NAS625 (UNS N06625)

NAS Corrosion-Resistant and Heat-Resistant Nickel Alloy

NAS625 (NCF625, UNS N06625) is a nickel-chromium-molybdenum alloy with an additional of niobium. Matrix stiffening provided by molybdenum and niobium results in high strength. The alloy resists a wide range of severe corrosion environments. It also offers resistance to high temperatures. Uses include parts in chemical and garbage incinerator plants. Nippon Yakin supplies this product in plate, sheet, and strip forms.

Grade/Standard

NAS	JIS G4902	ASTM B443	EN
NAS625	NCF625	UNS N06625	_

Chemical Composition

[wt %]

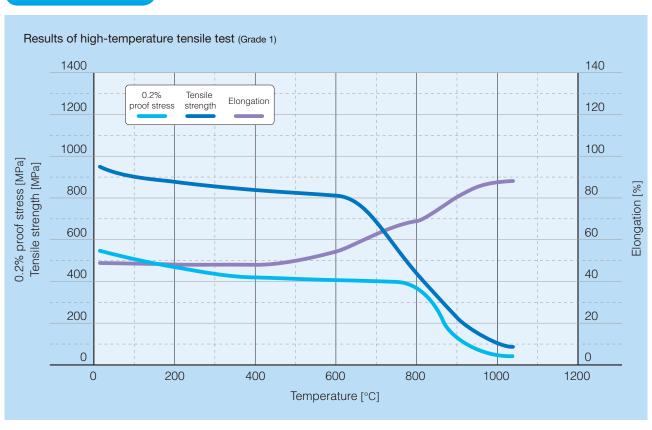
	С	Si	Mn	Р	S	Ni	Cr	Мо	Al	Ti	Fe	Co	Nb+Ta
Specification (NCF625)	≦0.10	≦ 0.50	≦ 0.50	≦0.015	≦0.015	≧58.00	20.00~ 23.00	8.00~ 10.00	≦ 0.40	≦ 0.40	≦ 5.00	_	3.15~ 4.15
Specification (UNS N06625)	≦0.10	≦ 0.50	≦0.50	≦0.015	≦0.015	≧58.0	20.0~ 23.0	8.0~ 10.0	≦ 0.40	≦ 0.40	≦ 5.0	≦1.0	3.15~ 4.15

Physical Properties

Density	[g/cm³]		8.44
Specific heat	[J/kg·K]		419
Electrical resistivity	$[\mu\Omega\cdot cm]$		129
Thermal conductivity	$[W/m \cdot K]$		10.2
Average coefficient of thermal expansion	[10 ⁻⁶ /°C]	20~200°C	12.8
		20~300°C	13.1
		20~400°C	13.6
Young's modulus	[MPa]		20.7 × 10 ⁴
Magnetism			None
Melting range	[°C]		1290~1350

Mechanical Properties

Mechanical Properties at Room Temperature


Grade 1 (annealed)

				0.2% proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hardness
Specifica	ation	> <mark>0.5mm^t,</mark> ≤	3.0mm ^t	≧415	≧830	≧30	_
NCF625	F625 (annealing) >3.0mm¹, ≤70mm¹		≧ <mark>380</mark>	≥ <mark>760</mark>	≧30	_	
Specification Cold-rolled sheet, st		sheet, strip	≧414	≧827	≧30	_	
UNS NO	6625 Grade 1	Hot-rolled pl	ate (≦70mm¹)	≧379	≧758	≧30	_
(anneale	<mark>d))</mark>	Cold-rolled s	sheet (≦9.5mm¹)	≧379	≧758	≧30	_
Evampla	Hot-ro	lled plate	10mm ^t	421	837	54	HBW 212
Example Cold		olled sheet	3.2mm ^t	536	936	46	HRBW 98

Grade 2 (solution annealed)

			0.2% proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hardness
Specifica NCF625 (so	ation 	70mm ^t	≧ <mark>275</mark>	≥ <mark>690</mark>	≧30	-
Specifica UNS NO	ation 6625 Grade 2 (solution anr	nealed)	≧ <mark>276</mark>	≧690	≧30	_
Evenne	Hot-rolled plate	11mm ^t	407	826	62	HBW 201
Example	Cold-rolled sheet	2.5mm ^t	392	832	57	Hv 197

High Temperatures Strength

Corrosion Resistance

Pitting Corrosion Resistance

Alloy	ASTM G48	Method A	ASTM G48 Method C		
Alloy	22°C	50°C	Critical pitting corrosion temperature CPT (°C)		
NAS185N	0	0	70		
NAS825	0	×	30		
NAS625*	<u>O</u>	<u>O</u>	>103		

*Grade 1

Test conditions ASTM G48 Method A (O: No pitting corrosion, x: Pitting corrosion)

ASTM G48 Method C

• Test solution: 6%FeCl3

• Test solution: 6%FeCl₃ + 1%HCl

• Test temperature: 22°C, 50°C (Recommended temperature in this test)

ost temperature. 22 0, 00 0 (Hederimenaea temperatur

• Test time: 72h

• Test time: 72h

Crevice Corrosion Resistance

Alley	ASTM G48 Method D
Alloy	Critical crevice corrosion temperature CCT (°C)
NAS185N	40
NAS825	10
NAS625*	<mark>40</mark>

*Grade 1

Test conditions

ASTM G48 Method D

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Acid Resistance

Alloy	Corrosion rate in sulfuric acid at 80°C (mm/y)						
Alloy	5%	10%	20%	40%	60%	80%	
NAS185N	0.02	0.04	1.32	2.89	3.20	4.78	
NAS825	0.01	0.03	0.30	0.21	0.23	0.73	
NAS625*	<0.01	0.01	0.02	0.61	1.07	2.81	

*Grade 1 Test time: 24h

(Reference)

Alloy	JIS	UNS No.	Chemical composition
NAS185N	SUS312L	S31254	20Cr-18Ni-6Mo-0.8Cu-0.2N
NAS825	NCF825	N08825	40Ni-23Cr-3Mo-2Cu-0.7Ti
NAS625	NCF625	N06625	62Ni-22Cr-9Mo-3.7Nb-0.2Ti-0.2Al

Workability

Because the high-temperature strength of NAS625 is extremely higher than that of Type304, care is required when hot working. The cold workability of NAS625 is basically the same as that of standard austenitic stainless steels such as Type 304, Type316, etc. However, the fact that this is a high strength material must be considered in cold working.

Weldability

Various welding methods are applicable in the same manner as with the standard austenitic stainless steels, including shielded metal arc welding, TIG welding, and plasma welding. Susceptibility of NAS625 to solidification cracking is higher than that of Type304.

Heat Treatment

Annealing of NAS625 is normally performed at 871°C and higher followed by being quenched in water or rapidly cooled by other means.

Solution annealing of NAS625 is normally performed at 1093°C and higher followed by being quenched in water or rapidly cooled by other means.

Pickling

A mixture of nitric acid and fluoric acid is used in pickling. However, because descaling is somewhat difficult in comparison with Type304, alkali immersion before acid pickling, and if possible, shot blasting are extremely effective.

Applications

Chemical plants, nuclear power, seawater applications, jet engine parts, aircraft material, heat treatment furnace material, evaporators

For more information, please contact:

Nippon Yakin Kogyo Co., Ltd.

Material Solutions Sales Department
San-Ei Bldg., 5-8, 1-chome Kyobashi, Chuo-ku,
Tokyo 104-8365 Japan

TEL: +81-3-3273-4649 FAX: +81-3-3273-4642

E-Mail: inquiry@nyk.jp

URL: http://www.nyk.co.jp/en/

Note regarding the handling of property data:

The technical information contained in this product guide is representative values obtained in property tests and other items used to explain the performance of the product. With the exception of items specifically mentioned as provisions of a "Standard," the contents do not represent guaranteed upper limit or lower limit values. The respective data given on this technical information are typical examples and may be different in some cases from the data obtained from the actual product. No responsibility shall, therefore, be assumed for damages arising from using the technical information data. This information is also subject to change in the future without notice. To obtain the most recent information, please contact Nippon Yakin.