1. If the common difference of an AP is 5 , then what is $a_{18}-a_{13}$?
A) 5
B) 20
C) 25
D) 30
2. The first four terms of an $A P$, whose first term is -2 and the common difference is -2 , are
A) $-2,0,2,4$
B) $-2,4,-8,16$
C) $-2,-4,-6,-8$
D) $-2,-4,-8,-16$
3. If S is a point on side PQ of a $\triangle \mathrm{PQR}$ such that $\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$, then
A) $\mathrm{PR} . \mathrm{QR}=\mathrm{RS}^{2}$
B) $\left.\mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2} \mathrm{C}\right)$
$\mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}$
D) $\mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2}$
4. If a pair of linear equations is consistent, then the lines will be .
A) parallel
B) always coincident
C) intersecting or coincident
D) always intersecting
5. The solutions for the equations $x-y=2$ and $x+y=8$ are
A) $(5,3)$
B) $(3,5)$
C) $(6,4)$
D) $(6,2)$
6. If the sum of the areas of two circles with radii R_{1} and R_{2} is equal to the area of a circle of radius R , then
A) $R=R_{1}+R_{2}$
B) $R^{2}=R_{1}^{2}+R_{2}^{2}$
C) $R^{2}>R_{1}^{2}+R_{2}^{2}$
D) $\mathrm{R}>\mathrm{R}_{1}+\mathrm{R}_{2}$
7. The points $\mathrm{A}(9,0), \mathrm{B}(9,6), \mathrm{C}(-9,6)$ and $\mathrm{D}(-9,0)$ will form a \ldots
A) square
B) rectangle
C) rhombus
D) trapezium
8. For an integer m, every even integer is of the form
A) m
B) $m+1$
C) $2 m$
D) $2 m+1$
9. What is the sum of first 25 odd natural numbers ? $1 \times 8=8$
10. Write the basic proportionality theorem.
11. If a chord AB subtends an angle of 50° at the centre of a circle, then what is the angle between the tangents at A and B ?
12. How many tangents can be drawn to a circle at a point lying on the circle?
13. The length of the tangent to a circle is 24 cm and the distance from the centre is 25 cm . What is the radius of the circle?
14. Find the the mid-point of the line segment joining the points $(4,10)$ and $(6,2)$.
15. Write 32760 as a product of its prime factors.
16. Write the decimal expansion of $\frac{17}{8}$
17. Find the sum of first 30 terms of the A.P. : $1+5+9+13+\ldots \ldots$.

OR

Find the $50^{\text {th }}$ term of the A.P. : $0,5,10,15$
18. $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm}$ and $\mathrm{DE}=12 \mathrm{~cm}$. Find the lengths of the remaining sides of the triangles.

OR
$A B \| D C$ in $A B C D$ trapezium. P and Q are points on $A D$ and $B C$, respectively such that $\mathrm{PQ} \| \mathrm{DC}$. If $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$, find AD .
19. Solve : $x-2 y=-7$ and $4 x+3 y=5$
20. Find the area and perimeter of a sector with central angle 60° in a circle of radius 7 cm .
21. Draw two tangents from a point 7 cm away from the centre of a circle of radius 4 cm .
22. Divide the line segment $\mathrm{AB}=12 \mathrm{~cm}$ in the ratio 3:2.
23. Find the distance between the points : $(3,-2)$ and $(15,3)$
24. Check whether $\frac{7}{50}$ and $\frac{3}{28}$ will have terminating decimal expansion or not.
25. The first and the $60^{\text {th }}$ terms of an A.P. are 7 and 125 respectively. Find $32^{\text {nd }}$ term. $3 \times 9=27$
26. A 15 metres high tower casts a shadow 24 metres long at a certain time and at the same time, a flag pole casts a shadow 16 metres long. Find the height of the flag pole.

OR
Areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. If one side of the bigger triangle is 20 cm , find the corresponding side of the smaller triangle.
27. The angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. Find x and y.
28. Solve graphically : $y=2 x-2$ and $y=4 x-4$
29. Prove that the radius drawn at the point of contact is perpendicular to the tangent.

OR
Prove that the lengths of tangents drawn from an external point to a circle are equal.
30. Draw two tangents to a circle of radius 5 cm so that angle between the tangents is 60°.
31. Determine if the points $(3,1),(6,4)$ and $(8,6)$ are collinear.

OR
Find the area of the triangle whose vertices are $(-5,1),(3,-5)$ and $(5,2)$.
32. Find the coordinates of the point dividing the line joining $(-2,7)$ and $(3,-3)$ in a ratio 3:2.
33. Find the LCM and HCF of 224 and 288 . Verify that $\mathrm{LCM} \times \mathrm{HCF}=$ product of the two numbers.

OR

Prove that $\sqrt{3}-5$ is an irrational number.
34. Prove that "If two triangles are equiangular, then they are similar".
35. In the Fig if $\mathrm{AB}=16 \mathrm{~cm}$ and $\mathrm{BC}=12 \mathrm{~cm}$

Calculate the area of the shaded region in the figure :

36. Construct a triangle PQR with $\mathrm{PQ}=7 \mathrm{~cm}, \mathrm{QR}=6 \mathrm{~cm}$ and $\angle \mathrm{Q}=60^{\circ}$. Then construct a similar triangle whose sides are $\frac{3}{5}$ of triangle PQR .
37. How many terms of A.P. $-10,-7,-4,-1 \ldots \ldots$ must be added to get the sum -104 ?

OR
Find three consecutive terms which are in A.P. whose sum is 27 and product is 648 .
38. State and prove Pythagoras theorem.

