CONSUMABLE ESTIMATION

Weight of weld metal

Present By
P.Gunasekaran,ME.

OUTLINE

Equal leg length fillet weld

Unequal leg length fillet
$>$ Single-V butt weld
$>$ Single 'U' preparation

SHORT FORM

Cross section area
$>$ Volume of weld $=\mathrm{A} \times \mathrm{L}$
$>$ Weight of the weld metal $=\mathrm{V} \times$ Density

Equal leg length fillet weld

Area $=Z^{2} / 2$

Unequal leg length fillet

Single-V butt weld

' c ' is given $\mathrm{by}=(\tan \mathrm{bx}$
S. ngle red triangle $=t(\tan b \times t) / 2$
calculated using the formula
$2 t(\tan \mathrm{bx}) / 2$
or
$\mathrm{t}(\tan \mathrm{bx} t)$.

Single-V butt weld

Area of the excess weld metal $=(\mathrm{W} \times \mathrm{h}) / \mathbf{2}$
The width of the weld cap $W=2(\tan b x t)+g$
Area provided by the root gap $=\mathrm{gxt}$.
Bevel angles, b, most often used are
$10^{\circ}=(\tan 0.176)$,
$15^{\circ}=(\tan 0.268)$,
$22.5^{\circ}=(\tan 0.414)$
$32.5^{\circ}=(\tan 0.637)$
$45^{\circ}=(\tan 1.00)$

Density of some of the more commonalloys

Alloy	Density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$
Iron	7.87
0.25% carbon steel	7.86
12% Cr steel	7.70
304 stainless steel	7.92
Nickel	8.90
$80 / 20$ Ni.Cr	8.40
625 type alloy	8.44
Copper	8.94
$70 / 30$ brass	8.53
7% Al bronze	7.89
Aluminium	2.70

Single-V butt weld

worked example, if the weld is in a plate 2.5 cm thickness, 0.3 cm root gap, 65° included angle $\left(\mathrm{b}=32.50^{\circ} ; \tan 32.5^{\circ}=0.637\right)$ and with a cap height of 0.2 cm we have
$\mathrm{C}=(\tan \mathrm{bxt})$
$C=\tan 32.5 \times 2.5=0.637 \times 2.5=1.59 \mathrm{~cm}$
The width of the weld cap $\mathrm{W}=2(\tan \mathrm{bxt})+\mathrm{g}$

$$
\begin{aligned}
& =2(0.637 \times 2.5)+0.3 \\
& =3.485 \mathrm{~cm}
\end{aligned}
$$

Area of the cap $=(\mathrm{W} \times \mathrm{h}) / 2$

$$
\begin{aligned}
& =(3.485 \times 0.2) / 2 \\
& =0.348 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

Area of the root gap area $=\mathrm{gxt}$

$$
\begin{aligned}
& =0.3 \times 2.5 \\
& =0.75 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

Area of the two red areas $=2 \mathrm{t}(\tan \mathrm{bxt}) / 2$

$$
\begin{aligned}
& =2 \times(1.59 \times 2.5) / 2 \\
& =3.97 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

Total area $=5.07 \mathrm{sq} \mathrm{cm}$

Single-V butt weld
Total area $=5.07 \mathrm{sq} \mathrm{cm}$
$1 \mathrm{sq} \mathrm{cm}=100 \mathrm{cu} . \mathrm{cm}$
Area $=507 \mathrm{cu} . \mathrm{cm}$
Volume of weld $=\mathrm{A} \times \mathrm{L}$

$$
\mathrm{L}=1 \mathrm{~m}
$$

Volume of weld $=507 \times 1$

$$
=507 \mathrm{cu} . \mathrm{cm} / \text { metre }
$$

Weight of the weld metal $=\mathrm{V} \times$ Density

$$
\begin{aligned}
\text { Carbon steel } & =(507 \times 7.86) \\
& =3985 \mathrm{gms} \text { or } 3.98 \mathrm{kgs} / \text { metre }
\end{aligned}
$$

Double sided V-joints uses dividing the weld into its individual ' V 's and adding the products

Single 'U' preparation

'c' is given by ($\tan \mathrm{bx}(\mathrm{t}-\mathrm{r})$)
Area of the two red areas $=2((\mathrm{t}-\mathrm{r})(\tan \mathrm{bx}(\mathrm{t}-\mathrm{r})) / 2$

$$
\text { or }((\mathrm{t} .-\mathrm{r})(\tan \mathrm{bx}(\mathrm{t}-\mathrm{r}))
$$

Width of the weld cap $W==2(\tan b x(t-r))+g+2 r$
Area of the cap $=(\mathrm{W} x \mathrm{~h}) / 2$
Area 'A' is $(\mathrm{t}-\mathrm{r}) \times(2 \mathrm{r}+\mathrm{g})$.
Area ' B ' is gx r .
Root radius area is $\left(\pi \mathrm{r}^{2}\right) / 4$
Double sided U-joints uses
dividing the weld into its individual ' U 's and adding the products

THANK YOU

