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Chapter 1

Introduction

This document provides an introduction to species distribution modeling
with R . Species distribution modeling (SDM) is also known under other names
including climate envelope-modeling, habitat modeling, and (environmental or
ecological) niche-modeling. The assumption of SDM is that you can predict the
entire, or potential, spatial distribution of a phenomenon, by relating sites of
known occurence (and perhaps non-occurrence) with predictor variables known
for these sites and for all other sites. The common application of this method
is to predict species ranges with climate data as predictors.

In SDM, the following steps are usually taken: (1) locations of occurrence
(and perhaps non-occurrence) of a species (or other phenomenon) are compiled.
(2) values of environmental predictor variables (such as climate) at these lo-
cations are determined. (3) the environmental values are used to fit a model
predicting likelihood of presence, or another measure such as abundance of the
species. (4) The model is used to predict the likelihood of presence at all loca-
tions of an area of interest (and perhaps in a future climate).

In this text we assume that you are familiar with most of the concepts in
SDM. If in doubt, you could consult, for example, Richard Pearson’s intro-
duction to the subject: http://biodiversityinformatics.amnh.org/index.
php?section_id=111, the book by Janet Franklin (2009), and the recent review
by Elith and Leathwick (2009). It is important to have a good understanding
of the interplay of environmental (niche) and geographic (biotope) space – see
Colwell and Rangel (2009) for a good overview. SDM is a widely used approach
but there is much debate on when and how to best use this method. While we
refer to some of these issues, in this document we do not provide an in-depth
discussion of this scientific debate. Rather, our objective is to provide practical
guidance to implemeting the basic steps of SDM. We leave it to the you to use
other sources to determine the appropriate methods for their research; and to
use the ample opportunities provided by the R environment to improve existing
approaches and to develop new ones.

We also assume that you are already familiar with the R language and en-
vironment. It would be particularly useful if you already had some experience
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with statistical model fitting (e.g. the glm function) and with the ’raster’
package. To familiarize yourself with model fitting see, for instance, the Docu-
mentation section on the CRAN webpage (http://cran.r-project.org/) and any
introduction to R txt. For the ’raster’ package you could consult its vignette.
When we present code we will give some hints on how to understand the code,
if we think it might be confusing. We will do more of this earlier on in this
document, so if you are relatively inexperienced with R and would like to ease
into it, read this text in the presented order.

SDM have been implemented in R in many different ways. Here we focus
on the functions in the ’dismo’ and the ’raster’ packages (but we also refer
to other packages). If you want to test, or build on, some of the examples
presented here, make sure you have the latest versions of these packages, and
their dependencies, installed. If you are using a recent version of R , you can
do that with:

install.packages(c(’raster’, ’rgdal’, ’dismo’, ’rJava’))
This document consists of 4 main parts. Part I is concerned with data prepa-

ration. This is often the most time consuming part of a species distribution
modeling project. You need to collect a sufficient number of occurrence records
that document presence (and perhaps absence or abundance) of the species of
interest. You also need to have accurate and relevant spatial predictor vari-
ables at a sufficiently high spatial resolution. We first discuss some aspects of
assembling and cleaning species records, followed by a discussion of aspects of
choosing and using the predictor variables. A particularly important concern
in species distribution modeling is that the species occurrence data adequately
represent the species’ distribution. For instance, the species should be correctly
identified, the coordinates of the location data need to be accurate enough to al-
low the general species/environment to be established, and the sample unbiased,
or accompanied by information on known biases such that these can be taken
into account. Part II introduces the main steps in SDM: fitting a model, making
a prediction, and evaluating the result. Part III introduces different modeling
methods in more detail (profile methods, regression methods, machine learning
methods, and geographic methods). In Part IV we discuss a number of appli-
cations (e.g. predicting the effect of climate change), and a number of more
advanced topics.

This is a work in progress. Suggestions are welcomed.
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Part I

Data preparation
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Chapter 2

Species occurrence data

Importing occurrence data into R is easy. But collecting, georeferencing, and
cross-checking coordinate data is tedious. Discussions about species distribution
modeling often focus on comparing modeling methods, but if you are dealing
with species with few and uncertain records, your focus probably ought to be
on improving the quality of the occurrence data (Lobo, 2008). All methods
do better if your occurrence data is unbiased and free of error (Graham et al.,
2007) and you have a relatively large number of records (Wisz et al., 2008).
While we’ll show you some useful data preparation steps you can do in R ,
it is necessary to use additional tools as well. For example, Quantum GIS,
http://www.qgis.org/, is a very useful program for interactive editing of point
data sets.

2.1 Importing occurrence data

In most cases you will have a file with point locality data representing the
known distribution of a species. Below is an example of using read.table to
read records that are stored in a text file. The R commands used are in italics
and preceded by a ’>’. Comments are preceded by a hash (#). We are using
an example file that is installed with the ’dismo’ package, and for that reason
we use a complex way to construct the filename, but you can replace that with
your own filename. (remember to use forward slashes in the path of filenames!).
system.file inserts the file path to where dismo is installed. If you haven’t
used the paste function before, it’s worth familiarizing yourself with it (type
?paste in the command window). It’s very useful.

> # loads the dismo library

> library(dismo)

> file <- paste(system.file(package="dismo"), "/ex/bradypus.csv", sep="")

> # this is the file we will use:

> file
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[1] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bradypus.csv"

> # let's read it

> bradypus <- read.table(file, header=TRUE, sep=',')

> # let’s inspect the values of the file

> # first rows

> head(bradypus)

species lon lat
1 Bradypus variegatus -65.4000 -10.3833
2 Bradypus variegatus -65.3833 -10.3833
3 Bradypus variegatus -65.1333 -16.8000
4 Bradypus variegatus -63.6667 -17.4500
5 Bradypus variegatus -63.8500 -17.4000
6 Bradypus variegatus -64.4167 -16.0000

> # we only need columns 2 and 3:

> bradypus <- bradypus[,2:3]

> head(bradypus)

lon lat
1 -65.4000 -10.3833
2 -65.3833 -10.3833
3 -65.1333 -16.8000
4 -63.6667 -17.4500
5 -63.8500 -17.4000
6 -64.4167 -16.0000

You can also read such data directly out of Excel or from a database (see e.g.
the RODBC package). Because this is csv (comma separated values) file, we could
also have used the read.csv function. No matter how you do it, the objective
is to get a matrix (or a data.frame) with at least 2 columns to hold the coor-
dinates. Coordinates are typically longitude and latitude, but they could also
be Easting and Northing in UTM or another coordinate reference system (map
projection). The convention used here is to organize the coordinates columns
so that longitude is the first and latitude the second column (think x and y
axes in a plot; longitude is x, latitude is y); they often are in the reverse order,
leading to undesired results. In many cases you will have additional columns,
e.g., a column to indicate the species if you are modeling multiple species; and
a column to indicate whether this is a ’presence’ or an ’absence’ record (a much
used convention is to code presence with a 1 and absence with a 0).

If you do not have any species distribution data you can get started by down-
loading data from the Global Biodiversity Inventory Facility (GBIF) (http:
//www.gbif.org/). In the dismo package there is a function ’gbif’ that you
can use for this. The data used below were downloaded (and saved to a perma-
nent data set for use in this vignette) using the gbif function like this:

acaule = gbif("solanum", "acaule", geo=FALSE)
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If you want to understand the order of the arguments given here to gbif or
find out what other arguments you can use with this function, check out the
help file (remember you can’t access help files if the library is not loaded), by
typing: ?gbif or help(gbif)

Many species occurence records may not have geographic coordinates. Out
of the 699 records that GBIF returned (March 2010), there were only 54 records
with coordinates.

> # load the saved acaule data

> data(acaule)

> # how many rows and colums?

> dim(acaule)

[1] 699 23

> #select the records that have longitude and latitude data

> colnames(acaule)

[1] "species" "continent"
[3] "country" "adm1"
[5] "adm2" "locality"
[7] "lat" "lon"
[9] "coordUncertaintyM" "alt"
[11] "institution" "collection"
[13] "catalogNumber" "basisOfRecord"
[15] "collector" "earliestDateCollected"
[17] "latestDateCollected" "gbifNotes"
[19] "downloadDate" "maxElevationM"
[21] "minElevationM" "maxDepthM"
[23] "minDepthM"

> acgeo <- subset(acaule, !is.na(lon) & !is.na(lat))

> dim(acgeo)

[1] 54 23

> # show some values

> acgeo[1:4, c(1:5,7:10)]

species continent country adm1
13 Solanum acaule <NA> BOL <NA>
426 Solanum acaule Bitter America Argentina Jujuy
428 Solanum acaule Bitter America Bolivia La Paz
429 Solanum acaule Bitter America Bolivia La Paz

adm2 lat lon coordUncertaintyM alt
13 <NA> -18.8167 -65.90 NA 3960
426 -22.9000 -66.24 NA 4050
428 Pacajes -17.4200 -68.85 NA 3811
429 Pacajes -17.1200 -68.77 NA 3800
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Below is a simple way to make a map of the occurrence localities of Solanum
acaule. It is important to make such maps to assure that the points are, at least
roughly, in the right location.

> library(maptools)

> data(wrld_simpl)

> plot(wrld_simpl, xlim=c(-80,10), ylim=c(-60,10), axes=TRUE,

+ col='light yellow')

> # restore the box around the map

> box()

> # plot points

> points(acgeo$lon, acgeo$lat, col='orange', pch=20, cex=0.75)

> # plot points again to add a border, for better visibility

> points(acgeo$lon, acgeo$lat, col='red', cex=0.75)

The ”wrld simpl”dataset contains rough country outlines. You can use other
datasets of polygons (or lines or points) as well. For example, you can download
higher resolution data country and subnational administrative boundaries data
with the getData function of the raster package. You can also read your own
shapefile data into R using the readOGR function in the rgdal package or the
readShapePoly function in the maptools package.
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2.2 Data cleaning

Data ’cleaning’ is particularly important for data sourced from species dis-
tribution data warehouses such as GBIF. Such efforts do not specifically gather
data for the purpose of species distribution modeling, so you need to understand
the data and clean them appropriately, for your application. Here we provide
an example.

Solanum acaule is a species that occurs in the higher parts of the Andes
mountains of Peru and Bolivia. Do you see any errors on the map? There
are three records that have plausible latitudes, but longitudes that are clearly
wrong, as they are in the Atlantic Ocean, south of West Africa. It looks like
they have a longitude that is zero. In many data-bases you will find values
that are ’zero’ where ’no data’ was intended. The gbif function (when using
the default arguments) sets coordinates that are (0, 0) to NA, but not if one of
the coordinates is zero. Let’s see if we find them by searching for records with
longitudes of zero.

Let’s have a look at these records:

> lonzero = subset(acgeo, lon==0)

> # show all records, only the first 13 columns

> lonzero[, 1:13]

species continent country
544 Solanum acaule Bitter subsp. acaule <NA> BOL
551 Solanum acaule Bitter subsp. acaule <NA> BOL
567 Solanum acaule Bitter subsp. acaule <NA> PER
638 Solanum acaule Bitter subsp. acaule <NA> PER
640 Solanum acaule Bitter subsp. acaule <NA> ARG
641 Solanum acaule Bitter subsp. acaule <NA> ARG

adm1 adm2
544 <NA> <NA>
551 <NA> <NA>
567 <NA> <NA>
638 <NA> <NA>
640 <NA> <NA>
641 <NA> <NA>

locality
544 Llave
551 Llave
567 km 205 between Puno and Cuzco
638 km 205 between Puno and Cuzco
640 between Quelbrada del Chorro and Laguna Colorada
641 between Quelbrada del Chorro and Laguna Colorada

lat lon coordUncertaintyM alt institution
544 -16.083333 0 NA 3900 IPK
551 -16.083333 0 NA 3900 IPK
567 -6.983333 0 NA 4250 IPK
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638 -6.983333 0 NA 4250 IPK
640 -23.716667 0 NA 3400 IPK
641 -23.716667 0 NA 3400 IPK

collection catalogNumber
544 WKS 30050 304711
551 GB WKS 30050
567 WKS 30048 304709
638 GB WKS 30048
640 WKS 30027 304688
641 GB WKS 30027

The records are from Bolivia (BOL), Peru (PER) and Argentina (ARG),
confirming that coordinates are in error (it could have been that the coordinates
were correct for a location in the Ocean, perhaps referring to a location a fish
was caught rather than a place where S. acaule was collected).

2.2.1 Duplicate records

Interestingly, another data quality issue is revealed above: each record oc-
curs twice. This could happen because plant samples are often split and send to
multiple herbariums. But in this case it seems that the data from IPK are dupli-
cated in the GBIF database. Duplicates can be removed with the duplicated
function.

> # which records are duplicates (only for the first 10 columns)?

> dups <- duplicated(lonzero[, 1:10])

> # remove duplicates

> lonzero <- lonzero[dups, ]

> lonzero[,1:13]

species continent country
551 Solanum acaule Bitter subsp. acaule <NA> BOL
638 Solanum acaule Bitter subsp. acaule <NA> PER
641 Solanum acaule Bitter subsp. acaule <NA> ARG

adm1 adm2
551 <NA> <NA>
638 <NA> <NA>
641 <NA> <NA>

locality
551 Llave
638 km 205 between Puno and Cuzco
641 between Quelbrada del Chorro and Laguna Colorada

lat lon coordUncertaintyM alt institution
551 -16.083333 0 NA 3900 IPK
638 -6.983333 0 NA 4250 IPK
641 -23.716667 0 NA 3400 IPK

collection catalogNumber
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551 GB WKS 30050
638 GB WKS 30048
641 GB WKS 30027

Another approach might be to detect duplicates for the same species and
some coordinates in the data, even if the records were from collections by dif-
ferent people or in different years. (in our case, using species is redundant as
we have data for only species)

> dups2 <- duplicated(acgeo[, c('species', 'lon', 'lat')])

> # number of duplicates

> sum(dups2)

[1] 8

> # keep the records that are _not_ duplicated

> acg <- acgeo[!dups2, ]

> # let's also remove the records with longitude=0

> acg <- acg[acg$lon != 0, ]

2.3 Cross-checking

It is important to cross-check coordinates by visual and other means. One
approach is to compare the country (and lower level administrative subdivisions)
of the site as specified by the records, with the country implied by the coordi-
nates (Hijmans et al., 1999). In the example below we use the coordinates
function from the ’sp’ package to create a SpatialPointsDataFrame, and then
the overlay function, also from ’sp’, to do a point-in-polygon query with the
countries polygons.

> library(sp)

> # make a SpatialPointsDataFrame

> coordinates(acgeo) <- ~lon+lat

> class(acgeo)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

> # use the coordinates to do a spatial query of the polygons

> # in wrld_simpl wich is a SpatialPolygonsDataFrame object

> class(wrld_simpl)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
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> ov <- overlay(acgeo, wrld_simpl)

> # ov has, for each point, the record number of wrld_simpl

> # we can use the record number to extract the country name

> # first find the variable name

> names(wrld_simpl@data)

[1] "FIPS" "ISO2" "ISO3" "UN"
[5] "NAME" "AREA" "POP2005" "REGION"
[9] "SUBREGION" "LON" "LAT"

> head(wrld_simpl@data)

FIPS ISO2 ISO3 UN NAME AREA POP2005
ATG AC AG ATG 28 Antigua and Barbuda 44 83039
DZA AG DZ DZA 12 Algeria 238174 32854159
AZE AJ AZ AZE 31 Azerbaijan 8260 8352021
ALB AL AL ALB 8 Albania 2740 3153731
ARM AM AM ARM 51 Armenia 2820 3017661
AGO AO AO AGO 24 Angola 124670 16095214

REGION SUBREGION LON LAT
ATG 19 29 -61.783 17.078
DZA 2 15 2.632 28.163
AZE 142 145 47.395 40.430
ALB 150 39 20.068 41.143
ARM 142 145 44.563 40.534
AGO 2 17 17.544 -12.296

> # We clearly need the variable 'NAME' in the data.frame

> # (stored in the 'data' slot) of wrld_simpl

>

> cntr <- as.character(wrld_simpl@data$NAME[ov])

> # which points (identified by their record numbers) do not match

> # any country (i.e. are in an ocean)

> i <- which(is.na(cntr))

> i

[1] 43 44 45 46 47 48

> # these are the same records, with longitude=0, as identified above:

> acgeo@data[i,'catalogNumber']

[1] "304711" "WKS 30050" "304709" "WKS 30048"
[5] "304688" "WKS 30027"

> # which points has coordinates that are in a different country than

> # listed in the ‘country’ field of the gbif record

> j <- which(cntr != acgeo@data$country)

> j
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[1] 1 49 50 51 52

> # for the mismatches, bind the country names of the polygons and points

> cbind(cntr, acgeo@data$country)[j,]

cntr
[1,] "Bolivia" "BOL"
[2,] "Bolivia" "BOL"
[3,] "Peru" "PER"
[4,] "Peru" "PER"
[5,] "Peru" "PER"

> # fortunately the mismatch is simply because of the use of abbreviations

> # instead of full country names in these records.

See the sp package for more information on the overlay function and the
related function over. At first it may be confusing that it returns indices (row
numbers). These indices, stored in variables i and j were used to get the relevant
records. Note that the polygons that we used in the example above are not very
precise, and they should not be used in a real analysis. See http://www.gadm.
org/ for more detailed administrative division files, or use the ’getData’ function
from the raster package (e.g. getData(’gadm’, country=’PER’, level=0) to
get the national borders of Peru.

> # now let’s remove the records that have a longitude of 0

> acgeo <- acgeo[ coordinates(acgeo)[,'lon'] != 0, ]

2.4 Georeferencing

If you have records with locality descriptions but no coordinates, you should
consider georeferencing these. Not all the records can be georeferenced. Some-
times even the country is unknown (country==”UNK”). Here we select only
records that do not have coordinates, but that do have a locality description.

> georef <- subset(acaule, (is.na(lon) | is.na(lat)) & ! is.na(locality) )

> dim(georef)

[1] 89 23

> georef[1:3,1:13]

species
30 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert.
42 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert.
81 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert.

continent country adm1 adm2
30 <NA> PER <NA> <NA>
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42 <NA> BOL <NA> <NA>
81 <NA> ARG <NA> <NA>

locality lat lon coordUncertaintyM
30 km 205 between Puno and Cuzco NA NA NA
42 Llave NA NA NA
81 da Pena NA NA NA

alt institution collection catalogNumber
30 4250 DEU159 DEU WKS 30048
42 3900 DEU159 DEU WKS 30050
81 NA DEU159 DEU WKS 30417

Among the first records is an old acquaintance. The record, with catalog
number WKS 30048 was also in the set of records that had a longitude of zero
degrees.

We recommend using a tool like BioGeomancer: http://bg.berkeley.edu/
latest (Guralnick et al., 2006) to georeference textual locality descriptions. An
important feature of BioGeomancer is that it attempts to capture the uncer-
tainty associated with each georeference (Wieczorek et al., 2004). The dismo
package has a function biogeomancer that you can use for this, and that we
demonstrate below, but its use is generally not recommended because you really
need a detailed map interface for accurate georeferencing.

Here is an example for one of the records with longitude = 0. We put the
biogeomancer function into a ’try’ function, to assure elegant error handling if
the computer is not connected to the Internet.

> args(biogeomancer)

function (country = "", adm1 = "", adm2 = "", locality = "",
singleRecord = TRUE, progress = "text")

NULL

> # the first locality:

> lonzero$locality[1]

[1] "Llave"

> b <- try( biogeomancer('Peru', locality=lonzero$locality[1], progress=''))

> b

id lon lat coordUncertaintyM
1 1 NA NA NA

2.5 Sampling bias

Sampling bias is frequently present in occurrence records (Hijmans et al.,
2001). One can attempt to remove some of the bias by subsampling records,
and this is illustrated below. However, subsampling reduces the number of
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records, and it cannot correct the data for areas that have not been sampled
at all. It also suffers from the problem that locally dense records might be a
true reflection of the relative suitable of habitat. The example below illustrates
how one could go about subsampling. This is not a general recommendation
to subsample, or to subsample in this way. See Phillips et al. (2009) for an
approach with MaxEnt to deal with bias in occurrence records used in SDM.

> # create a RasterLayer with the extent of acgeo

> r <- raster(acgeo)

> # set the resolution of the cells to 1 degrees

> res(r) <- 1

> # expand the RasterLayer a little

> r <- expand(r, extent(r)+1)

> # get the cell number for each point

> cell <- cellFromXY(r, acgeo)

> dup <- duplicated(cell)

> # select the records that are not duplicated. A random selection

> # within duplicates might be better (but more elaborate).

> acsel <- acgeo[!dup, ]

> # display the results

> p <- rasterToPolygons(r)

> plot(p, border='gray')

> points(acgeo)

> # selected points in red

> points(acsel, cex=1, col='red', pch='x')
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Chapter 3

Absence and background
points

Some of the early species distribution model algorithms, such as Bioclim
and Domain only use ’presence’ data in the modeling process. Other methods
also use ’absence’ data or ’background’ data. Logistic regression is the classical
approach to analyzing presence and absence data (and it is still much used, often
implemented in a generalized linear modeling (GLM) framework). If you have
a large dataset with presence/absence from a well designed survey, you should
use a method that can use these data (i.e. do not use a modeling method that
only considers presence data). If you only have presence data, you can still use a
method that needs absence data, by substituting absence data with background
data.

Background data (e.g. Phillips et al. 2009) are not attempting to guess at
absence locations, but rather to characterize environments in the study region.
In this sense, background is the same, irrespective of where the species has been
found. Background data establishes the environmental domain of the study,
whilst presence data should establish under which conditions a species is more
likely to be present than on average. A closely related but different concept,
that of ”pseudo-absences”, is also used for generating the non-presence class for
logistic models. In this case, researchers sometimes try to guess where absences
might occur – they may sample the whole region except at presence locations,
or they might sample at places unlikely to be suitable for the species. We prefer
the background concept because it requires fewer assumptions and has some
coherent statistical methods for dealing with the ”overlap” between presence
and background points (e.g. Ward et al. 2009; Phillips and Elith, 2011).

Survey-absence data has value. In conjunction with presence records, it
establishes where surveys have been done, and the prevalence of the species
given the survey effort. That information is lacking for presence-only data, a
fact that can cause substantial difficulties for modeling presence-only data well.
However, absence data can also be biased and incomplete, as discussed in the
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literature on detectability (e.g., Kéry et al., 2010).
dismo has a function to sample random points (background data) from a

study area. You can use a ’mask’ to exclude area with no data NA, e.g. areas not
on land. You can use an ’extent’ to further restrict the area from which random
locations are drawn. In the example below, we first get the list of filenames
with the predictor raster data (discussed in detail in the next chapter). We use
a raster as a ’mask’ in the randomPoints function such that the background
points are from the same geographic area, and only for places where there are
values (land, in our case).

Note that if the mask has the longitude/latitute coordinate reference sys-
tem, function randomPoints selects cells according to cell area, which varies by
latitude (as in Elith et al., 2011)

> files <- list.files(path=paste(system.file(package="dismo"), '/ex',

+ sep=''), pattern='grd', full.names=TRUE )

> mask <- raster(files[[1]])

> # select 500 random points

> # set seed to assure that the examples will always

> # have the same random sample.

> bg <- randomPoints(mask, 500 )

> # set up the plotting area for two maps

> par(mfrow=c(1,2))

> plot(!is.na(mask), legend=FALSE)

> points(bg, cex=0.5)

> # now limiting the area of sampling by spatial extent

> e <- extent(-80, -53, -39, -22)

> bg2 <- randomPoints(mask, 50, ext=e)

> plot(!is.na(mask), legend=FALSE)

> plot(e, add=TRUE, col='red')

> points(bg2, cex=0.5)
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There are several approaches one could use to sample ’pseudo-absence’ points,
i.e. points from more restricted area than ’background’. VanDerWal et al.
(2009) sampled withn a radius of presence points. Here is one way to imple-
ment that, using the Solanum acaule data.

> pts <- acg[, c('lon', 'lat')]

> # circles with a radius of 50 km

> x <- circles(pts, d=50000, lonlat=T, col='light gray')

> plot(x@polygons, axes=T)

> points(pts, pch='x')

> # sample randomly from all circles

> samp1 <- spsample(x@polygons, 250, type='random', iter=25)

> points(samp1, cex=0.5, col='red')

> # get unique cells

> cells <- cellFromXY(mask, samp1)

> length(cells)

[1] 250

> cells <- unique(cells)

> length(cells)

[1] 92

> xy <- xyFromCell(mask, cells)

> points(xy, cex=0.75, pch=20, col='blue')

Note that the blue points are not all within the circles, as they now reprsenst
the centers of the selected cells from mask. We could choose to select only those
cells that have theirs centers within the circles, using the overlay function.

> o <- overlay(x@polygons, SpatialPoints(xy))

> xyInside <- xy[!is.na(o), ]
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Similar results could also be achieved via the raster functions rasterize or
extract.

> # extract cell numbers for the circles

> v <- extract(mask, x@polygons, cellnumbers=T)

> # use rbind to combine the elements in list v

> v <- do.call(rbind, v)

> # get unique cell numbers from which you could sample

> v <- unique(v[,1])

> v

[1] 21880 21881 23368 23554 21316 21317 21503 21131 21321
[10] 21507 21508 19822 19823 20008 20946 20947 22067 22253
[19] 21132 23183 23184 23925 23926 20009 20010 21510 21511
[28] 21134 21135 21320 20572 20573 20382 20568 21692 21693
[37] 21322 21323 21133 21509 23555 23741 23742 21318 20759
[46] 20760 20945 20944 22069 22070 21882 22068 22998 22999
[55] 19824 19825 20011 22254 23370 23556 21319 20753 20754
[64] 21127 21128 21313 22996 22997 23182

> # to display the results

> m <- mask

> m[] <- NA

> m[v] <- 1

> plot(m, ext=extent(x@polygons)+1)

> plot(x@polygons, add=T)
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Chapter 4

Environmental data

4.1 Raster data

In species distribution modeling, predictor variables are typically organized
as raster (grid) type files. Each predictor should be a ’raster’ representing a vari-
able of interest. Variables can include climatic, soil, terrain, vegetation, land
use, and other variables. These data are typically stored in files in some kind
of GIS format. Almost all relevant formats can be used (including ESRI grid,
geoTiff, netCDF, IDRISI). Avoid ASCII files if you can, as they tend to consid-
erably slow down processing speed. For any particular study the layers should
all have the same spatial extent, resolution, origin, and projection. If neces-
sary, use functions like crop, expand, aggregate, resample, and projec-
tRaster from the ’raster’ package to prepare your predictor variable data.
See the help files and the vignette of the raster package for more info on how
to do this. The set of predictor variables (rasters) can be used to make a
’RasterStack’, which is a collection of ’RasterLayer’ objects (see the raster
package for more info).

Here we make a list of files that are installed with the dismo package and
then create a rasterStack from these, show the names of each layer, and finally
plot them all.

> files <- list.files(path=paste(system.file(package="dismo"),

+ '/ex', sep=''), pattern='grd', full.names=TRUE )

> # The above finds all the files with extension "grd" in the

> # examples ("ex") directory of the dismo package. You do not

> # need such a complex statement to get your own files.

> files

[1] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio1.grd"
[2] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio12.grd"
[3] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio16.grd"
[4] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio17.grd"
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[5] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio5.grd"
[6] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio6.grd"
[7] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio7.grd"
[8] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/bio8.grd"
[9] "c:/temp/Rtmpodl0ka/Rinste756f2/dismo/ex/biome.grd"

> predictors <- stack(files)

> predictors

class : RasterStack
dimensions : 192, 186, 35712, 9 (nrow, ncol, ncell, nlayers)
resolution : 0.5, 0.5 (x, y)
extent : -125, -32, -56, 40 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
min values : -23 0 0 0 61 -212 60 -66 1
max values : 289 7682 2458 1496 422 242 461 323 14

> layerNames(predictors)

[1] "bio1" "bio12" "bio16" "bio17" "bio5" "bio6" "bio7"
[8] "bio8" "biome"

> plot(predictors)
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We can also make a plot of a single layer in a RasterStack, and plot some
additional data on top of it:

> plot(predictors, 1)

> plot(wrld_simpl, add=TRUE)

> points(bradypus, col='red', cex=0.5)

> points(acgeo, col='blue', pch='x', cex=0.5)

The example above uses data representing ’bioclimatic variables’ from the
WorldClim database (http://www.worldclim.org, Hijmans et al., 2004) and
’terrestrial biome’ data from the WWF. (http://www.worldwildlife.org/
science/data/item1875.html, Olsen et al., 2001). You can go to these web-
sites if you want higher resolution data. You can also use the getData function
from the raster package to download WorldClim climate data.

Predictor variable selection can be important, particularly if the objective
of a study is explanation. See, e.g., Austin and Smith (1987), Austin (2002),
Mellert et al., (2011). The early applications of species modeling tended to focus
on explanation (Elith and Leathwick 2009). Nowadays, the objective of SDM
tends to be prediction. For prediction within the same geographic area, variable
selection might arguably be relatively less important, but for many prediction
tasks (e.g. to new times or places, see below) variable selection is critically
important. In all cases it is important to use variables that are relevant to the
ecology of the species (rather than with the first data that can be found on the
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web!). In some cases it can be useful to develop new, more ecologically relevant,
predictor variables from existing data. For example, one could use land cover
data and the focal function in the raster package to create a new variable
that indicates how much forest area is available within x km of a grid cell, for a
species that might have a home range of x.

4.2 Extracting values from rasters

We now have a set of predictor variables (rasters) and occurrence points. The
next step is to extract the values of the predictors at the locations of the points.
(This step can be skipped for the modeling methods that are implemented in the
dismo package). This is a very straightforward thing to do using the ’extract’
function from the raster package. In the example below we use that function first
for the Bradypus occurrence points, then for 500 random background points. We
combine these into a single data.frame in which the first column (variable ’pb’)
indicates whether this is a presence or a background point. ’biome’ is categorical
variable (called a ’factor’ in R ) and it is important to explicitly define it that
way, so that it won’t be treated like any other numerical variable.

> presvals <- extract(predictors, bradypus)

> backgr <- randomPoints(predictors, 500)

> absvals <- extract(predictors, backgr)

> pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals)))

> sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals)))

> sdmdata[,'biome'] = as.factor(sdmdata[,'biome'])

> head(sdmdata)

pb bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome
1 1 263 1639 724 62 338 191 147 261 1
2 1 263 1639 724 62 338 191 147 261 1
3 1 253 3624 1547 373 329 150 179 271 1
4 1 243 1693 775 186 318 150 168 264 1
5 1 243 1693 775 186 318 150 168 264 1
6 1 252 2501 1081 280 326 154 172 270 1

> tail(sdmdata)

pb bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome
611 0 256 1208 503 144 315 200 115 255 1
612 0 269 2346 977 115 348 217 130 259 7
613 0 103 29 17 1 188 15 172 75 12
614 0 241 1482 1031 22 339 130 209 254 3
615 0 229 2943 1194 342 294 169 125 224 1
616 0 261 2796 964 322 319 206 113 258 1

> summary(sdmdata)

23



pb bio1 bio12
Min. :0.0000 Min. : 5.0 Min. : 1.0
1st Qu.:0.0000 1st Qu.:178.0 1st Qu.: 739.8
Median :0.0000 Median :241.5 Median :1489.0
Mean :0.1883 Mean :212.2 Mean :1614.6
3rd Qu.:0.0000 3rd Qu.:260.0 3rd Qu.:2259.8
Max. :1.0000 Max. :286.0 Max. :7682.0

bio16 bio17 bio5
Min. : 1.0 Min. : 0.0 Min. : 75.0
1st Qu.: 330.8 1st Qu.: 36.0 1st Qu.:300.0
Median : 626.5 Median : 106.5 Median :318.0
Mean : 654.9 Mean : 166.2 Mean :306.7
3rd Qu.: 916.2 3rd Qu.: 232.0 3rd Qu.:332.0
Max. :2458.0 Max. :1496.0 Max. :405.0

bio6 bio7 bio8
Min. :-177.00 Min. : 60.0 Min. : 3.0
1st Qu.: 48.75 1st Qu.:117.0 1st Qu.:213.0
Median : 157.00 Median :158.5 Median :250.0
Mean : 118.06 Mean :188.6 Mean :224.2
3rd Qu.: 200.00 3rd Qu.:235.0 3rd Qu.:262.0
Max. : 242.00 Max. :449.0 Max. :319.0

biome
1 :281
13 : 77
7 : 60
8 : 53
2 : 42
(Other):102
NA's : 1

There are alternative approaches possible here. For example, one could ex-
tract multiple points in a radius as a potential means for dealing with mismatch
between location accuracy and grid cell size. If one would make 10 datasets
that represent 10 equally valid ”samples” of the environment in that radius,
that could be then used to fit 10 models and explore the effect of uncertainty in
location.

To visually investigate colinearity in the environmental data (at the occur-
rence points) you can use a pairs plot. See Dormann et al. (2011) for a discussion
of methods to remove colinearity.

> # pairs plot of the values of the climate data

> # at the bradypus occurrence sites.

> pairs(sdmdata[,2:5], cex=0.1, fig=TRUE)
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Part II

Model fitting, prediction,
and evaluation
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Chapter 5

Model fitting

Model fitting is technically quite similar across the modeling methods that
exist in R . Most methods take a ’formula’ identifying the dependent and inde-
pendent variables, accompanied with a data.frame that holds these variables.
Details on specific methods are provided further down on this document, in part
III.

A simple formula could look like: y ~ x1 + x2 + x3, i.e. y is a function
of x1, x2, and x3. Another example is y ~ ., which means that y is a func-
tion of all other variables in the data.frame provided to the function. See
help(’formula’) for more details about the formula syntax. In the example
below, the function ’glm’ is used to fit generalized linear models. glm returns a
model object.

> m1 = glm(pb ~ bio1 + bio5 + bio12, data=sdmdata)

> class(m1)

[1] "glm" "lm"

> summary(m1)

Call:
glm(formula = pb ~ bio1 + bio5 + bio12, data = sdmdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.82681 -0.24010 -0.09947 0.07679 0.86667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.104e-01 1.021e-01 1.082 0.27959
bio1 1.682e-03 3.840e-04 4.381 1.39e-05 ***
bio5 -1.454e-03 4.538e-04 -3.205 0.00142 **
bio12 1.034e-04 1.564e-05 6.616 8.09e-11 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.1233405)

Null deviance: 94.156 on 615 degrees of freedom
Residual deviance: 75.484 on 612 degrees of freedom
AIC: 464.95

Number of Fisher Scoring iterations: 2

> m2 = glm(pb ~ ., data=sdmdata)

> m2

Call: glm(formula = pb ~ ., data = sdmdata)

Coefficients:
(Intercept) bio1 bio12 bio16
3.026e-01 -1.889e-03 3.147e-04 -4.269e-04

bio17 bio5 bio6 bio7
-5.908e-04 -2.029e-04 1.619e-03 9.427e-05

bio8 biome2 biome3 biome4
3.565e-04 -1.173e-01 -1.908e-01 -1.647e-01

biome5 biome7 biome8 biome9
-9.556e-02 -2.441e-01 -9.018e-02 2.952e-02

biome10 biome11 biome12 biome13
-1.145e-01 -3.197e-01 -1.281e-01 -5.218e-02

biome14
-2.195e-01

Degrees of Freedom: 614 Total (i.e. Null); 594 Residual
(1 observation deleted due to missingness)

Null Deviance: 94.12
Residual Deviance: 70.15 AIC: 454.1

Models that are implemented in dismo do not use a formula (and most
models only take presence points). For example:

> bc = bioclim(sdmdata[,c('bio1', 'bio5', 'bio12')])

> class(bc)

[1] "Bioclim"
attr(,"package")
[1] "dismo"

> bc
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class : Bioclim

variables: bio1 bio5 bio12

presence points: 616
bio1 bio5 bio12

1 263 338 1639
2 263 338 1639
3 253 329 3624
4 243 318 1693
5 243 318 1693
6 252 326 2501
7 240 317 1214
8 275 335 2259
9 271 327 2212
10 274 329 2233
(... ... ...)

> pairs(bc)
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Chapter 6

Model prediction

Different modeling methods return different type of ’model’ objects (typically
they have the same name as the modeling method used). All of these ’model’ ob-
jects, irrespective of their exact class, can be used to with the predict function
to make predictions for any combination of values of the independent variables.
This is illustrated in the example below where we make predictions with the
glm model object ’m1’ and for bioclim model ’bc’, for three records with values
for variables bio1, bio5 and bio12 (the variables used in the example above to
create the model objects).

> bio1 = c(40, 150, 200)

> bio5 = c(60, 115, 290)

> bio12 = c(600, 1600, 1700)

> pd = data.frame(cbind(bio1, bio5, bio12))

> pd

bio1 bio5 bio12
1 40 60 600
2 150 115 1600
3 200 290 1700

> predict(m1, pd)

1 2 3
0.1525364 0.3610495 0.2010020

> predict(bc, pd)

[1] 0.000000000 0.006493506 0.375000000

Making such predictions for a few environments can be very useful to explore
and understand model predictions. For example it used in the response function
that creates response plots for each variable, with the other variables at their
median value.
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> response(bc)

In most cases, howver, the purpose is SDM is to creat a map of suitability
scores. We can do that by providing the predict function with a Raster* object
and a model object. As long as the variable names in the model object are
available as layers (layerNames) in the Raster* object.

> layerNames(predictors)

[1] "bio1" "bio12" "bio16" "bio17" "bio5" "bio6" "bio7"
[8] "bio8" "biome"

> p <- predict(predictors, m1)

> plot(p)
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Chapter 7

Model evaluation

It is much easier to create a model and make a prediction than to assess how
good the model is, and whether it is can be used for a specific purpose. Most
model types have different measures that can help to assess how good the model
fits the data. It is worth becoming familiar with these and understanding their
role, because they help you to assess whether there is anything substantially
wrong with your model. Most statistics or machine learning texts will provide
some details. For instance, for a GLM one can look at how much deviance is
explained, whether there are patterns in the residuals, whether there are points
with high leverage and so on. However, since many models are to be used for
prediction, much evaluation is focused on how well the model predicts to points
not used in model training (see following section on data partitioning). Before
we start to give some examples of statistics used for this evaluation, it is worth
considering what else can be done to evaluate a model. Useful questions include:

� does the model seem sensible, ecologically?
� do the fitted functions (the shapes of the modeled relationships) make

sense?
� do the predictions seem reasonable? (map them, and think about them)
� are there any spatial patterns in model residuals? (see Leathwick and

Whitehead 2001 for an interesting example)
Most modelers rely on cross-validation. This consists of creating a model

with one ’training’ data set, and testing it with another data set of known
occurrences. Typically, training and testing data are created through random
sampling (without replacement) from a single data set. Only in a few cases,
e.g. Elith et al., 2006, training and test data are from different sources and
pre-defined.

Different measures can be used to evaluate the quality of a prediction (Field-
ing and Bell, 1997, Liu et al., 2011; and Potts and Elith (2006) for abundance
data), perhaps depending on the goal of the study. Many measures for eval-
uating models based on presence-absence or presence-only data are ’threshold
dependent’. That means that a threshold must be set first (e.g., 0.5, though 0.5
is rarely a sensible choice – e.g. see Lui et al. 2005). Predicted values above
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that threshold indicate a prediction of ’presence’, and values below the thresh-
old indicate ’absence’. Some measures emphasize the weight of false absences;
others give more weight to false presences.

Much used statistics that are threshold independent are the correlation co-
efficient and the Area Under the Receiver Operator Curve (AUROC, generally
further abbreviated to AUC). AUC is a measure of rank-correlation. In unbi-
ased data, a high AUC indicates that sites with high predicted suitability values
tend to be areas of known presence and locations with lower model prediction
values tend to be areas where the species is not known to be present (absent or
a random point). An AUC score of 0.5 means that the model is as good as a
random guess. See Phillips et al. (2006) for a discussion on the use of AUC in
the context of presence-only rather than presence/absence data.

Here we illustrate the computation of the correlation coefficient and AUC
with two random variables. p (presence) has higher values, and represents the
predicted value for 50 known cases (locations) where the species is present, and
a (absence) has lower values, and represents the predicted value for 50 known
cases (locations) where the species is absent.

> p <- rnorm(50, mean=0.7, sd=0.3)

> a <- rnorm(50, mean=0.4, sd=0.4)

> par(mfrow=c(1, 2))

> plot(sort(p), col='red', pch=21)

> points(sort(a), col='blue', pch=24)

> legend(1, 0.95 * max(a,p), c('presence', 'absence'),

+ pch=c(21,24), col=c('red', 'blue'))

> comb = c(p,a)

> group = c(rep('presence', length(p)), rep('absence', length(a)))

> boxplot(comb~group, col=c('blue', 'red'))
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We created two variables with random normally distributed values, but with
different mean and standard deviation. The two variables clearly have different
distributions, and the values for ’presence’ tend to be higher than for ’absence’.
Here is how you can compute the correlation coefficient and the AUC:

> group = c(rep(1, length(p)), rep(0, length(a)))

> cor.test(comb, group)$estimate

cor
0.4259716

> mv <- wilcox.test(p,a)

> auc <- as.numeric(mv$statistic) / (length(p) * length(a))

> auc

[1] 0.7428

Below we show how you can compute these, and other statistics more con-
veniently, with the evaluate function in the dismo package. See ?evaluate for
info on additional evaluation measures that are available. ROC/AUC can also
be computed with the ROCR package.

> e = evaluate(p=p, a=a)

> class(e)

[1] "ModelEvaluation"
attr(,"package")
[1] "dismo"

> e

class : ModelEvaluation
n presences : 50
n absences : 50
AUC : 0.7428
cor : 0.4259716
max TPR+TNR at : 0.4288114

> par(mfrow=c(1, 2))

> density(e)

> boxplot(e, col=c('blue', 'red'))
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Now back to some real data, presence-only in this case. We’ll divide the data
in two random sets, one for training a Bioclim model, and one for evaluating
the model.

> rand <- round(0.75 * runif(nrow(sdmdata)))

> traindata <- sdmdata[rand==0,]

> traindata <- traindata[traindata[,1] == 1, 2:9]

> testdata <- sdmdata[rand==1,]

> bc <- bioclim(traindata)

> e <- evaluate(testdata[testdata==1,], testdata[testdata==0,], bc)

> e

class : ModelEvaluation
n presences : 30
n absences : 168
AUC : 0.8202381
cor : 0.3169584
max TPR+TNR at : 0.03478372

> plot(e, 'ROC')
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In real projects, you would want to use k-fold data partitioning instead of a
single random sample. The dismo function kfold facilitates that type of data
partitioning. It creates a vector that assigns each row in the data matrix to a a
group (between 1 to k).

Let’s first create presence and background data.

> pres <- sdmdata[sdmdata[,1] == 1, 2:9]

> back <- sdmdata[sdmdata[,1] == 0, 2:9]

The background data will only be used for model testing and does not need
to be partitioned. We now partition the data into 5 groups.

> k <- 5

> group <- kfold(pres, k)

> group[1:10]

[1] 4 2 3 1 5 3 2 5 5 1

> unique(group)

[1] 4 2 3 1 5

Now we can fit and test our model five times. In each run, the records
corresponding to one of the five groups is only used to evaluate the model, while
the other four groups are only used to fit the model. The results are stored in
a list called ’e’.
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> e <- list()

> for (i in 1:k) {

+ train <- pres[group != i,]

+ test <- pres[group == i,]

+ bc <- bioclim(train)

+ e[[i]] <- evaluate(p=test, a=back, bc)

+ }

We can extract several things from the objects in ’e’, but let’s restrict our-
selves to the AUC values and the ”maximum of the sum of the sensitivity (true
positive rate) and specificity (true negative rate)” (this is sometimes uses as a
threshold for setting cells to presence or absence).

> auc <- sapply( e, function(x){slot(x, 'auc')} )

> auc

[1] 0.8070435 0.8378696 0.7332500 0.7101304 0.7925652

> mean(auc)

[1] 0.7761717

> sapply( e, function(x){ x@t[which.max(x@TPR + x@TNR)] } )

[1] 0.03215806 0.08592151 0.01076957 0.01065269 0.06441613

The use of AUC in evaluating SDMs has been criticized (Lobo et al. 2008,
Jiménez-Valverde 2011). A particularly sticky problem is that the values of
AUC vary with the spatial extent used to select background points. Generally,
the larger that extent, the higher the AUC value. Therefore, AUC values are
generally biased and cannot be directly compared. Hijmans (2011) suggested
that one could remove ”spatial sorting bias” (the difference between the dis-
tance from testing-presence to training-prsence and testing-absence to training-
absence points) through ”point-wise distance sampling”.

> nr <- nrow(bradypus)

> s <- sample(nr, 0.25 * nr)

> pres_train <- bradypus[-s, ]

> pres_test <- bradypus[s, ]

> nr <- nrow(backgr)

> s <- sample(nr, 0.25 * nr)

> back_train <- backgr[-s, ]

> back_test <- backgr[s, ]

> sb <- ssb(pres_test, back_test, pres_train)

> sb[,1] / sb[,2]

[1] 0.1040448
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sb[,1] / sb[,2] is an indicator of spatial sorting bias (SSB). If there is no SSB
this value should be 1, in these data it is close to zero, indicating that SSB is
very strong. Let’s create a subsample in which SSB is removed.

> i <- pwdSample(pres_test, back_test, pres_train, n=1, tr=0.1)

> pres_test_pwd <- pres_test[!is.na(i[,1]), ]

> back_test_pwd <- back_test[na.omit(as.vector(i)), ]

> sb2 <- ssb(pres_test_pwd, back_test_pwd, pres_train)

> sb2[1]/ sb2[2]

[1] 0.9987177

Spatial sorting bias is much reduced now; notice how the AUC dropped!

> bc <- bioclim(predictors, pres_train)

> evaluate(bc, p=pres_test, a=back_test, x=predictors)

class : ModelEvaluation
n presences : 29
n absences : 125
AUC : 0.6917241
cor : 0.2043
max TPR+TNR at : 0.03438276

> evaluate(bc, p=pres_test_pwd, a=back_test_pwd, x=predictors)

class : ModelEvaluation
n presences : 17
n absences : 17
AUC : 0.3823529
cor : -0.1501684
max TPR+TNR at : 0.2642678
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Part III

Modeling methods
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Chapter 8

Types of algorithms & data
used in examples

A large number of algorithms has been used in species distribution mod-
eling. They can be classified as ’profile’, ’regression’, and ’machine learning’
methods. Profile methods only consider ’presence’ data, not absence or back-
ground data. Regression and machine learning methods use both presence and
absence or background data. The distinction between regression and machine
learning methods is not sharp, but it is perhaps still useful as way to clas-
sify models. Another distinction that one can make is between presence-only
and presence-absence models. Profile methods are always presence-only, other
methods can be either, depending if they are used with survey-absence or with
pseudo-absence/backround data. An entirely different class of models consists of
models that only, or primarily, use the geographic location of known occurences,
and do not rely on the values of predictor variables at these locations. We refer
to these models as ’geographic models’. Below we discuss examples of these
different types of models.

We will use the same data to illustrate all models, except that some models
cannot use categorical variables. So for those models we drop the categorical
variables from the predictors stack.

> pred_nf <- dropLayer(predictors, 'biome')

We’ll use the Bradypus data for presence of a species. Let’s make a training
and a testing set.

> group <- kfold(bradypus, 5)

> pres_train <- bradypus[group != 1, ]

> pres_test <- bradypus[group == 1, ]

To speed up processing, let’s restrict the predictions to a more restricted
area (defined by a rectangular extent):

> ext = extent(-90, -32, -33, 23)
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Background data for training and a testing set. The first layer in the Raster-
Stack is used as a ’mask’. That ensures that random points only occur within
the spatial extent of the rasters, and within cells that are not NA, and that there
is only a single absence point per cell. Here we further restrict the background
points to be within 12.5% of our specified extent ’ext’.

> backg <- randomPoints(pred_nf, n=1000, ext=ext, extf = 1.25)

> colnames(backg) = c('lon', 'lat')

> group <- kfold(backg, 5)

> backg_train <- backg[group != 1, ]

> backg_test <- backg[group == 1, ]

> r = raster(pred_nf, 1)

> plot(!is.na(r), col=c('white', 'light grey'), legend=FALSE)

> plot(ext, add=TRUE, col='red', lwd=2)

> points(backg_train, pch='-', cex=0.5, col='yellow')

> points(backg_test, pch='-', cex=0.5, col='black')

> points(pres_train, pch= '+', col='green')

> points(pres_test, pch='+', col='blue')
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Chapter 9

Profile methods

The three methods described here, Bioclim, Domain, and Mahal. These
methods are implemented in the dismo package, and the procedures to use
these models are the same for all three.

9.1 Bioclim

The BIOCLIM algorithm has been extensively used for species distribution
modeling. BIOCLIM is a classic ’climate-envelope-model’. Although it generally
does not perform as good as some other modeling methods (Elith et al. 2006),
particularly in the context of climate change (Hijmans and Graham, 2006), it is
still used, among other reasons because the algorithm is easy to understand and
thus useful in teaching species distribution modeling. The BIOCLIM algorithm
computes the similarity of a location by comparing the values of environmen-
tal variables at any location to a percentile distribution of the values at known
locations of occurrence (’training sites’). The closer to the 50th percentile (the
median), the more suitable the location is. The tails of the distribution are not
distinguished, that is, 10 percentile is treated as equivalent to 90 percentile. In
the ’dismo’ implementation, the values of the upper tail values are transformed
to the lower tail, and the minimum percentile score across all the environmen-
tal variables is used (i.e., BIOCLIM uses an approach like Liebig’s law of the
minimum). This value is subtracted from 1 and then multiplied with two so
that the results are between 0 and 1. The reason for scaling this way is that the
results become more like that of other distribution modeling methods and are
thus easier to interpret. The value 1 will rarely be observed as it would require
a location that has the median value of the training data for all the variables
considered. The value 0 is very common as it is assigned to all cells with a
value of an environmental variable that is outside the percentile distribution
(the range of the training data) for at least one of the variables.

Earlier on, we fitted a Bioclim model using data.frame with each row repre-
senting the environmental data at known sites of presence of a species. Here we
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fit a bioclim model simply using the predictors and the occurrence points (the
function will do the extracting for us).

> bc <- bioclim(pred_nf, pres_train)

> plot(bc, a=1, b=2, p=0.85)

We evaluate the model in a similar way, by providing presence and back-
ground (absence) points, the model, and a RasterStack:

> e <- evaluate(pres_test, backg_test, bc, pred_nf)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.7209783
cor : 0.1589782
max TPR+TNR at : 0.04291075

And we use the RasterStack with predictor variables to make a prediction
to a RasterLayer:

> pb <- predict(pred_nf, bc, ext=ext, progress='')

> pb
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class : RasterLayer
dimensions : 112, 116, 12992 (nrow, ncol, ncell)
resolution : 0.5, 0.5 (x, y)
extent : -90, -32, -33, 23 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
values : in memory
min value : 0
max value : 0.7849462

> par(mfrow=c(1,2))

> plot(pb, main='Bioclim, raw values')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pb > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

Please note the order of the arguments in the predict function. In the ex-
ample above, we used predict(pred_nf, bc) (first the RasterStack, then the
model object), which is little bit less efficient than predict(bc, pred nf) (first the
model, than the RasterStack). The reason for using the order we have used, is
that this will work for all models, whereas the other option only works for the
models defined in the dismo package, such as Bioclim, Domain, and Maxent,
but not for models defined in other packages (random forest, boosted regression
trees, glm, etc.).

9.2 Domain

The Domain algorithm (Carpenter et al. 1993) has been extensively used
for species distribution modeling. It did not perform very well in a model
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comparison (Elith et al. 2006) and very poorly when assessing climate change
effects (Hijmans and Graham, 2006). The Domain algorithm computes the
Gower distance between environmental variables at any location and those at
any of the known locations of occurrence (’training sites’).

The distance between the environment at point A and those of the known
occurrences for a single climate variable is calculated as the absolute difference in
the values of that variable divided by the range of the variable across all known
occurrence points (i.e., the distance is scaled by the range of observations). For
each variable the minimum distance between a site and any of the training
points is taken. The Gower distance is then the mean of these distances over all
environmental variables. The algorithm assigns to a place the distance to the
closest known occurrence (in environmental space).

To integrate over environmental variables, the distance to any of the variables
is used. This distance is subtracted from one, and (in this R implementation)
values below zero are truncated so that the scores are between 0 (low) and 1
(high).

Below we fit a domain model, evaluate it, and make a prediction. We map
the prediction, as well as a map subjectively classified into presence / absence.

> dm <- domain(pred_nf, pres_train)

> e <- evaluate(pres_test, backg_test, dm, pred_nf)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.7367391
cor : 0.2445056
max TPR+TNR at : 0.6591056

> pd = predict(pred_nf, dm, ext=ext, progress='')

> par(mfrow=c(1,2))

> plot(pd, main='Domain, raw values')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pd > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')
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9.3 Mahalanobis

The mahal function implements a species distribution model based on the
Mahalanobis distance (Mahalanobis, 1936). Mahalanobis distance takes into
account the correlations of the variables in the data set, and it is not dependent
on the scale of measurements.

> mm <- mahal(pred_nf, pres_train)

> e <- evaluate(pres_test, backg_test, mm, pred_nf)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.838587
cor : 0.1310426
max TPR+TNR at : -1.058378

> pm = predict(pred_nf, mm, ext=ext, progress='')

> par(mfrow=c(1,2))

> pm[pm < -10] <- -10

> plot(pm, main='Mahalanobis distance')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pm > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')
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Chapter 10

Regression models

The remaining models need to be fit presence textifand absence (background)
data. With the exception of ’maxent’, we cannot fit the model with a Raster-
Stack and points. Instead, we need to extract the environmental data values
ourselves, and fit the models with these values.

> train <- rbind(pres_train, backg_train)

> pb_train <- c(rep(1, nrow(pres_train)), rep(0, nrow(backg_train)))

> envtrain <- extract(predictors, train)

> envtrain <- data.frame( cbind(pa=pb_train, envtrain) )

> envtrain[,'biome'] = factor(envtrain[,'biome'], levels=1:14)

> head(envtrain)

pa bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome
1 1 263 1639 724 62 338 191 147 261 1
2 1 253 3624 1547 373 329 150 179 271 1
3 1 243 1693 775 186 318 150 168 264 1
4 1 243 1693 775 186 318 150 168 264 1
5 1 252 2501 1081 280 326 154 172 270 1
6 1 240 1214 516 146 317 150 168 261 2

> testpres <- data.frame( extract(predictors, pres_test) )

> testbackg <- data.frame( extract(predictors, backg_test) )

> testpres[ ,'biome'] = factor(testpres[ ,'biome'], levels=1:14)

> testbackg[ ,'biome'] = factor(testbackg[ ,'biome'], levels=1:14)

10.1 Generalized Linear Models

A generalized linear model (GLM) is a generalization of ordinary least squares
regression. Models are fit using maximum likelihood and by allowing the linear
model to be related to the response variable via a link function and by allow-
ing the magnitude of the variance of each measurement to be a function of its
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predicted value. Depending on how a GLM is specified it can be equivalent to
(multiple) linear regression, logistic regression or Poisson regression. See Guisan
et al (2002) for an overview of the use of GLM in species distribution modeling.

In R , GLM is implemented in the ’glm’ function, and the link function and
error distribution are specified with the ’family’ argument. Examples are:

family = binomial(link = "logit")
family = gaussian(link = "identity")
family = poisson(link = "log")
Here we fit two basic glm models. All variables are used, but without inter-

action terms.

> # logistic regression:

> gm1 <- glm(pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17,

+ family = binomial(link = "logit"), data=envtrain)

> summary(gm1)

Call:
glm(formula = pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 +

bio16 + bio17, family = binomial(link = "logit"), data = envtrain)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.67389 -0.47627 -0.24289 -0.04145 2.73857

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6609816 1.8232604 0.911 0.362298
bio1 0.1007418 0.0561639 1.794 0.072859 .
bio5 0.1432002 0.2608487 0.549 0.583021
bio6 -0.2528950 0.2607172 -0.970 0.332048
bio7 -0.2418984 0.2598453 -0.931 0.351888
bio8 0.0110994 0.0246434 0.450 0.652421
bio12 0.0020291 0.0006768 2.998 0.002718 **
bio16 -0.0018960 0.0014029 -1.351 0.176557
bio17 -0.0052624 0.0015772 -3.336 0.000849 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.69 on 892 degrees of freedom
Residual deviance: 439.41 on 884 degrees of freedom
AIC: 457.41

Number of Fisher Scoring iterations: 8

> coef(gm1)
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(Intercept) bio1 bio5 bio6
1.660981573 0.100741766 0.143200190 -0.252894973

bio7 bio8 bio12 bio16
-0.241898406 0.011099417 0.002029095 -0.001895976

bio17
-0.005262384

> gm2 <- glm(pa ~ bio1+bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17,

+ family = gaussian(link = "identity"), data=envtrain)

> evaluate(testpres, testbackg, gm1)

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.8325
cor : 0.2966887
max TPR+TNR at : -2.780695

> e2 <- evaluate(testpres, testbackg, gm2)

> pg <- predict(predictors, gm2, ext=ext)

> par(mfrow=c(1,2))

> plot(pg, main='GLM/gaussian, raw values')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e2@t[which.max(e@TPR + e@TNR)]

> plot(pg > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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10.2 Generalized Additive Models

Generalized additive models (GAMs; Hastie and Tibshirani, 1990; Wood,
2006) are an extension to GLMs. In GAMs, the linear predictor is the sum of
smoothing functions. This makes GAMs very flexible, and they can fit very com-
plex functions. It also makes them very similar to machine learning methods.
In R , GAMs are implemented in the ’mgcv’ package.
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Chapter 11

Machine learning methods

There is a variety of machine learning (sometimes referred to data mining)
methods in R . For a long time there have been packages to do Artifical Neural
Networks (ANN) and Classification and Regression Trees (CART). More re-
cent methods include Random Forests, Boosted Regression Trees, and Support
Vector Machines. Through the dismo package you can also use the Maxent
program, that implements the most widely used method (maxent) in species
distribution modeling. Breiman (2001a) provides a accessible introduction to
machine learning, and how it contrasts with ’classical statistics’ (model based
probabilistic inference). Hastie et al., 2009 provide what is probably the most
extensive overview of these methods.

All the model fitting methods discussed here can be tuned in several ways.
We do not explore that here, and only show the general approach. If you want
to use one of the methods, then you should consult the R help pages (and other
sources) to find out how to best implement the model fitting procedure.

11.1 Maxent

MaxEnt (Maximum Entropy; Phillips et al., 2004, 2006) is the most widely
used SDM algorithm. Elith et al., 2010,) provide an explanation of the al-
gorithm (and software) geared towards ecologists. MaxEnt is available as a
stand-alone Java program. Dismo has a function ’maxent’ that communi-
cates with this program. To use it you must first download the program
from http://www.cs.princeton.edu/~schapire/maxent/. Put the file ’max-
ent.jar’ in the ’java’ folder of the ’dismo’ package. That is the folder returned
by system.file("java", package="dismo"). Please note that this program
(maxent.jar) cannot be redistributed or used for commercial purposes.

Because MaxEnt is implemented in dismo you can fit it like the profile meth-
ods (e.g. Bioclim). That is, you can provide presence points and a RasterStack.
However, you can also first fit a model, like with the other methods such as glm.
But in the case of MaxEnt you cannot use the formula notation.
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> # checking if the jar file is present. If not, skip this bit

> jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')

> if (file.exists(jar)) {

+ xm <- maxent(predictors, pres_train, factors='biome')

+ plot(xm)

+ } else {

+ cat('cannot run this example because maxent is not available')

+ plot(1)

+ }

A response plot:

> # checking if the jar file is present. If not, skip this bit

> jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')

> if (file.exists(jar)) {

+ response(xm)

+ } else {

+ cat('cannot run this example because maxent is not available')

+ plot(1)

+ }
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> if (file.exists(jar)) {

+ e <- evaluate(pres_test, backg_test, xm, predictors)

+ e

+ px = predict(predictors, xm, ext=ext, progress='')

+ par(mfrow=c(1,2))

+ plot(px, main='Maxent, raw values')

+ plot(wrld_simpl, add=TRUE, border='dark grey')

+ threshold <- e@t[which.max(e@TPR + e@TNR)]

+ plot(px > threshold, main='presence/absence')

+ plot(wrld_simpl, add=TRUE, border='dark grey')

+ points(pres_train, pch='+')

+ } else {

+ plot(1)

+ }
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11.2 Boosted Regression Trees

Boosted Regression Trees (BRT) is, unfortunately, known by a large num-
ber of different names. It was developed by Friedman (2001), who referred
to it as a ”Gradient Boosting Machine” (GBM). It is also known as ”Gradient
Boost”, ”Stochastic Gradient Boosting”, ”Gradient Tree Boosting”. The method
is implemented in the ’gbm’ package in R .

The article by Elith, Leathwick and Hastie (2009) describes the use of BRT
in the context of species distribution modeling. Their article is accompanied
by a number of R functions and a tutorial that have been slightly adjusted and
incorporated into the ’dismo’ package. These functions extend the functions in
the ’gbm’ package, with the goal to make these easier to apply to ecological data,
and to enhance interpretation. The adapted tutorial is available as a vignette
to the dismo package. You can access it via the index of the help pages, or with
this command: vignette(’gbm’, ’dismo’)

11.3 Random Forest

The Random Forest (Breiman, 2001b) method is an extension of Classifica-
tion and regression trees (CART; Breiman et al., 1984). In R it is implemented
in the function ’randomForest’ in a package with the same name. The function
randomForest can take a formula or, in two separate arguments, a data.frame
with the predictor variables, and a vector with the response. If the response
variable is a factor (categorical), randomForest will do classification, otherwise
it will do regression. Whereas with species distribution modeling we are of-
ten interested in classification (species is present or not), it is my experience
that using regression provides better results. rf1 does regression, rf2 and rf3 do
classification (they are exactly the same models). See the function tuneRF for
optimizing the model fitting procedure.

> library(randomForest)

> model <- pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17

> rf1 <- randomForest(model, data=envtrain)

> model <- factor(pa) ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17

> rf2 <- randomForest(model, data=envtrain)

> rf3 <- randomForest(envtrain[,1:8], factor(pb_train))

> e = evaluate(testpres, testbackg, rf1)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.8609783
cor : 0.4716929
max TPR+TNR at : 0.0773
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> pr <- predict(predictors, rf1, ext=ext)

> par(mfrow=c(1,2))

> plot(pr, main='Random Forest, regression')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pr > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)

11.4 Support Vector Machines

Support Vector Machines (SVMs; Vapnik, 1998) apply a simple linear method
to the data but in a high-dimensional feature space non-linearly related to the
input space, but in practice, it does not involve any computations in that high-
dimensional space. This simplicity combined with state of the art performance
on many learning problems (classification, regression, and novelty detection) has
contributed to the popularity of the SVM (Karatzoglou et al., 2006). They were
first used in species distribution modeling by Guo et al. (2005).

There are a number of implementations of svm in R . The most useful im-
plementations in our context are probably function ’ksvm’ in package ’kernlab’
and the ’svm’ function in package ’e1071’. ’ksvm’ includes many different SVM
formulations and kernels and provides useful options and features like a method
for plotting, but it lacks a proper model selection tool. The ’svm’ function in
package ’e1071’ includes a model selection tool: the ’tune’ function (Karatzoglou
et al., 2006)

> library(kernlab)

> svm <- ksvm(pa ~ bio1+bio5+bio6+bio7+bio8+bio12+bio16+bio17, data=envtrain)
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Using automatic sigma estimation (sigest) for RBF or laplace kernel

> e <- evaluate(testpres, testbackg, svm)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.7251087
cor : 0.3750896
max TPR+TNR at : 0.03088595

> ps <- predict(predictors, svm, ext=ext)

> par(mfrow=c(1,2))

> plot(ps, main='Support Vector Machine')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(ps > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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Chapter 12

Geographic models

The ’geograhic models’ described here are not commonly used in species
distribution modeling. They use the geographic location of known occurences,
and do not rely on the values of predictor variables at these locations. We are
exploring their use in comparing and contrasting them with the other approaches
(Bahn and McGill, 2007); in model evaluation as as null-models (Hijmans 2011);
to sample background points; and generally to help think about the duality
between geographic and environmental space (Colwel and Rangel, 2009). Below
we show examples of these different types of models.

12.1 Geographic Distance

Simple model based on the assumption that the closer to a know presence
point, the more likely it is to find the species.

> # first create a mask to predict to, and to use as a mask

> # to only predict to land areas

> seamask <- crop(predictors[[1]], ext)

> distm <- geoDist(pres_train, lonlat=TRUE)

> ds <- predict(seamask, distm, mask=TRUE)

> e <- evaluate(distm, p=pres_test, a=backg_test, tr=quantile(ds, c(1:50/50)))

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.9286957
cor : 0.429343
max TPR+TNR at : 8.117192e-06

> par(mfrow=c(1,2))

> plot(ds, main='Geographic Distance')
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> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(ds > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)

12.2 Convex hulls

This model draws a convex hull around all ’presence’ points.

> hull <- convHull(pres_train, lonlat=TRUE)

> e <- evaluate(hull, p=pres_test, a=backg_test)

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.7115217
cor : 0.2579133
max TPR+TNR at : 0.9999

> h <- predict(seamask, hull, mask=TRUE)

> plot(h, main='Convex Hull')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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12.3 Circles

This model draws circles around all ’presence’ points.

> circ <- circles(pres_train, lonlat=TRUE)

> pc <- predict(seamask, circ, mask=TRUE)

> e <- evaluate(circ, p=pres_test, a=backg_test, tr=quantile(ds, c(1:50/50)))

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.8855435
cor : 0.6063209
max TPR+TNR at : 6.537932e-07

> par(mfrow=c(1,2))

> plot(pc, main='Circles')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pc > threshold, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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12.4 Presence/absence

Spatial-only models for presence/background (or absence) data are also avail-
able through functions geoIDW, voronoiHull, and general geostatistical meth-
ods such as indicator kriging (available in the gstat pacakge).

> idwm <- geoIDW(p=pres_train, a=data.frame(back_train))

> e <- evaluate(idwm, p=pres_test, a=backg_test, tr=quantile(ds, c(1:50/50)))

> e

class : ModelEvaluation
n presences : 23
n absences : 200
AUC : 0.9223913
cor : 0.5576616
max TPR+TNR at : 6.537932e-07

> iw <- predict(seamask, idwm, mask=TRUE)

> par(mfrow=c(1,2))

> plot(iw, main='Inv. Dist. Weighted')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> threshold <- e@t[which.max(e@TPR + e@TNR)]

> pa <- mask(iw > threshold, seamask)

> plot(pa, main='presence/absence')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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> # take a smallish sample of the background training data

> va <- data.frame(back_train[sample(nrow(back_train), 100), ])

> vorm <- voronoiHull(p=pres_train, a=va)

> e <- evaluate(vorm, p=pres_test, a=backg_test, tr=quantile(ds, c(1:50/50)))

> e

class : ModelEvaluation
n presences : 4439
n absences : 38600
AUC : 0.499987
cor : -0.0001095032
max TPR+TNR at : 6.537932e-07

> vo <- predict(seamask, vorm, mask=T)

> plot(vo, main='Voronoi Hull')

> plot(wrld_simpl, add=TRUE, border='dark grey')

> points(pres_train, pch='+')

> points(backg_train, pch='-', cex=0.25)
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Part IV

Additional topics
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Chapter 13

Model transfer in space and
time

13.1 Transfer in space

13.2 Transfer in time: climate change
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Chapter 14

To do list

You can ignore this chapter, it is the authors’ to-do list.
There are many sophistications that are required by the realities that (a)

there are multiple end uses of models, and (b) there are numerous issues with
ecological data that mean that the assumptions of the standard methods don’t
hold. Could include:

� spatial autocorrelation
� imperfect detection
� mixed models (for nested data, hierarchical stuff)
� Bayesian methods
� resource selection functions
� measures of niche overlap, linked to thoughts about niche conservatism
� link to phylogeography
� additional predictors including remote sensing variables, thinking about

extremes
� species that don’t ”mix” with grids – freshwater systems etc.
� quantile regression
� model selection literature (AIC etc etc)
� multispecies modeling: Mars, gdm
� SDMTools
� Model averaging
� See the BIOMOD for on multi-model inference.
� Dealing with uncertainty using uncertainty field in georeferences. How to

target the ”important” uncertainties (will vary with the application), an exam-
ple of partial plots with standard errors, and predicting the upper and lower
bounds; the idea of testing sensitivity to decisions made in the modeling process
(including dropping out points etc etc).
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