GOVERNMENT URDU HIGH SCHOOL YELLAGONDAPALYA

SUBJECT: MATHEMATICS 2019-20

SUMMATIVE ASSESMENT - 1 Time : 3 Hrs

Class :10 ${ }^{\text {th }}$
Marks:80

I. Answer the following [meq]

1. the nth term an of the AP with first term a and common difference d is given by
[a] $S_{n}=a+(n-1)$
[b] $S_{n}=\frac{n(n+1)}{2}$
$[c] S n=\frac{n}{2}[2 a+(n-1) d]$
[d] $a_{n}=a+(n-1) d$.
2. The pair of co-ordinates satisfying $2 x+y=6$ is
[a] 1,1
[b] 2,2
[c] 3,3
[d] 4,4
3. The following is an example of Pythagorean triplet
[a] 3,5,7
[b] 12, 14, 16
[c] 3,6, 9
[d] 1.5, 2, 2.5
4. All circles are \qquad (congruent, similar)
[a] similar_
[b] congruent
[c] Equal
[d] Concentric
5. Formula to find the area of Quadrant
[a] $\frac{\pi r^{2}}{2}$
[b] πr^{2}
[c] $\frac{\pi r^{2}}{3}$
[d] $\frac{\pi r^{2}}{4}$
6. If $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ then
[a] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{DF}}$
[b] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EG}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
[c] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AB}}{\mathrm{DF}}$
[d] $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
7. Which is the Mid-point formula
[a] $p(x, y)=\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}$
[b] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{4}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{4}$,
[c] $p(x, y)=\frac{x_{2}+x_{1}}{3}, \frac{y_{2}+y_{1}}{3}$
[d] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{2}$
8. A number which can be expressed in the form of $\frac{p}{q}$ is called

$$
1 \times 8=8
$$

[a] rational number
[b] irrational number
[c] lemma
[d] algorithm.

II Answer the following:
9. In the following AP the missing terms in the box is 2 \qquad 26 is 10. State the converse of B.P.T. Thales:

11. State Euclid's division lemma
12. If TP and TQ are the two tangents to a circle with centre O is

So that $\angle P O Q=110^{\circ}$ then $\angle P T Q$ is equal to
13.Write the section formula?-
14. Write the area of a sector of a circle
15. Which term of the AP : $3,8,13,18, \ldots \ldots \ldots$ is 78

16. The $17^{\text {th }}$ term of an AP exceeds its $10{ }^{\text {th }}$ term by 7 .

Find the common difference.

$$
2 \times 8=16
$$

II. Answer the following questions:
17. A vertical pole of length $\mathbf{6 m}$ casts a shadow 4 m long on the ground and at the same time a tower casts a
18. Diagonals of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$
intersect each other at the point O. If $\mathrm{AB}=2 \mathrm{CD}$,
Find the ratio of the areas of triangles AOB and COD

19. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}$ find out whether the given pair of linear equation is $3 x+2 y=5 ; 2 x-3 y=7$
20. Solve by Substitution method

$$
\begin{aligned}
& x+y=5-----[1] \\
& 2 x-3 y=4----[2]
\end{aligned}
$$

to a circle is 24 cm and the distance
of Q from the centre is 25 cm .
The radius of the circle is .
22. A quadrilateral ABCD is drawn to circumscribe a circle [see fig]

Prove that $A B+C D=A D+B C$
23. Find the area of a sector of a circle with radius 6 cm if angle of the sector is $\mathbf{6 0}{ }^{\circ}$
24. Find the area of the shaded region in fig, if ABCD is a square of side 14 cm
and APD and BPC are semicircles.
25. Draw a circle of radius 6 cm . From a point 10 cm Away from its centre, construct the pair of

$$
3 \times 9=27
$$

tangents to the circle and measure their lengths
26. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm And then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

27. Find the distance between the pair of points. $(2,3)(4,1)$
28. A (2,3$), B(4, k)$ and $C(6,-4)$ Find the value of ' k ' for which the points are Collin
29. Prove that $2+\sqrt{5}$ is irrational
30. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which They can march.
31. Find the sum of first 40 positive integers divisible by 6

OR

31[a] Find the sum of the first 15 multiples of 8
32. Prove Thales theorem Basic proportionality theorem OR

Theorem (AA similarity Criterion)" If two triangles are equiangular, then their corresponding sides are proportional"
33.Solve equation graphically: $2 x+3 y=9$

$$
4 x+6 y=18
$$

34. Two warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80°

To a distance of 16.5 km . Find the area of the
sea over which the ships are warned. [use $\pi=3.14$]
OR

34[a]. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle 60°
35] Find the area of the quadrilateral whose vertices taken in order, are
$(-4-2),(-3-5)(3-2)$ and $(2,3)$
OR
35[a]Prove that " In a right angled triangle the square on hypotenuse is equal to the sum of the square on the
Other two sides"
36] A sum of Rs. 700 is to be used to give seven cash prizes to students of a school for their overall

Academic performance. If each prize is Rs. 20 less than its preceeeing prize, find the value of each
Of the prizes. OR
36[a] 200 logs are stacked in the following manner : 20 logs in the bottom row, 19 in the next row,
18 in the row next to it and so on [see fig] In how many rows are the 200 logs placed and how many logs
Are in the top row?
37. Five years ago Nuri was thrice as old as sonu.

Ten years later, nuri will be twice as sold as Sonu. How old are nuri and Sonu.

38. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance

Of 7 cm from its centre. Draw tangents to the circle from these points \mathbf{P} and Q.
$1 \times 5=5$ OR
[1] A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of The boat in still water.

KEY PAPER

1. the nth term a_{n} of the AP with first term a and common difference d is given by

$$
[a] \quad S_{n}=a+(n-1) \quad[b] \quad S_{n}=\frac{n(n+1)}{2} \quad[c] S n=\frac{n}{2}[2 a+(n-1) d][d] \quad a_{n}=a+(n-1) d
$$

2. The pair of co-ordinates satisfying $2 x+y=6$ is
[a] 1,1
[b] $\underline{2,2}$
[c] 3,3
[d] $\mathbf{4 , 4}$
3. The following is an example of Pythagorean triplet
[a] 3,5, 7
[b] 12, 14, 16
[c] 3,6, 9
[d] 1.5, 2, 2.5
4. All circles are \qquad (congruent, similar)
[a] similar
[b] congruent
[c] Equal
[d] Concentric
5. Formula to find the area of Quadrant of a circle
[a] $\frac{\pi r^{2}}{2}$
[b] πr^{2}
[c] $\frac{\pi r^{2}}{3}$
[d] $\frac{\pi r^{2}}{4}$
6. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ then
[a] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{DF}}$
[b] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EG}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
$[\mathrm{c}] \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AB}}{\mathrm{DF}}$
[d] $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
7. Which is the Mid-point formula
[a] $p(x, y)=\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}$
[b] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{4}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{4}$,
[c] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{3}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{3}$
[d] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{2}$
8. A number which can be expressed in the form of $\frac{p}{q}$ is called
[a] rational number
[b] irrational number
[c] lemma
[d] algorithm.

II Answer the following:
9. In the following AP the missing terms in the box is 2 , \square 26 is 14
$A=2$, and $\mathrm{a} 3=26 \Rightarrow \mathrm{a} 3=\mathrm{a}+2 \mathrm{~d} \Rightarrow 26=2+2 \mathrm{~d} \Rightarrow 2 \mathrm{~d}=26-2=\mathrm{d}=\frac{24}{2}=122=\mathrm{a}+\mathrm{d}=2+12=14$
10. State the converse of B.P.T. Thales:

If A straight line divides two sides of a triangle proportionally, Then the straight line is parallel to third side.
11. State Euclid's division lemma

Ans: $a=(b \times q)+r$ it is called "EUCLID'S DIVISION LEMMA"
12. If TP and TQ are the two tangents to a circle with centre O is

So that $\angle \mathrm{POQ}=110^{\circ}$ then $\angle \mathrm{PTQ}$ is equal to
Ans: $-\angle \mathbf{P}+\angle \mathbf{O}+\angle \mathbf{Q}+\angle \mathbf{T}=360^{\circ}$

$$
90^{\circ}+110^{\circ}+90^{\circ}+\angle \mathrm{T}=360^{\circ}
$$

$\angle \mathrm{T}=\mathbf{3 6 0}{ }^{\circ}-\mathbf{2 9 0}{ }^{\circ}=\mathbf{7 0}{ }^{\circ}$
13.Write the section formula?

Ans: $\quad \mathbf{p}(\mathbf{x}, \mathbf{y})=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
14. Write the area of a sector of a circle

Ans:- Area of sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
II. Answer the following questions:
15. Which term of the AP : $3,8,13,18$, \qquad is 78

Ans: $a_{n}=78 \quad a=3 \quad d=T_{2}-T_{1}=8-3=5 \quad n=$?
$a_{n}=\mathbf{a}+(n-1) d \Rightarrow 78=3+(n-1) 5 \Rightarrow 78=3+5 n-5 \Rightarrow 78=5 n-2 \Rightarrow 5 n=80 \Rightarrow n=16$
16. The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 7 . Find the common difference.

Ans: $\mathbf{a}_{17}=\mathbf{a 1 0}+7$
$a+16 d=a+9 d+7$
$a+16 d-a-9 d=7$
$7 d=7 \quad \Rightarrow \quad d=\frac{7}{7}=1$
17. A vertical pole of length $\mathbf{6 m}$ casts a shadow $\mathbf{4 m}$ long on the ground and at the same time a tower casts a

Shadow 28m long. Find the height of the tower.

Ans: Let AB be the height of tower $\mathrm{AB}=$?
$P Q$ be the height of the pole $P Q=6 \mathrm{~cm}$
$Q C$ be the shadow of pole $Q C=4 \mathrm{~cm} B C$ be the shadow of the tower $=$? In $\Delta l e \mathrm{ABC}$ and $\Delta l e \mathrm{PQC}$
$\angle \mathrm{ABC}=\angle \Delta \mathrm{PQC} \Rightarrow \angle \mathrm{ABC}=\angle \Delta \mathrm{PQC}=\left[\right.$ each $\left.90^{\circ}\right] \quad \Rightarrow \angle \mathrm{ACB}=\angle \Delta \mathrm{PCQ} \quad$ [common angles]
$\Delta l e \mathrm{ABC} \sim \Delta \mathrm{le} \mathrm{PQC}[\mathrm{AA}$ similarity criterion]
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QC}} \Rightarrow \frac{\mathrm{AB}}{6}=\frac{28}{4} \quad \Rightarrow \quad \mathrm{AB}=\frac{28 \times 6}{4}=42 \mathrm{~m}$
Height of the tower 42 m
18. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$,

Find the ratio of the areas of triangles AOB and COD
Ans:- Given AB = 2CD
$\angle \mathrm{AOB}=\angle \mathrm{COD}[$ V.O.A]
$\angle \mathrm{OAB}=\angle \mathrm{DCO}$ [Alternate angles]
$\angle \mathrm{ABO}=\angle \mathrm{CDO}$ [Alternate angles]

$\therefore \Delta l e \mathrm{AOB} \sim \Delta \mathrm{le} \mathrm{COD}$ [AA similarity]
$\frac{\text { area of } A O B}{\text { area of } C O D}=\frac{A B^{2}}{C D^{2}}=\frac{(2 C D)^{2}}{C D^{2}}=\frac{4 C D^{2}}{C D^{2}}$
$\frac{\text { area of } A O B}{\text { area of } C O D}=\frac{4}{1} \Rightarrow$ area of $A O B:$ area of $C O D=4: 1$
19. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}$ find out whether the given pair of linear equation is consistent. $3 x+2 y=5 ; 2 x-3 y=7$

Ans: $3 x+2 y-5=0 \quad 2 x-3 y-7=0$
$a_{1}=3 \quad b_{1}=2 \quad c_{1}=5$ and $a_{2}=2 \quad b_{2}=-3 \quad c_{2}=-7$
$\frac{a_{1}}{a_{2}}=\frac{3}{2}, \frac{b_{1}}{b_{2}}=\frac{2}{-3}, \frac{c_{1}}{c_{2}}=\frac{-5}{-7}=\frac{5}{7} \therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
\therefore the pair of Linear equation has unique solution. It is consistent.
20. Solve by Substitution method :

```
x+y = 5
2x-3y=4
```

Ans:

```
x+y = 5 ------[1]
2x-3y=4 -----[2]
```

From equation [1] $x=5-y \cdots---$--3] put equation [3] in equation [2]

$$
2(5-y)-3 y=4 \Rightarrow 10-2 y-3 y=4 \Rightarrow-5 y=4-10
$$

$Y=\frac{-6}{-5}=Y=\frac{6}{5}$ Now put $y=\frac{6}{5}$ in equation [3]
$x+y=5 \quad \Rightarrow \quad x+\frac{6}{5}=5 \quad \Rightarrow \quad x=5-\frac{6}{5} \quad \Rightarrow=\frac{25-6}{5}=\frac{19}{5}$
$\therefore x=\frac{19}{5}$ and $y=\frac{6}{5}$
21. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is .

Ans: - In $\Delta l e$ OPQ $\angle P=90^{\circ}$
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2} \quad$ [Pythagoras theorem]
$(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
$\mathrm{OP}^{2}=625-576$
$\mathrm{OP}=\sqrt{49}=7 \mathrm{~cm}$
22. A quadrilateral ABCD is drawn to circumscribe

a circle [see fig]
Prove that $A B+C D=A D+B C$
Ans: Since the lengths o4f two tangents drawn from
An external point of circle are equal.
$\therefore \mathbf{A P}=\mathbf{A S}----1$ [Tangents drawn from an external point A]
$B P=B Q-\cdots--2[$ Tangents drawn from an external point $B]$
DR = DS-----3 [Tangents drawn from an external point D]
$C R=C Q-----4[$ Tangents drawn from an external point $C]$
Adding 123 \& 4
$(A P+B P)+(C R+D R)=(B Q+C Q)+(D S+A S)$
$\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$
23. Find the area of a sector of a circle with radius $\mathbf{6 c m}$ if angle of the sector is 60°

Ans: Given radius $=\mathbf{6 c m}$ and $\boldsymbol{\theta}=\mathbf{6 0}{ }^{\circ}$
Area of sector $==\frac{\theta}{360} \quad \mathbf{X} \pi r^{2}$.
$=\frac{60}{360} \times \pi(6)^{2}$
$=\frac{60}{360} \times \pi(6 \times 6)$
$=\frac{60}{360} \times \pi 36$
$=6 \times \frac{22}{7}=\frac{132}{7} \mathrm{~cm}^{2}$ or $18 \frac{6}{7}$
24. Find the area of the shaded region in fig, if ABCD is a square of side 14 cm and

APD and BPC are semicircles.
Ans:- Radius of semicircle $=7 \mathrm{~cm} \&$ side of square $=14 \mathrm{~cm}$.
Area of shaded region $=$ Area of square $\mathbf{A B C D}-$ Areas of semicircles $($ APD + BPC $)$
$=(\text { side })^{2}-\left(\frac{1}{2} \pi r^{2}+\frac{1}{2} \pi r^{2}\right)$
$=(14)^{2}-\left(\frac{1}{2} \pi(7)^{2}+\frac{1}{2} \pi(7)^{2}\right)$
$=196-\frac{22}{7} \quad x(7)^{2}$.
$=196-\frac{22}{7} \quad 7 \times 7$.

$=196-154=42 \mathrm{~cm}^{2}$
25. Draw a circle of radius $\mathbf{6 c m}$. From a point 10 cm

Away from its centre, construct the pair of tangents to the circle and measure their lengths.

26. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and $\mathbf{6 c m}$ And then a triangle similar to it whose sides are

$\frac{2}{3}$ of the corresponding sides of the first triangle.

[32] Construct a triangle of sides 4cm, 5cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the Corresponding sides of the first triangle.
Ans: - Step 1 Draw a line segment $A B=4 \mathrm{~cm}$. Taking point A as centre draw an arc of 5 cm radius similarly, Taking point B as the centre, draw an arc of 6 cm radius. These archs will intersect each other at point C, Now $A C=5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ and $\triangle A B C$
is the required triangle.
Step 2: Darw a ray AX making an acute angle with line $A B$ on the opposite side of vertex C.
Step 3 : Locate 3 points A_{1}, A_{2}, A_{3} (as 3 is greater between 2 and 3)
on line $A X$ such that
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}$.
Step 4 : join $B A_{3}$ and draw a line
through A_{2} parallel to $B A_{3}$ to intersect
$A B$ at point B^{1}.
Step 5: Draw a line through B^{1} parallel to the line $B C$ to intersect $A C$ at C^{1}. $\Delta A B^{1} C^{1}$ is the required triangle.
27. Find the distance between the pair of points. (2,3$)(4,1)$

Ans: $\left(x_{1}, y_{1}\right)=2,3 \quad$ and $\left(x_{2}, y_{2}\right)=4,1$
Distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(4-2)^{2}+(1-3)^{2}} \\
& =\sqrt{(2)^{2}+(2)^{2}} \\
& =\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

28. A $(2,3), B(4, k)$ and $C(6,-4)$ Find the value of ' k ' for which the points are collinear.

Ans:

Co-ordinate Geometry

[21]Find the value of k, if the points $A(2,3), B(4, k)$ and $C(6,-4)$ are collinear.

$$
\text { Ans: } \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \rightarrow(2,3) \quad \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \rightarrow(4, k) \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \rightarrow(6,-3)
$$

Since these points are collinear therefore area of $\Delta \mathrm{ABC}=0$

$$
\begin{gathered}
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
\frac{1}{2}[2(k-3)+4(-3-3)+6(3-k)]=0 \\
\frac{1}{2}[2 k-6+-12-12+18-6 k]=0 \\
\frac{1}{2}[-30+18-4 k]=0 \\
\frac{1}{2}[-12-4 k]=0 \\
\frac{1}{2} 2[-6-2 k]=0 \\
2 k=-6 \\
k=-3
\end{gathered}
$$

29. Prove that $2+\sqrt{5}$ is irrational
30. Prove that $2+\sqrt{5}$ is an irrational number.

Ans: If possible let us assume $2+\sqrt{5}$
is a rational number.
$2+\sqrt{5}=\frac{\mathbf{p}}{\mathbf{q}}$. Where $\mathbf{p}, \mathbf{q} \in z, q \neq 0$
$2-\frac{p}{q}=-\sqrt{5}$
$\frac{2 q-p}{q}=-\sqrt{5}$
$\Rightarrow-\sqrt{5}$ is a rational number
$\because \frac{2 q-p}{q}=$ is a rational number
but $-\sqrt{5}$ is a rational number
\therefore our supposition $2+\sqrt{5}$
is a rational number is wrong.
$\Rightarrow 2+\sqrt{5}$ is an irrational number.
1.Prove that $5-\sqrt{3}$ is an irrational number.
2.Prove that $\sqrt{5}+\sqrt{3}$ is an irrational number.
3.Prove that $\sqrt{2}+\sqrt{5}$ is an irrational number.
4.Prove that $\sqrt{2}$ is an irrational number.
5.Prove that $\sqrt{5}$ is an irrational number.
6.Prove that $2 \sqrt{5}-4$ is an irrational number.
30. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in whichThey can march.

Ans: H.C.F of 616 and 32
Step-1: Euclid's division lemma $a=616$ and $b=32 a=b q+r$
$616=32 \times 19+8$
$616=616$
Step : 2 Euclid's division lemma $a=32$ and $b=8 a=b q+r$
$32=8 \times 4+0$
$32=32$ Here remainder is zero So HCF of ($\mathbf{6 1 6}, 32$)
Hence maximum number of columns is 8
31. Find the sum of first 40 positive integers divisible by 6

OR

31[a] Find the sum of the first 15 multiples of 8
Ans: Let the first 40 positive integers divisible by 6 are $6,12,18,24, \ldots--$
[31] Find the sum of the first 40 positive integers divisible by 6
Ans:- Let the first 50 positive integers divisible by 6 are

$$
S n=\frac{n}{2}[2 a+(n-1) d]
$$

$$
=\frac{40}{2}[2(6)+(40-1) 6]
$$

$$
=\frac{40}{2}[12+(39) 6]
$$

$$
=20[12+234]
$$

$$
=20 \times 246=4920
$$

$$
\begin{aligned}
& 8,16,24,32,---- \\
& \quad \mathbf{a}=8, d=8, n=15 S_{15}=? \\
& \begin{aligned}
\text { Sn }= & \frac{15}{2}[2(8)+(15-1) 8] \\
= & \frac{15}{2}[2(8)+(15-1) 8] \\
= & \frac{15}{2}[16+112] \\
\quad= & \frac{15}{2}[128] \\
S_{15} & =15 \times 64=960
\end{aligned}
\end{aligned}
$$

32. Prove Thales theorem Basic proportionality theorem OR

Theorem (AA similarity Criterion)" If two triangles are equiangular, then their corresponding sides are proportional"

Ans: In text book page
33.Solve equation graphically : $2 x+3 y=9$

$$
4 x+6 y=18
$$

Ans:-

$$
\begin{aligned}
& 6,12,18,24,----\quad 31[a] \text { Find the sum of the first } 15 \text { multiples } \\
& \mathrm{a}=6, \mathrm{~d}=6, \mathrm{n}=40 \quad \mathrm{~S}_{40}=\text { ? } \quad \text { of } 8
\end{aligned}
$$

Solve equation graphically

$$
\begin{aligned}
& 2 x+3 y=9 \\
& 4 x+6 y=18
\end{aligned}
$$

Answer: To obtain the equivalent geometric representation, we find two points on the line representing each equation. That is, we find two solutions of each equation.
These solutions are given below in Table

x	0	4.5
$y=\frac{9-2 x}{3}$	3	0

x	0	3
$y=\frac{18-4 x}{6}$	3	1

34. Two warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80°

To a distance of 16.5 km . Find the area of the
sea over which the ships are warned. [use $\pi=3.14$]

34. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80°
To a distance of 16.5 km . Find the area of the sea over which the ships are warned.
[use $\pi=3.14]$
Ans: $\theta=80^{\circ} \quad r=16.5 \mathrm{~km}$
Area of sea warned by ships
Area of a sector angle .
$=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{\theta}{360} \times 3.14 \times(16.5)^{2}$
$=189.97 \mathrm{~km}^{2}$

34[a]. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle 60°

Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at angle of 60°
Steps of construction.
[1]Draw a circle of radius
5 cms with centre 0 .
[2] Angle between the radii $=180^{\circ}$ angle between the tangents $=180^{\circ}-$ $60^{\circ}=120^{\circ}$
[3] Draw perpendiculars to OP and $O Q$

4] join $A P$ and $A Q$

4.: AP and AQ are the two required tangents
[35] Find the area of the quadrilateral whose vertices taken in order, are
$(-4-2),(-3-5)(3-2)$ and $(2,3)$
Ans: Let $A(-4-2), B(-3-5), C(3-2)$ and $D(2,3)$ are the vertices of quadrilateral
Area of triangle $A B C==\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{1}\left(y_{1}-y_{2}\right)\right.$
$==\frac{1}{2}[(-4(-5+2)-3(-2+2)+3(-2+5)]$
$\left.==\frac{1}{2}[(-4 \times-3)-3 \times 0+3 \times 3)\right]$
$=\frac{1}{2}[12+0+9]$
$=\frac{1}{2}[21]==\frac{21}{2}$
Area of triangle $A D C=\frac{1}{2}[(-4(-2-3)+3(3+2)+2(-2+2)]$

$=\frac{1}{2}[-4 \times-5+3 \times 5+2 \times 0]$
$=\frac{1}{2}[20+15]$ Area of $\Delta \mathrm{ADC}=\frac{35}{2}$
Area of quadrilateral $\mathrm{ABCD}=$ Area of $\Delta \mathrm{ABC}+$ area $\Delta \mathrm{ACD}$
$=\frac{21}{2}+\frac{35}{2}=\frac{56}{2}=28$ [Area of quadrilateral $\mathrm{ABCD}=28$ sq.units]
$35[a]$ Prove that " In a right angled triangle the square on hypotenuse is equal to the sum of the square on the Other two siders"

Theorem :2.8:In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the Other two sides.
Proof: We are given a right triangle $A B C$ right angled at B We need to prove that $\mathbf{A C}^{2}=A B^{2}+B^{2}$

Let us draw BD $\perp \mathbf{A C}$ [see fig]
Now $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$ (Theorem 6.7)

So, $\frac{A D}{A B}=\frac{A B}{A C}$
OR AD. $\mathrm{AC}=\mathrm{AB}^{2} \ldots \ldots \ldots \ldots[1]$
Also $\triangle \mathrm{ABDC} \sim \triangle A B C$ [Theorem 6.7]
So, $\frac{C D}{B C}=\frac{B C}{A C}$
OR CD. $\mathrm{AC}=\mathrm{BC}^{2}$. \qquad [2]
(Sides are proportional)

Adding (1) and (2)

$$
\begin{gathered}
A D \cdot A C+C D \cdot A C=A B^{2}+B C^{2} \\
A C(A D+C D)=A B^{2}+B C^{2} \\
A C \cdot A C=A B^{2}+B C^{2} \\
A C^{2}=A B^{2}+B C^{2}
\end{gathered}
$$

36] A sum of Rs. 700 is to be used to give seven cash prizes to students of a school for their overall Academic performance. If each prize is Rs. 20 less than its preceeeing prize, find the value of each Of the prizes. OR

38[a] 200 logs are stacked in the following manner : 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on [see fig] In how many rows are the 200 logs placed and how many logs Are in the top row?

Ans: Given $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, a_{7}, S n=700 \quad n=7 \mathbf{d}=\mathbf{2 0} \mathbf{a}=$?
$\operatorname{Sn}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-\mathbf{1}) \mathrm{d}]$ $700=\frac{7}{2}[2 a+(7-1) 20]$
$=\frac{700 \times 2}{7}=2 a+6 \times 20$
$200=2 a+120$
$2 \mathrm{a}=120-200$
$a=\frac{80}{2}=40$

Value of each prize $a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, a+6 d$
$40,40+20,40+2(20), 40+3(20), 40+4(20), 40+5(20), 40+6(20)$,
$40,60,80,100,120,140, ` 160$
Value of 7 prizes are Rs. $160,140,120,100,80,60,40$

38[a] 200 logs are stacked in the following manner : 20 logs in the bottom row, $\mathbf{1 9}$ in the next row, 18 in the row next to it and so on [see fig] In how many rows are the 200 logs placed and how many logs Are in the top row?
Ans:-38[a] Ans: 20, 19, 18
$\mathrm{Sn}=200 \quad \mathrm{a}=20 \quad \mathrm{~d}=-1$
$S n=\frac{n}{2}[2 a+(n-1) d]$
$200=\frac{\mathrm{n}}{2}[2(20)+(\mathrm{n}-1)-1]$
$400=n[40-n+1]$
$400=n[41-n]$
$400=41 n-n^{2}$
$n^{2}-41 n+400=0$

Ans : $-n^{2}-25 n-16 n+400=0$
$n(n-25)-16(n-25)$
$(n-25)(n-16)=0$
$n-25=0$ or $n-16=0$
$n=25$ or $n=16$ Hence number of rows are
either 25 or 16
number of logs are 20
$a 16=a+(n-1) d$
$=20+(16-1)-1$
$=20+15 \mathrm{x}-1$
$=20-15=5$
\therefore number of logs in top row are 5
37. Five years ago Nuri was thrice as old as sonu.

Ten years later, nuri will be twice as sold as Sonu. How old are nuri and Sonu.
Ans:- Let the age of Nuri be ' x ' years and Sonu age be ' y ' years .
$x-5=3(y-5)$
$x-5=3 y-15$
$x-3 y=10$
$\mathrm{x}+10=2(\mathrm{y}+10)$
$x+10=2 y+20$
$x-2 y=20-10$
$x-2 y=10$
subtract equation (1) \& (2)
$x-3 y=10$
$x-2 y=10$
38. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance

Of 7 cm from its centre. Draw tangents to the circle from these points P and Q. syllabus

Justification: The construction can be justified by proving that RV, RW, SY, and SX are the tangents to
To the circle (whose centre is \mathbf{O} and radius is cm). For this, join OV , OW OX, and OY
$\angle R V O$ is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{RVO}=90^{\circ} \Rightarrow \mathrm{OQ} \perp \mathrm{PQ}$
Since OV is the radius of the circle, RV has to be a tangent of the circle. Similarly OW, OX and OY

OR
38[a]
[1] A boat goes 30 km upstream and 44 km downstream in $\mathbf{1 0}$ hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of The boat in still water.
Solution: Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{h}$ and speed of the stream be $y \mathrm{~km} / \mathrm{h}$. Then the speed of the boat downstream $=(x+y) k m / h$
And the speed of the boat upstream $=(x-y) k m / h$
Also time $=\frac{\text { distance }}{\text { speed }}$
In the first case, when the boat goes 30 km upstream let the time taken, in hour, be $\mathbf{t}_{\boldsymbol{l}}$ -
Then $t_{1}=\frac{30}{x-y} \quad$ Let t_{2} be the time in hours, taken by the boat to go 44 km downstream.
Then $t_{2}=\frac{44}{x+y}$. The total time taken $t_{1}+t_{2}$ is 10 hours. $\therefore \frac{30}{x-y}+\frac{44}{x+y}=10$
In the second case, in 13 hours it can go 40 km upstream and 55 km down stream

On substituting these values in Equations (1) and (2) we get the pair of linear equations:

$$
\begin{align*}
& 30 u+44 v=10 \text { or } 30 u+55 v-10=0 \tag{4}\\
& 40 u+55 v=13 \text { or } 40 u+55 v-13=0 \tag{5}
\end{align*}
$$

Using Cross - multiplication we get

$$
\therefore \frac{\mathrm{u}}{44(-13)-55(-13)}=\frac{\mathrm{v}}{40(-10)-30(-13)}=\frac{1}{30(55)-44(40)}
$$

$$
\begin{aligned}
& \text { i.e., } \frac{u}{-22}=\frac{v}{-10}=\frac{1}{-110} \\
& u=\frac{1}{5} \quad v=\frac{1}{11}
\end{aligned}
$$

Now put these values of u and v in Equations 3 we get
$\therefore \frac{1}{x-y}=\frac{1}{5}$ and $\frac{1}{x+y}=\frac{1}{11}$
$x-y=5$ and $x+y=11$

Subtracting the equations in (6) we get

$$
2 y=6 \text { i.e., } y=3
$$

$2 y=6$ i.e., $y=3$
Hence the speed of the boat in still water is $8 \mathrm{~km} / \mathrm{h}$ and the speed of the Stream is $3 \mathrm{~km} / \mathrm{h}$.

Adding these equations we get $2 x=16$ i.e., $x=8$

PRACTICE PAPER

U can write your school name

I. Answer the following [meq]

1. the nth term an of the AP with first term a and common difference d is given by
[a] $S_{n}=a+(n-1)$
[b] $S_{n}=\frac{n(n+1)}{2}$
$[c] S n=\frac{n}{2}[2 a+(n-1) d]$
$[d] a_{n}=a+(n-1) d$.
2. The pair of co-ordinates satisfying $2 x+y=6$ is
[a] 1,1
[b] 2,2
[c] 3,3
[d] 4,4
3. The following is an example of Pythagorean triplet
[a] 3, 5, 7
[b] 12, 14, 16
[c] 3,6, 9
[d] 1.5, 2, 2.5
4. All circles are \qquad (congruent, similar)
[a] similar_
[b] congruent
[c] Equal
[d] Concentric
5. Formula to find the area of Quadrant
[a] $\frac{\pi r^{2}}{2}$
[b] πr^{2}
[c] $\frac{\pi r^{2}}{3}$
[d] $\frac{\pi r^{2}}{4}$
6. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ then
[a] $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{DF}}$
[b] $\frac{A B}{D E}=\frac{B C}{E G}=\frac{A C}{D F}$
$[c] \frac{A B}{D E}=\frac{B C}{E F}=\frac{A B}{D F}$
[d] $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
7. Which is the Mid-point formula
[a] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{2}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{2}$
[b] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathbf{x}_{1}}{4}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{4}$,
[c] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathrm{x}_{1}}{3}, \frac{\mathrm{y}_{2}+\mathrm{y}_{1}}{3}$
[d] $\mathbf{p}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}_{2}+\mathbf{x}_{1}}{2}$
8. A number which can be expressed in the form of $\frac{p}{q}$ is called
$1 \times 8=8$
[a] rational number
[b] irrational number
[c] lemma
[d] algorithm.

II Answer the following:
9. In the following AP the missing terms in the box is 2 , \qquad 26 is 10. State the converse of B.P.T. Thales:

11. State Euclid's division lemma
12. If TP and TQ are the two tangents to a circle with centre O is So that $\angle \mathrm{POQ}=110^{\circ}$ then $\angle \mathrm{PTQ}$ is equal to

13.Write the section formula?-
14. Write the area of a sector of a circle
15. Which term of the AP : 3, 8, 13, 18,is is 78
16. The $17^{\text {th }}$ term of an AP exceeds its $10{ }^{\text {th }}$ term by 7 .

Find the common difference.

$$
2 \times 8=16
$$

II. Answer the following questions:
17. A vertical pole of length $6 \mathbf{m}$ casts a shadow 4 m long on the ground and at the same time a tower casts a
18. Diagonals of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$
intersect each other at the point O. If $A B=2 C D$,
Find the ratio of the areas of triangles AOB and COD

19. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}$ find out whether the given pair of linear equation is
$3 x+2 y=5 ; 2 x-3 y=7$
20. Solve by Substitution method

$$
\begin{aligned}
& x+y=5-----[1] \\
& 2 x-3 y=4----[2]
\end{aligned}
$$

to a circle is 24 cm and the distance
of Q from the centre is 25 cm .
The radius of the circle is .
22. A quadrilateral ABCD is drawn to
circumscribe a circle [see fig]
Prove that $A B+C D=A D+B C$
23. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°
24. Find the area of the shaded region in fig, if ABCD is a square of side 14 cm and APD and BPC are semicircles.
25. Draw a circle of radius 6 cm . From a point 10 cm Away from its centre, construct the pair of

$$
3 \times 9=27
$$

tangents to the circle and measure their lengths
26. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm And then a triangle

similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
27. Find the distance between the pair of points. $(2,3)(4,1)$
28. A $(2,3), B(4, k)$ and $C(6,-4)$ Find the value of ' k ' for which the points are Collin
29. Prove that $2+\sqrt{5}$ is irrational
30. An army contingent of 616 members is to march behind an army band of $\mathbf{3 2}$ members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which They can march.
31. Find the sum of first 40 positive integers divisible by 6

OR
31[a] Find the sum of the first $\mathbf{1 5}$ multiples of 8
32. Prove Thales theorem Basic proportionality theorem OR

Theorem (AA similarity Criterion)" If two triangles are equiangular , then their corresponding sides are proportional"
33.Solve equation graphically : $2 x+3 y=9$

$$
4 x+6 y=18
$$

34. Two warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80°

To a distance of 16.5 km . Find the area of the sea over which the ships are warned. [use $\pi=3.14$]

OR

34[a]. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle 60°
35] Find the area of the quadrilateral whose vertices taken in order, are
$(-4-2),(-3-5)(3-2)$ and $(2,3)$
OR
35[a]Prove that " In a right angled triangle the square on hypotenuse is equal to the sum of the square on the Other two sides"

36] A sum of Rs. 700 is to be used to give seven cash prizes to students of a school for their overall
Academic performance. If each prize is Rs. 20 less than its preceeeing prize, find the value of each Of the prizes. OR

36[a] 200 logs are stacked in the following manner : $\mathbf{2 0}$ logs in the bottom row, $\mathbf{1 9}$ in the next row,
18 in the row next to it and so on [see fig] In how many rows are the 200 logs placed and how many logs
Are in the top row?
37. Five years ago Nuri was thrice as old as sonu.

Ten years later, nuri will be twice as sold as Sonu. How old are nuri and Sonu.

38. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance

Of 7 cm from its centre. Draw tangents to the circle from these points \mathbf{P} and Q.
$1 \times 5=5$ OR
[1] A boat goes 30 km upstream and 44km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of The boat in still water.

