ARITHMETIC PROGRESSIONS

One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a way of blooming into beautiful theories

1. Find the sum of all natural numbers amongst first one thousand numbers which are neither divisible 2 nor by 5

Ans: Sum of all natural numbers in first 1000 integers which are not divisible by 2 i.e. sum of odd integers.
$1+3+5+\ldots \ldots \ldots .+999$
$\mathrm{n}=500$
$\mathrm{S}_{500}=(500)^{2}$
$=2,50,000$
No's which are divisible by 5
$5+15+25$ \qquad +995
$\mathrm{n}=100$
$\mathrm{S}_{\mathrm{n}}=\frac{100}{2}[5+995]$
$=50 \times 1000=50000$
\therefore Required sum $=250000-50,000$

$=2,00000$

2. The fourth term of an AP is 0 . Prove that its $25^{\text {th }}$ term is triple its $11^{\text {th }}$ term.

Ans: $\quad a_{4}=0$

$$
\begin{aligned}
& \Rightarrow a+3 d=0 \\
& \text { T.P } \quad a_{25}=3\left(a_{11}\right)
\end{aligned}
$$

$$
\Rightarrow \mathrm{a}+24 \mathrm{~d}=3(\mathrm{a}+10 \mathrm{~d})
$$

$$
\Rightarrow \mathrm{a}+24 \mathrm{~d}=3 \mathrm{a}+30 \mathrm{~d}
$$

$$
\text { RHS sub } a=-3 d
$$

$$
-3 d+24 d=21 d
$$

$$
\text { LHS } 3 a+30 d
$$

$-9 \mathrm{~d}+30 \mathrm{~d}=21 \mathrm{~d}$
LHS = RHS
Hence proved
3. Find the $20^{\text {th }}$ term from the end of the AP $3,8,13 \ldots \ldots . .253$.

```
Ans: 3, 8, 13 253
Last term \(=253\)
\(\mathrm{a}_{20}\) from end
\(=1-(\mathrm{n}-1) \mathrm{d}\)
\(253-(20-1) 5\)
253-95
```

$=158$
4. If the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }} \& \mathrm{r}^{\text {th }}$ term of an AP is x, y and z respectively, show that $x(q-r)+y(r-p)+z(p-q)=0$

Ans: $\quad \mathrm{p}^{\text {th }}$ term $\Rightarrow x=\mathrm{A}+(\mathrm{p}-1) \mathrm{D}$
$\mathrm{q}^{\text {th }}$ term $\Rightarrow y=\mathrm{A}+(\mathrm{q}-1) \mathrm{D}$
$r^{\text {th }}$ term $\Rightarrow z=\mathrm{A}+(r-1) \mathrm{D}$
T.P $x(q-r)+y(r-p)+z(p-q)=0$
$=\{\mathrm{A}+(\mathrm{p}-1) \mathrm{D}\}(q-r)+\{\mathrm{A}+(\mathrm{q}-1) \mathrm{D}\}(r-p)$
$+\{\mathrm{A}+(\mathrm{r}-1) \mathrm{D}\}(\mathrm{p}-\mathrm{q})$
$\mathrm{A}\{(\mathrm{q}-\mathrm{r})+(\mathrm{r}-\mathrm{p})+(\mathrm{p}-\mathrm{q})\}+\mathrm{D}\{(\mathrm{p}-1)(\mathrm{q}-\mathrm{r})$
$+(\mathrm{r}-1)(\mathrm{r}-\mathrm{p})+(\mathrm{r}-1)(\mathrm{p}-\mathrm{q})\}$
$\Rightarrow \mathrm{A} .0+\mathrm{D}\{\mathrm{p}(\mathrm{q}-\mathrm{r})+\mathrm{q}(\mathrm{r}-\mathrm{p})+\mathrm{r}(\mathrm{p}-\mathrm{q})$

- (q-r) - (r-p)-(p-q) $\}$
$=\mathrm{A} .0+\mathrm{D} .0=0$.
Hence proved

5. Find the sum of first 40 positive integers divisible by 6 also find the sum of first 20 positive integers divisible by 5 or 6 .

Ans: \quad No's which are divisible by 6 are

$$
\begin{align*}
& 6,12 \ldots \ldots \ldots \ldots \ldots .240 . \\
& S_{40}=\frac{40}{2}[6+240] \\
& =20 \times 246 \\
& =4920 \\
& \text { No's div by } 5 \text { or } 6 \\
& 30,60 \ldots \ldots \ldots \ldots .600 \tag{600}\\
& \frac{20}{2}[30+600]=10 \times 630 \\
& =6300
\end{align*}
$$

6. A man arranges to pay a debt of Rs. 3600 in 40 monthly instalments which are in a AP. When 30 instalments are paid he dies leaving one third of the debt unpaid. Find the value of the first instalment.

Ans: Let the value of I instalment be $\mathrm{x} \quad \mathrm{S}_{40}=3600$.
$\Rightarrow \frac{40}{2}[2 a+39 d]=3600$
$\Rightarrow 2 \mathrm{a}+39 \mathrm{~d}=180 \quad-\quad 1$
$\mathrm{S}_{30}=\frac{30}{2}[2 a+29 d]=2400$
$\Rightarrow 30 \mathrm{a}+435 \mathrm{~d}=2400$
$\Rightarrow 2 \mathrm{a}+29 \mathrm{~d}=160 \quad-\quad 2$

Solve $1 \& 2$ to get
$\mathrm{d}=2 \mathrm{a}=51$.
\therefore I instalment $=$ Rs. 51 .
7. Find the sum of all 3 digit numbers which leave remainder 3 when divided by 5 .

Ans: 103, 108.......... 998
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=998$
$\Rightarrow 103+(\mathrm{n}-1) 5=998$
$\Rightarrow \mathrm{n} \quad=\quad 180$
$\mathrm{S}_{180} \quad=\frac{180}{2}[103+998]$
$=90 \times 1101$
$S_{180}=99090$
8. Find the value of x if $2 \mathrm{x}+1, x^{2}+x+1,3 x^{2}-3 x+3$ are consecutive terms of an AP.

Ans: $\quad \mathrm{a}_{2}-\mathrm{a}_{1}{ }^{=} \mathrm{a}_{3}-\mathrm{a}_{2}$
$\Rightarrow x^{2}+\mathrm{x}+1-2 x-1=3 \mathrm{x}^{2}-3 \mathrm{x}+3-x^{2}-x-1$
$x^{2}-\mathrm{x}=2 \mathrm{x}^{2}-4 \mathrm{x}+2$
$\Rightarrow x^{2}-3 \mathrm{x}+2=0$
$\Rightarrow(x-1)(\mathrm{x}-2)=0$
$\Rightarrow x=1$ or $\mathrm{x}=2$
9. Raghav buys a shop for Rs. $1,20,000$.He pays half the balance of the amount in cash and agrees to pay the balance in 12 annual instalments of Rs. 5000 each. If the rate of interest is 12% and he pays with the instalment the interest due for the unpaid amount. Find the total cost of the shop.

Ans: \quad Balance $=$ Rs. 60,000 in 12 instalment of Rs. 5000 each.
Amount of I instalment $\quad=5000+\frac{12}{100} 60,000$
II instalment $\quad=5000+$ (Interest on unpaid amount)

$$
=5000+6600 \quad\left[\frac{12}{100} \times 55000\right]
$$

$$
=11600
$$

III instalment $=5000+$ (Interest on unpaid amount of Rs.50,000)
$\therefore \mathrm{AP}$ is $12200,11600,11000$
$\mathrm{D}=$ is 600
Cost of shop $=60000+$ [sum of 12 instalment $]$

$$
=60,000+\frac{12}{2}[24,400-6600]
$$

$=1,66,800$
10. Prove that $\mathrm{a}_{\mathrm{m}+\mathrm{n}}+\mathrm{a}_{\mathrm{m}-\mathrm{n}}=2 \mathrm{a}_{\mathrm{m}}$

Ans: $\quad a_{m+n}=a_{1}+(m+n-1) d$
$\mathrm{a}_{\mathrm{m}-\mathrm{n}}=\mathrm{a}_{1}+(\mathrm{m}-\mathrm{n}-1) \mathrm{d}$
$a_{m}=a_{1}+(m-1) d$
Add $1 \& 2$

$$
\begin{aligned}
\mathrm{a}_{\mathrm{m}+\mathrm{n}}+\mathrm{a}_{\mathrm{m}-\mathrm{n}} & = & a_{1}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}+\mathrm{a}_{1}+(\mathrm{m}-\mathrm{n}-1) \mathrm{d} \\
& = & 2 a_{1}+(\mathrm{m}+\mathrm{n}+\mathrm{m}-\mathrm{n}-1-1) \mathrm{d} \\
& = & 2 a_{1}+2(\mathrm{~m}-1) \mathrm{d} \\
& = & 2\left[\mathrm{a}_{1}+(\mathrm{m}-1) \mathrm{d}\right] \\
& = & 2\left[a_{1}+(m-1) \mathrm{d}\right] \\
& = & 2 \mathrm{a}_{\mathrm{m}} . \quad \text { Hence proved. }
\end{aligned}
$$

11. If the roots of the equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal show that a, b, c are in $A P$.

Ans: Refer sum No. 12 of Q.E.
If $(b-c) x^{2}+(c-a) x+(a-b) x$ have equal root.
$B^{2}-4 A C=0$.
Proceed as in sum No. 13 of Q.E to get $c+a=2 b$
$\Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$
$\Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in AP
12. Balls are arranged in rows to form an equilateral triangle .The first row consists of one ball, the second two balls and so on. If 669 more balls are added, then all the balls can be arranged in the shape of a square and each of its sides then contains 8 balls less than each side of the triangle. find the initial number of balls.

Ans: Let their be n balls in each side of the triangle
\therefore No. of ball (in Δ) $=1+2+3 \ldots \ldots \ldots .=\frac{n(n+1)}{2}$
No. of balls in each side square $=n-8$
No. of balls in square $=(n-8)^{2}$
APQ $\frac{n(n+1)}{2}+660=(n-8)^{2}$
On solving
$\mathrm{n}^{2}+\mathrm{n}+1320=2\left(\mathrm{n}^{2}-16 \mathrm{n}+64\right)$
$\mathrm{n}^{2}-33 \mathrm{n}-1210=0$
$\Rightarrow(\mathrm{n}-55)(\mathrm{n}+22)=0$
$\mathrm{n}=-22$ (N.P)
$\mathrm{n}=55$
\therefore No. of balls $=\frac{n(n+1)}{2}=\frac{55 \times 56}{2}$
$=1540$
13. Find the sum of $\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right) \ldots \ldots$. upto n terms.

Ans: $\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)$ - upto n terms
$\Rightarrow[1+1+\ldots \ldots .+\mathrm{n}$ terms $]-\left[\frac{1}{n}+\frac{2}{n}+\ldots .+\mathrm{n}\right.$ terms $]$
$\mathrm{n}-\left[\mathrm{S}_{\mathrm{n}}\right.$ up to n terms $]$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \quad\left(\mathrm{d}=\frac{1}{n}, \quad \mathrm{a}=\frac{1}{n}\right)$
$=\frac{n}{2}\left[\frac{2}{n}+(n-1) \frac{1}{n}\right]$
$=\frac{n+1}{2} \quad$ (on simplifying)
$\mathrm{n}-\frac{n+1}{2}=$
$=\frac{n-1}{2} \mathrm{Ans}$
14. If the following terms form a AP. Find the common difference $\&$ write the next 3 terms 3 , $3+\sqrt{ } 2,3+2 \sqrt{ } 2,3+3 \sqrt{ } 2 \ldots \ldots \ldots$.

Ans: $\mathrm{d}=\sqrt{2}$ next three terms $3+4 \sqrt{ }^{2}, 3+5 \sqrt{ }^{2}, 3+6 \sqrt{ }^{2} \ldots \ldots$.
15. Find the sum of $a+b, a-b, a-3 b, \ldots .$. to 22 terms.

Ans: $\begin{aligned} & a+b, a-b, a-3 b, \text { up to } 22 \text { terms } \\ & d=a-b-a-b=2 b \\ & S_{22}=\frac{22}{2}[2(a+b)+21(-2 b)] \\ & 11[2 a+2 b-42 b] \\ & =22 a-440 b \text { Ans. }\end{aligned}$
16. Write the next two terms $\sqrt{ } 12, \sqrt{ } 27, \sqrt{ } 48, \sqrt{ } 75$ \qquad
Ans: next two terms $\sqrt{108}, \sqrt{147} \mathrm{AP}$ is $2 \sqrt{3}, 3 \sqrt{3}, 4 \sqrt{3}, 5 \sqrt{3}, 6 \sqrt{3}, 7 \sqrt{3} \ldots \ldots$
17. If the $\mathrm{p}^{\text {th }}$ term of an $A P$ is q and the $q^{\text {th }}$ term is p. P.T its $n^{\text {th }}$ term is $(p+q-n)$.

Ans: APQ

$$
\begin{aligned}
& a_{p}=q \\
& a_{q}=p \\
& a_{n}=? \\
& a_{a}+(p-1) d=q \\
& a+(q-1) d=p \\
& d[p-q]=q-p \quad \text { Sub } d=-1 \text { to } \text { get } \Rightarrow=-1 \Rightarrow a=q+p-1 \\
& a_{n}=a+(n-1) d \\
& \quad=a+(n-1) d \\
& \quad=(q+p-1)+(n-1)-1 \\
& a_{n}=(q+p-n)
\end{aligned}
$$

18. If $\frac{1}{x+2}, \frac{1}{x+3}, \frac{1}{x+5}$ are in AP find x.

Ans: $\frac{1}{x+2}, \frac{1}{x+3}, \frac{1}{x+5}$ are in AP find x.
$\frac{1}{x+3}-\frac{1}{x+2}=\frac{1}{x+5}-\frac{1}{x+3}$
$\Rightarrow \frac{1}{x^{2}+5 x+6}=\frac{2}{x^{2}+8 x+15}$
On solving we get $x=1$
19. Find the middle term of the AP $1,8,15 \ldots .505$.

Ans: Middle terms
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=505$
$\mathrm{a}+(\mathrm{n}-1) 7=505$
$\mathrm{n}-1=\frac{504}{7}$
$\mathrm{n}=73$
$\therefore 37^{\text {th }}$ term is middle term
$a_{37}=a+36 d$
$=1+36(7)$
$=1+252$
$=253$
20. Find the common difference of an AP whose first term is 100 and sum of whose first 6 terms is 5 times the sum of next 6 terms.

Ans: $\quad \mathrm{a}=100$
APQ $a_{1}+a_{2}+\ldots \ldots . a_{6}=5\left(a_{7}+\ldots \ldots . .+a_{12}\right)$
$6\left(\frac{a_{1}+a_{6}}{2}\right)=5 \times 6\left(\frac{a_{7}+a_{12}}{2}\right)$
$\Rightarrow \mathrm{a}+\mathrm{a}+5 \mathrm{~d}=5[\mathrm{a}+6 \mathrm{~d}+\mathrm{a}+11 \mathrm{~d}]$
$\Rightarrow 8 \mathrm{a}+80 \mathrm{~d}=0(\mathrm{a}=100)$
$\Rightarrow \mathrm{d}=-10$.
21. Find the sum of all natural no. between $101 \& 304$ which are divisible by 3 or 5 .

Find their sum.
Ans: No let 101 and 304, which are divisible by 3 .
102, 105 \qquad 303 (68 terms)
No. which are divisible by 5 are 105, 110..... 300 (40 terms)

No. which are divisible by $15(3 \& 5) 105,120$. \qquad (14 terms)
\therefore There are 94 terms between $101 \& 304$ divisible by 3 or 5 . $(68+40-14)$
$\therefore \mathrm{S}_{68}+\mathrm{S}_{40}-\mathrm{S}_{14}$
$=19035$
22. The ratio of the sum of first n terms of two AP's is $7 n+1: 4 n+27$. Find the ratio of their $11^{\text {th }}$ terms .

Ans: Let $a_{1}, a_{2} \ldots$ and d_{1}, d_{2} be the I terms are Cd's of two AP's.
$\underline{S}_{\underline{n}}$ of one AP $=\frac{7 n+1}{4 n+27}$
S_{n} of II AP

$$
\begin{aligned}
\frac{\frac{m}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{m}{2}\left[2 a_{2}+(n-1) d_{2}\right]} & =\frac{7 n+1}{4 n+27} \\
\Rightarrow & \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

We have sub. $\mathrm{n}=21$.
$\frac{2 a_{1}+20 d_{1}}{2 a_{2}+20 d_{2}}=\frac{7 \times 21+1}{4(21)+27}$
$\Rightarrow \frac{a_{1}+10 d_{1}}{a_{2}+10 d_{2}}=\frac{148}{111}$
$=\frac{4}{3}$
\therefore ratio of their $11^{\text {th }}$ terms $=4: 3$.
23. If there are $(2 n+1)$ terms in an AP , prove that the ratio of the sum of odd terms and the sum of even terms is $(\mathrm{n}+1)$:n

Ans: Let a, d be the I term \& Cd of the AP .

$$
\begin{aligned}
& \therefore \mathrm{a}_{\mathrm{k}}=\mathrm{a}+(\mathrm{k}-1) \mathrm{d} \\
& \mathrm{~s}_{1}=\text { sum to odd terms } \\
& \mathrm{s}_{1}=\mathrm{a}_{1}+\mathrm{a}_{3}+\ldots \ldots \ldots . \mathrm{a}_{2 \mathrm{n}+1} \\
& \mathrm{~s}_{1}=\frac{\mathrm{n}+1}{2}\left[\mathrm{a}_{1}+\mathrm{a}_{2 \mathrm{n}+1}\right] \\
& =\frac{\mathrm{n}+1}{2}\left[2 \mathrm{a}_{1}+2 \mathrm{nd}\right] \\
& \mathrm{s}_{1}=(\mathrm{n}+1)(\mathrm{a}+\mathrm{nd}) \\
& \mathrm{s}_{2}=\text { sum to even terms } \\
& \mathrm{s}_{2}=\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots . \mathrm{a}_{2 \mathrm{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}_{2}=\frac{\mathrm{n}}{2}\left[\mathrm{a}_{2}+\mathrm{a}_{2 \mathrm{n}}\right] \\
& =\frac{n}{2}[\mathrm{a}+\mathrm{d}+\mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}] \\
& =\mathrm{n}[\mathrm{a}+\mathrm{nd}] \\
& \therefore \mathrm{s}_{1}: \mathrm{s}_{2}=\frac{(n+1)(a+n d)}{n(a+n d)} \\
& =\frac{n+1}{n}
\end{aligned}
$$

24. Find the sum of all natural numbers amongst first one thousand numbers which are neither divisible 2 nor by 5

Ans: Sum of all natural numbers in first 1000 integers which are not divisible by 2 i.e. sum of odd integers.
$1+3+5+\ldots \ldots \ldots+999$
$\mathrm{n}=500$
$\mathrm{S}_{500}=(500)^{2}$
= 2,50,000
No's which are divisible by 5
$5+15+25 \ldots \ldots \ldots+995$
$\mathrm{n}=100$
$\mathrm{S}_{\mathrm{n}}=\frac{100}{2}[5+995]$
$=50 \times 1000=50000$
\therefore Required sum $=250000-50,000$
$=200000$

Downloaded From: http://www.cbseportal.com

NCERT Solutions For Class 10 Maths Arithmetic Progressions Extra Questions

Question-1

Find the sum of the following A.P. 1, 3, 5, 7, 199.

Solution:
Given, $\mathrm{a}=1, \mathrm{~d}=2, \mathrm{a}_{\mathrm{n}}=\mathrm{I}=199$,
$a+(n-1) d=199$
$1+(n-1) 2=199$
$\Rightarrow 1+2 \mathrm{n}-2=199$
$\Rightarrow 2 n=200$
$\therefore \mathrm{n}=\frac{200}{2}$
$\mathrm{n}=100$.
$S_{n}=n / 2(a+1)$
$=50(1+199)$
$=50(200)$
$=10000$

Question-2

Find the A.P. whose $10^{\text {th }}$ term is 5 and $18^{\text {th }}$ term is 77 .

Solution:
given, $10^{\text {th }}$ term of an A.P $=5$
$p a+(10-1) d=5$

$$
\begin{equation*}
\Rightarrow a+9 d=5 . \tag{i}
\end{equation*}
$$

and $18^{\text {th }}$ term $=77$
ba $+(18-1) d=77$
$\Rightarrow a+17 d=77$
(ii) - (i), $8 \mathrm{~d}=72$

$$
\therefore \mathrm{d}=9
$$

Substituting the value of $\mathrm{d}=9 \mathrm{in}$ (i),
$a+81=5$
$a=5-81=-76$
\therefore The A.P. is $-76,-67$,

Downloaded From: http://www.cbseportal.com

Question-3

In a certain A.P the $24^{\text {th }}$ term is twice the $10^{\text {th }}$ term. Prove that the $72^{\text {nd }}$ term is twice the $34^{\text {th }}$ term.

Solution:

Given, $\mathrm{a}_{24}=2 \mathrm{a}_{10}$
$a_{24}=a+23 d$ and $a_{10}=a+9 d$
To prove: $\mathrm{a}_{72}=2 \mathrm{a}_{34}$
$a_{72}=a+71 d$
$a_{34}=a+33 d$
$\mathrm{a}_{24}=2 \mathrm{a}_{10}$ (Given)
$a+23 d=2(a+9 d)$
$a+23 d=2 a+18 d$
$a-5 d=0$
$\mathrm{a}=5 \mathrm{~d}$.
$\mathrm{a}_{72}=2 \mathrm{a}_{34}$
$a+71 d=2(a+33 d)$
$a+71 d=2 a+66 d$
$a-5 d=0$
$a=5 d$
from, (1) and (2) $a_{72}=2 a_{34}$
Hence proved.

Question-4

a, b and c are in A.P. Prove that $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}$ and $\mathrm{a}+\mathrm{b}$ are in A.P.

Solution:

Given, a, b and c are in A.P.
$\therefore b-a=c-b$
To prove: $\mathbf{b}+\mathbf{c}, \mathbf{c}+\mathbf{a}$ and $\mathbf{a}+\mathbf{b}$ are in A.P.
$c+a-(b+c)=a+b-(c+a)$
$\Rightarrow c+a-b-c=a+b-c-a$
$a-b=b-c$
$\Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$
$\therefore a, b, c$ are in A.P.
$\therefore \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}$ and $\mathrm{a}+\mathrm{b}$ are in A.P.

Question-5

If $9^{\text {th }}$ term of an A.P. is zero, prove that its $29^{\text {th }}$ term is double the $19^{\text {th }}$ term.

Solution:
$9^{\text {th }}$ term $=0$
$\mathrm{a}_{1}+8 \mathrm{~d}=0$
$a_{29}=a_{1}+28 d=a_{1}+8 d+20 d=0+20 d=20 d$
$a_{19}=a_{1}+18 d=a_{1}+8 d+10 d=0+10 d=10 d$
$\mathrm{a}_{29}=2 \mathrm{a}_{19}$.

Question-6

Determine the A.P whose third term is 16 and the difference of $5^{\text {th }}$ from $7^{\text {th }}$ term is 12 .

Solution:

Let the A.P. be $a, a+d, a+2 d, \ldots \ldots$.
\Rightarrow The third term $=a_{3}=a+2 d=16$
and seventh term $=a_{7}=a+6 d$
Given that $a_{7}-a_{5}=12$
$\Rightarrow(a+6 d)-(a+4 d)=12$
$\Rightarrow a+6 d-a-4 d=12$
$\Rightarrow 2 \mathrm{~d}=12$
$\Rightarrow d=6$
Substituting the value of $d=6$ in (i),

$$
a+12=16
$$

$a=4$
\therefore The first term of the A.P. is 4 and the common difference is 6 .
\therefore The A.P. is $4,10,16,22,28,34, \ldots$
\therefore The fifth term $=\mathrm{a}_{5}=\mathrm{a}+4 \mathrm{~d}$.

Downloaded From: http://www.cbseportal.com

Question-7

The sum of the first six terms of an A.P is zero and the fourth term is 2.
Find the sum of its first 30 terms.

Solution:

Let the sum of first 30 terms be S_{30}, first term be a, fourth term be a_{4} and the sum of first six terms be S_{6}.
Given that $\mathrm{S}_{6}=0$ and fourth term $\mathrm{a}_{4}=2$

$$
\Rightarrow a+3 d=2
$$

$$
S_{6}=0
$$

$\frac{n}{2}(2 a \cdot 5 d)=0$
$\Rightarrow 2 a+5 d=0$
(i) $\times 2$,

$$
2 a+6 d=4
$$

(iii) - (ii),
$\therefore \mathrm{d}=4$
Substituting the value of $\mathrm{d}=4 \mathrm{in}$ (i),

$$
\begin{aligned}
a+3 \times(4) & =2 \\
\Rightarrow a=2-12 & =-10 \\
\therefore a_{30} & =a+29 d \\
& =-10+29 \times(4) \\
& =-10+116 \\
& =106
\end{aligned}
$$

\therefore Sum to first 30 terms $=S_{30}=\frac{n}{2}(a+1)$

$$
\begin{aligned}
& =\frac{30}{2}(-10+106) \\
& =15 \times 96 \\
& =1140 .
\end{aligned}
$$

Downloaded From: http://www.cbseportal.com

Question-8

An A.P consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find $32^{\text {nd }}$ term.

Solution:
Given, $\mathrm{n}=60, \mathrm{a}_{1}=7$,
and $\mathrm{a}_{60}=125$
$\Rightarrow a_{1}+59 \mathrm{~d}=125$
$7+59 \mathrm{~d}=125$
$59 \mathrm{~d}=118$
$d=118 / 59=2$
$a_{32}=a_{1}+31 d=7+31(2)=7+62$
$\therefore \mathrm{a}_{32}=69$.
Question-9
Find the sum of the series $51+50+49+\ldots . .+21$.

Solution:
$51+50+49+\ldots . .+21$
$a=51, d=-1, a_{n}=21$
$\therefore a+(n-1) d=a_{n}$
$51+(n-1)(-1)=21$
$(n-1)(-1)=21-51$
$\mathrm{n}-1=30$

$$
\therefore \mathrm{n}=31
$$

\therefore Sum of the series $=\frac{31}{2}(51+21)$

$$
\begin{aligned}
& =\frac{31}{2} \times 72 \\
& =1116
\end{aligned}
$$

\therefore The sum of the series $51+50+49+\ldots . .+21=1116$.

Downloaded From: http://www.cbseportal.com

Question-10

Three numbers are in A.P. If the sum of these numbers be 27 and the product 648 , find the numbers.

Solution:
Let the three numbers be $a-d, a, a+d$.
$a-d+a+a+d=27$
$3 \mathrm{a}=27$
$a=9$
$(a-d)(a)(a+d)=648$
$a\left(a^{2}-d^{2}\right)=648$
$9\left(9^{2}-d^{2}\right)=648$
$9^{2}-d^{2}=72$
$\mathrm{d}^{2}=81-72$
$\mathrm{d}^{2}=9$
d $=3$
The numbers are 6, 9, 12.

Question-11

How many terms of A.P $-10,-7,-4,-1, \ldots \ldots .$. must be added to get the sum -104?

Solution:
$-10,-7,-4,-1$,
$a=-10, d=3$
$S_{n}=\frac{1}{2} n\{2 a+(n-1) d\}$
$-104=\frac{1}{2} n\{2(-10)+(n-1) 3\}$
$=\frac{1}{2} n(-20+3 n-3)$
$-208=n(3 n-23)$
$3 n^{2}-23 n+208=0$
$3 n^{2}-39 n+16 n+208=0$
$3 n(n-13)+16(n-13)=0$
$(\mathrm{n}-13)(3 \mathrm{n}+16)=0$
$\therefore \mathrm{n}=13$
$\therefore 13$ terms must be added to get the sum of the A.P -104 .

Downloaded From: http://www.cbseportal.com

Question-12

If the sum of p terms of an A.P is $3 p^{2}+4 p$, find its $n^{\text {th }}$ term.

Solution:

$S_{p}=3 p^{2}+4 p$
$\mathrm{t}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$
$=\left(3 n^{2}+4 n\right)-\left[3(n-1)^{2}+4(n-1)\right]$
$=\left(3 n^{2}+4 n\right)-\left[3\left(n^{2}-2 n+1\right)+4(n-1)\right]$
$=\left(3 n^{2}+4 n\right)-\left[3 n^{2}-6 n+3+4 n-4\right]$
$=\left(3 n^{2}+4 n\right)-\left[3 n^{2}-2 n-1\right]$
$=3 n^{2}+4 n-3 n^{2}+2 n+1$
$=6 n+1$
Therefore the $\mathrm{n}^{\text {th }}$ term is $6 \mathrm{n}+1$.

