['min']
    self.max = config['max']
    self.minAngle = config['minAngle']
    self.maxAngle = config['maxAngle']

  def moveTo(self, angle):
    self.moveToAngle(angle)

  def moveBy(self, angle):
    newAngle = self.currentAngle + angle
    self.moveToAngle(newAngle)

  def moveToCentre(self):
    centre = self.minAngle + (self.maxAngle - self.minAngle)/2
    self.moveToAngle(centre)

  def moveToAngle(self, angle):
    if angle > self.maxAngle:
      angle = self.maxAngle
    if angle < self.minAngle:
      angle = self.minAngle
    self.currentAngle = angle
    self.updateServo()

  def updateServo(self):
    pulseWidth = math.floor(self.min + ((float(self.currentAngle - self.minAngle) / 
float(self.maxAngle - self.minAngle)) * (self.max - self.min)));
    pi.set_servo_pulsewidth(self.pin, pulseWidth)

class MeArm:
  def __init__(self):
    self.lower = Servo({'pin': 17, 'min': 580, 'max': 2110, 'minAngle': -48.8, 'maxAngle': 98.2});
    self.upper = Servo({'pin': 22, 'min': 620, 'max': 2030, 'minAngle': -9.4, 'maxAngle': 126.5});
    self.base =  Servo({'pin': 4, 'min': 530, 'max': 2400, 'minAngle': -90, 'maxAngle': 90});
    self.grip =  Servo({'pin': 10, 'min': 530, 'max': 1470, 'minAngle': 0, 'maxAngle': 90});

  def moveToPosition (self, lower, upper, base, grip):
    self.lower.moveTo(lower)

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 33 of 35



    self.upper.moveTo(upper)
    self.base.moveTo(base)
    self.grip.moveTo(grip)

myMeArm = MeArm()

while True:
  var = input ("Press <Enter> to move to the Figure 4 (0, 126.5, 0, 0) position")
  myMeArm.moveToPosition(0, 126.5, 0, 0)
  var = input ("Press <Enter> to move to the Figure 5 (0, 19.5, 0, 90) position")
  myMeArm.moveToPosition(0, 19.5, 0, 90)
  var = input ("Press <Enter> to move to the Figure 7 (-48.8, 126.5, 0, 0) position")
  myMeArm.moveToPosition(-48.8, 126.5, 0, 0)
  var = input ("Press <Enter> to move to the Figure 9 (90, 52, 0, 90) position")
  myMeArm.moveToPosition(90, 52, 0, 90)
  var = input ("Press <Enter> to move to the Figure 10 (98.2, 61.6, 0, 0) position")
  myMeArm.moveToPosition(98.2, 61.6, 0, 0)
  var = input ("Press <Enter> to move to the Figure 11 (68.5, -9.4, 0, 90) position")
  myMeArm.moveToPosition(68.5, -9.4, 0, 90)
  print ("Maybe that worked for you ... maybe")

How to Run the Code

Note: The following instructions assume your Pi is running stock Raspbian (not the Mime 
Industries distribution). The latest version of Raspbian includes a Python IDE (Integrated 
Development Environment) called Thonny, which is used in this example.

To run the above example:

Copy the code into a text file called mearm-demo.py.

Before launching the Python code, you must start the pigpio "daemon" (pronounced "demon") - a 
little stand-alone server which implements the low level control commands, like this:

$ sudo pigpiod

Note: sudo (superuser do) gives pigpiod the privileges it needs to exercise the GPIO pins.

Then go for broke, like this (from the directory containing the code):

$ python3 mearm-demo.py

You will need to hit the <Enter> key to move the arm between “cardinal” positions.

If you prefer, you can single-step through the code in Thonny, the Python IDE, like this:

<In the GUI file manager, right-click on mearm-demo.py and select "Thonny Python IDE">
<Thonny will open with the code on display>
<Click on the "Debug current script" icon to start>

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 34 of 35



<Then repeatedly click on the "Step over" icon to step through the code. Note that you will still 
need to hit the <Enter> key in the console window in order to progress>

You can modify the code if you want to play, using the existing lines as a hint about how to proceed.

When you are finished, kill the pigpio daemon. Firstly identify the daemon process, like this:

$ ps ax | grep pigpio

You will see something like:

 2902 ? Slsl 0:37 pigpiod
 2957 pts/0   S+    0:00 grep --color=auto pigpio

2902 (or whatever the process ID turns out to be on your machine) is the number you are looking 
for. Then:

$ sudo kill 2902 ← substitute your number

MeArmPiTechnicalOverviewV0-2DRAFT.odt Page 35 of 35


