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Abstract

This report outlines an approach to learning generative models from data. We express models as
probabilistic programs, which allows us to capture abstract patterns within the examples. By choosing
our language for programs to be an extension of the algebraic data type of the examples, we can begin with
a program that generates all and only the examples. We then introduce greater abstraction, and hence
generalization, incrementally to the extent that it improves the posterior probability of the examples
given the program. Motivated by previous approaches to model merging and program induction, we
search for such explanatory abstractions using program transformations. We consider two types of
transformation: Abstraction merges common subexpressions within a program into new functions (a
form of anti-unification). Deargumentation simplifies functions by reducing the number of arguments. We
demonstrate that this approach finds key patterns in the domain of nested lists, including parameterized
sub-functions and stochastic recursion.
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1 Introduction

What patterns do you see when you look at figure 1? You might describe the image as a series of trees, where
each tree has a large, brown base and a number of green branches of variable length, with each branch ending
in a flower that is either yellow or red. Recognizing such patterns is an important aspect of intelligence,
both human and machine. One way to approach such pattern recognition is as the problem of learning
generative models for observed examples. We wish to find a description of the process that gave rise to a set
of examples, and we form this description in a rich enough language to capture the abstract patterns—in this
report, a probabilistic programming language. We build on the representation in [6] and explore a family of
algorithms for learning probabilistic programs from data.

Generative models play a prominent role in modern machine learning (e.g., Hidden Markov models and
probabilistic context-free grammars) and have led to a wide variety of applications. There is a trade-off
between the variety of patterns a model class is able to capture and the feasibility of learning models in that
class [4]. Much of machine learning has focused on studying classes of models with limited expressiveness
in order to develop tractable algorithms for modeling large data sets. Our investigation takes a different
approach and explores how learning might proceed in an expressive class of models with a focus on identifying
abstract patterns from small amounts of data.

We represent generative models as programs in a probabilistic programming language. A probabilistic
program represents a probability distribution, and each evaluation of the program results in a sample from the
distribution. We implement these programs in a subset of the probabilistic programming language Church
[2]. These programs can have parameterized functions and recursion, which allow for natural representation
of “long-range” dependencies and recursive patterns. We will frame searching this space of models in terms
of Bayesian model merging [5] and demonstrate that this approach can find interesting patterns in a simple
domain of colored trees.

The main components of our approach are as follows: We represent data in an algebraic data type
and generative models probabilistic programming language that extends this data type, we guide search
through program space using the Bayesian posterior probability. Our algorithm begins by transforming
the data into a large program that generates all and only the examples, it then explores program space
by identifying (approximately) repeated structure in the large program and transforming the program to
make sharing explicit; these search moves are formalized in a family of useful program transformations. The

Figure 1: Tree-like objects.
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probabilistic programs learned in this manner can be understood as generative models and reasoning about
such models can be formulated in terms of probabilistic inference. We illustrate these ideas on colored trees
(i.e. list-structured data).

Before we proceed, a note about what this report is and is not: This report is a status update on our
working system, containing detailed code and illustrative examples. It documents some progress we have
made that we believe can be useful more generally. This report is not a completed academic work. In
particular, it does little to situate our work within the context of previous work (some of which has directly
inspired us), provides little high-level discussion, and aims for illustrative examples rather than compelling
applications.

1.1 Bayesian model merging

Bayesian model merging [5] is a framework for searching through a space of generative models in order to
find a model that accurately generates the observed data. The main idea is to search model space through
a series of “merge” transformations, using the posterior P (M |D) of model M given data D as the criterion
for selecting transformations.

We create an initial model by building a program that has a uniform distribution over the training set
(data incorporation). While this initial model has high likelihood P (D|M), it never generates points outside
the training set—it severely overfits the initial data. Therefore, we generate alternative model hypotheses
using program transformations that collapse model structure and that often result in better generalizations.

This technique has been successfully applied to learning artificial probabilistic grammars represented as
hidden Markov models, n-grams, and probabilistic context-free grammars [5].

1.2 Bayesian program merging

We extend Bayesian model merging to models expressed in the rich class of probabilistic programs. This
allows us to represent complex patterns that go beyond context free grammars (for instance, parameterized
sub-functions) and to use a wide range of transformations, including transformations that result in “lossy”
compression of the input data. In the remainder of this document, we will describe the following parts
required to implement Bayesian program merging:

Data representation and program language
We represent data in terms of an algebraic data type, which gives us a way to form initial programs using the
type constructors. Our language for programs consists of type constructors, lambda abstraction, and addi-
tional operators. This language is probabilistic, hence programs correspond to distributions on observations.
Program structure corresponds to regularities in the observations.

Search objective: Posterior probability of probabilistic programs
The objective for our search through program space is the posterior probability of a program given the
observed data. This posterior decomposes into a prior based on program length and into a likelihood that
we estimate using selective model averaging.

Search moves: Program transformations
We describe two types of program transformation that we use as search moves: abstraction and deargu-
mentation. Both transformations collapse program structure, which often increases prior probability of the
program and improves generalization to unobserved data.

Search strategy: Beam search
Given a space of programs, an objective function, and search moves between programs (transformations),
we still need to specify a search strategy. We use beam search.

3



2 Data representation and program language

We assume that we can represent our data using an algebraic data type. This assumption gives us a starting
point for program induction, since any data can be directly translated into a program which is a derivation
(sequence of data constructor operations) of the data from the type specification.

2.1 Data and program representation in the list domain

We can model the trees shown in figure 1 in terms of nested lists (s-expressions). Each tree consists of nodes,
where each node has a size and color attributes along with a list of child nodes.

〈tree〉 ::= nil

〈tree〉 ::= (node 〈data〉 〈tree〉 〈tree〉 ... )

〈data〉 ::= (data 〈color〉 〈size〉)
〈color〉 ::= (color [number])

〈size〉 ::= (size [number])

Figure 2 shows two expressions in this langauge together with the corresponding visual representations.
We now have a way of representing data as rudimentary programs. In order to capture interesting patterns,
we need a more expressive language. We use the following subset of Church for Bayesian program merging
in the tree domain:

〈expr〉 ::= (begin 〈expr〉 〈expr〉 ... )
| (λ (〈var〉 ...) 〈expr〉)
| (〈expr〉 〈expr〉)
| (define 〈var〉 〈expr〉)
| (if (flip [number]) 〈expr〉 〈expr〉)
| 〈var〉
| 〈primitive〉

〈var〉 ::= V[number] | F[number]

〈primitive〉 ::= uniform-choice | list | node | data | color | size | [number]

To apply the Bayesian program merging techniques to data specified in a different data type the only change
would be to replace list, etc., with the constructors of the new data type.

2.2 Data incorporation

The first step of Bayesian program merging is data incorporation. Data incorporation is the creation of an
initial model by going through each example in the training set and creating an expression that evaluates
to this example (in terms of the algebraic data type constructors). We combine these programs into a single
expression that draws uniformly from this list. (That is, we assume that the observations are i.i.d.)

(define (incorporate-data trees)

‘(λ () (uniform-choice ,@(map tree- >expression trees))))

(define (tree- >expression tree)

(if (null? tree)

'()
(pair 'node

(pair (node-data- >expression (first tree))

(map tree- >expression (rest tree))))))

(define (node-data- >expression lst)

‘(data (color (gaussian ,(first (second lst)) 25))

(size ,(first (third lst)))))
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(node (data (color 70) (size 0.7))

(node (data (color 37) (size 0.3))

(node (data (color 213) (size 0.3)))

(node (data (color 207) (size 0.3)))

(node (data (color 211) (size 0.3)))))

(node (data (color 43) (size 0.7))

(node (data (color 47) (size 0.1))

(node (data (color 33) (size 0.3))

(node (data (color 220) (size 0.3)))

(node (data (color 224) (size 0.3)))

(node (data (color 207) (size 0.3))))))

Figure 2: Two tree observations.

Figure 3: Data incorporation using the observations in figure 2 results in a program that generates samples
such as the ones shown in this figure.

In our implementation, the data are unannotated s-expressions (e.g., ((1) (2))), which can easily be
converted into expressions in terms of the tree type constructors (the tree expression for the above example
is (node (data (color 1) (size 2)))). In this report, we assume for readability that all data is in tree
expression form. An important question we leave for future work is how to perform data incorporation when
the data is less structured and, for example, given in terms of feature vectors. Calling incorporate-data

on the program shown in figure 2 results in the following program:

(λ ()

(uniform-choice

(node (data (color (gaussian 70 25)) (size .7))

(node (data (color (gaussian 37 25)) (size 0.3))

(node (data (color (gaussian 213 25)) (size 0.3)))

(node (data (color (gaussian 207 25)) (size 0.3)))

(node (data (color (gaussian 211 25)) (size 0.3)))))

(node (data (color (gaussian 43)) (size .7))

(node (data (color (gaussian 47 25)) (size 0.1))

(node (data (color (gaussian 33 25)) (size 0.3))

(node (data (color (gaussian 220 25)) (size 0.3)))

(node (data (color (gaussian 224 25)) (size 0.3)))

(node (data (color (gaussian 207 25)) (size 0.3))))))))

Samples generated from this program are shown in figure 3.
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3 Search objective: Posterior probability of probabilistic programs

A generative model is a joint probability distribution over latent states and observed data. We can represent
such a joint distribution as a program in a probabilistic programming language like Church [2]. The structure
of the program, i.e., the decomposition into functions and the flow of control, can capture regularities in the
data. We illustrate this idea using a probabilistic program that generates the images in figure 1. Different
parts of the program correspond to the different patterns we described earlier (to improve readability, we
use semantically meaningful function and variable names instead of F[number] and V[number] as specified
in our grammar).

(define (tree)

(uniform-choice

(node (body) (branch))

(node (body) (branch) (branch))

(node (body) (branch) (branch) (branch))

(node (body) (branch) (branch) (branch) (branch))))

(define (body)

(data (color (gaussian 30 10)) (size .7)))

(define (branch)

(if (flip .2)

(flower (if (flip .5) 150 255))

(node (branch-info) (branch))))

(define (branch-info)

(data (color (gaussian 0 25)) (size .1)))

(define (flower shade)

(node (data (color (gaussian 0 25)) (size .3))

(petal shade)

(petal shade)

(petal shade)))

(define (petal shade)

(node (data (color shade) (size .3))))

Our programs are a combination of data constructors, control flow operations, and lambda abstractions.
When we call (tree), the program shown above first determines the number of branches the tree will have
and then creates a large body node that connects these branches. Each branch function recursively connects
a series of small nodes together and ends in a call to the flower function, passing it one of two colors. The
flower function creates a node with three identically colored “petal” nodes. The program structure reflects
patterns such as a flower having three petals and the body having a large base. The compositionality of the
language captures relational patterns such as the fact that branches end in flowers. Given that programs
can represent such structures, our goal is to transform the initial program generated by data incorporation
into such a more structured form.

3.1 Abstract syntax utilities

Some program transformations generate new functions. We call such functions abstractions. We represent
them using a name, argument variables, and a pattern, i.e., the s-expression that makes up the body of the
function. In the following code snippet, we use the sym function that creates readable unique symbols for
function and variable names.

(define (make-abstraction body variables)

(make-named-abstraction (sym FUNC-SYMBOL) body variables))

(define (make-named-abstraction name body variables)

(list 'abstraction name variables body))

(define abstraction- >name second)

(define abstraction- >vars third)
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(define abstraction- >body fourth)

Programs represent the generative models we search over. They consist of a list of abstractions and a
body.

(define (make-program abstractions body)

(list 'program abstractions body))

(define program- >abstractions second)

(define program- >body third)

We wrap programs into another data type to keep track of additional information during search. We
motivate this in the section on search in more detail. The basic idea is to avoid recomputation of a program’s
likelihood (an expensive computation) when transformations do not affect a program’s semantics.

(define (make-program+ program posterior log-likelihood log-prior semantics-preserved)

(list 'program+ program posterior log-likelihood log-prior

semantics-preserved))

(define program+- >program second)

(define program+- >posterior third)

(define program+- >log-likelihood fourth)

(define program+- >log-prior fifth)

(define program+- >semantics-preserved sixth)

(define (program+- >program-transform semantics-preserved program+ new-program)

(make-program+ new-program

(program+- >posterior program+)

(program+- >log-likelihood program+)

(program+- >log-prior program+)

semantics-preserved))

3.2 Posterior probability

Probabilistic programs correspond to probability distributions on observed data, i.e., we can compute the
likelihood of a given observation under a program. Given a process for generating programs (a prior), we
use Bayes theorem to compute the posterior probability of a program:

P (M |D) ∝ P (D|M)P (M) (1)

Here, P (D|M) is the probability that program M generates data D, the likelihood, and P (M) is the prior
probability of program M . We use a prior based on program length:

P (M) ∝ e−α size(M) (2)

(define (log-prior program)

(- (* alpha (program-size program))))

This prior biases the search towards smaller programs. Increasing the constant α gives the prior more weight
when calculating the posterior, which means that minimizing program size is a more important criterion. A
program’s size is the number of symbols in the function bodies as well as in the main body.

(define (sexpr-size sexpr)

(if (list? sexpr)

(apply + (map sexpr-size sexpr))

1))

(define (abstraction-size abstraction)

(sexpr-size (abstraction- >body abstraction)))

(define (program-size program)

(let* ([ abstraction-sizes (apply + (map abstraction-size (program- >abstractions

program)))]

[body-size (sexpr-size (program- >body program))])

(+ abstraction-sizes body-size)))
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Computing the likelihood is the difficult part of the posterior probability computation. Intuitively, we can
think of the likelihood as tracking how good a particular program is at producing a set of target data. This
is important in search, since it gives precise, quantitative information on whether and how to adjust our
hypothesis program. However, since there may be a large number of possible settings for the random choices
of a program, this can make determining which choices lead to the observed data difficult. Furthermore, for
any given data point, there could be multiple settings that generate this data point; to correctly compute
the likelihood, we need to take into account all of them. Often, we cannot compute this quantity exactly
due to limited computational resources. In the following, we describe a stochastic approximation of this
computation for list data. The fact that our likelihood estimation procedure is stochastic means that the
final model learned with our implementation of Bayesian program merging may differ even for two runs on
the same input data.

3.3 Likelihood estimation in the list domain

In the case of programs that generate list-structured data, we can estimate the likelihood by (1) generating
samples using a sequential Monte Carlo method (smc) that generates the discrete structure of the examples,
(2) extending each sample by forcing it to generate the continuous parameters, and (3) applying selective
model averaging to these samples. We begin by factoring the problem of generating the data set into the
problem of generating each of the data points:

P (T |M) =
∏
t∈M

P (t|M) (3)

Here, T is the observed set of trees, t a single tree, and M the generative model (program).

(define (log-likelihood trees prog sample-size)

(apply + (map (λ (tree) (single-log-likelihood prog sample-size tree)) trees)))

We will estimate the likelihood of a single tree, P (t|M), by evaluating the program many times, restricting
the computation to result in the target tree each time. The product of the probabilities of all random choices
made during a single evaluation corresponds to the probability of a single possible way of generating the
tree. Since there may be multiple ways for a program to generate a given tree, we sum up the probability of
each distinct parse to compute a lower bound on the true likelihood (selective model averaging).

(define (single-log-likelihood program popsize tree)

(let* ([ program* (replace-gaussian (desugar program))]

[model (eval (program- >sexpr program*))]

[topology-scores+tree-parameters (compute-topology-scores+evaluate model tree

popsize)]

[topology-scores (first topology-scores+tree-parameters)]

[trees-with-parameters (second topology-scores+tree-parameters)]

[data-scores (map (λ (tree-with-parameters) (compute-data-score tree

tree-with-parameters)) trees-with-parameters)]

[scores (delete -inf.0 (map + topology-scores data-scores))]

[score (if (null? scores)

-inf.0

(apply log-sum-exp scores))])

score))

We take advantage of the fact we can directly compute the probability of a sample from a Gaussian given the
parameters. We therefore modify the Gaussian functions in the program to output the mean and variance
for a particular node instead of sampling a value from the distribution. The code below also changes the
uniform-choice syntactic construct into a uniform-draw, which current Church implementations provide.

(define (replace-gaussian program)

(define (gaussian? sexpr)

(tagged-list? sexpr 'gaussian))
(define (return-parameters sexpr)

8



‘(list 'gaussian-parameters ,(second sexpr) ,(third sexpr)))

(define (replace-in-abstraction abstraction)

(make-named-abstraction (abstraction- >name abstraction) (transform-sexp gaussian?

return-parameters (abstraction- >pattern abstraction)) (abstraction- >vars

abstraction)))

(let* ([ converted-abstractions (map replace-in-abstraction (program- >abstractions

program))]

[converted-body (transform-sexp gaussian? return-parameters (program- >body

program))])

(make-program converted-abstractions converted-body)))

(define (desugar program)

(define (uniform-choice? sexpr)

(tagged-list? sexpr 'uniform-choice))
(define (uniform-draw-conversion sexpr)

‘(( uniform-draw (list ,@(map thunkify (rest sexpr))))))

(define tests+replacements (zip (list uniform-choice ?) (list uniform-draw-conversion)))

(define (apply-transforms sexpr)

(fold (λ (test+replacement expr)

(transform-sexp (first test+replacement) (second test+replacement) expr))

sexpr

tests+replacements))

(define (desugar-abstraction abstraction)

(make-named-abstraction (abstraction- >name abstraction) (apply-transforms

(abstraction- >pattern abstraction)) (abstraction- >vars abstraction)))

(let* ([ converted-abstractions (map desugar-abstraction (program- >abstractions program))]

[converted-body (apply-transforms (program- >body program))])

(make-program converted-abstractions converted-body)))

(define (thunkify sexpr) ‘(λ () ,sexpr))

In the code below, smc-core forces the program to generate the desired data. A detailed description of
smc-core is beyond the scope of this report. In short, the method is an incremental forward sampler (with
re-sampling); we separate out the continuous choices since forward sampling would have probability 0 of
generating the observed real values.

(define (compute-topology-scores+evaluate model tree popsize)

(let* ([ smc-core-arguments (create-smc-core-args model tree popsize)]

[samples (apply smc-core smc-core-arguments)]

[repeat-symbol (find-repeat-symbol samples)]

[unique-samples

(fold (λ (s a)

(if (member (mcmc-state- >addrval s repeat-symbol)

(map (λ (x) (mcmc-state- >addrval x repeat-symbol)) a))

a (pair s a))) '() samples)]

[topology-scores (map mcmc-state- >score unique-samples)]

[generated-trees (map mcmc-state- >query-value unique-samples)])

(list topology-scores generated-trees)))

We use the Gaussian parameters for each node’s color to determine the probability of the observed color
values of a tree:

(define (compute-data-score tree tree-with-parameters)

(if (null? tree)

0

(+ (single-data-score (node- >data tree) (node- >data tree-with-parameters)) (apply +

(map compute-data-score (node- >children tree) (node- >children

tree-with-parameters))))))

(define (single-data-score original-data parameterized-data)

(let* ([ color-score (score-attribute (data- >color original-data) (data- >color

parameterized-data))]

[size-score (score-attribute (data- >size original-data) (data- >size

parameterized-data))])

9



(+ color-score size-score)))

(define (score-attribute original-attribute parameterized-attribute)

(if (tagged-list? parameterized-attribute 'gaussian-parameters)
(log (normal-pdf (first original-attribute) (gaussian- >mean parameterized-attribute)

(gaussian- >variance parameterized-attribute)))

(if (= (first original-attribute) (first parameterized-attribute)) 0 -inf.0)))

(define gaussian- >mean second)

(define gaussian- >variance third)
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4 Search moves: Program transformations

We start with a program constructed by data incorporation and we want to propose changes such that its
posterior probability improves. We will achieve this using program transformations that isolate patterns
and compress the program, thereby increasing its prior probability. In the following, we describe two such
transformations, abstraction and deargumentation.

4.1 Abstraction

Abstraction aims to create new functions based on syntactic patterns in a program and replace these patterns
with calls to the newly created functions. This removes duplication in the code and acts as a proxy for
recognizing repeated computation. In terms of Bayesian model merging, this transformation merges the
structure of the model, which potentially leads to models with better generalization properties [5]. We can
also interpret this process as finding partial symmetries as in the work of Bokeloh et al. [1], which was
successful in the domain of inverse-procedural modeling.

The following code fragment implements this procedure. The function compressions finds all (lambda)
abstractions that can be formed by anti-unifying (partially matching) pairs of subexpressions in a condensed
form of the program (only the bodies of the functions and the body of the program). We filter out duplicate
abstractions and then create compressed programs by replacing occurrences of the abstraction bodies in the
original program (unification).

(define (compressions program . nofilter)

(let* ([ condensed-program (condense-program program)]

[abstractions (possible-abstractions condensed-program)]

[compressed-programs (map (curry compress-program program) abstractions)]

[prog-size (program-size program)]

[valid-compressed-programs

(if (not (null? nofilter))

compressed-programs

(filter (λ (cp)

(<= (program-size cp)

(+ prog-size 1)))

compressed-programs))])

valid-compressed-programs))

(define (condense-program program)

‘(,@(map abstraction- >body (program- >abstractions program))

,(program- >body program)))

(define (possible-abstractions expr)

(let* ([ subexpr-pairs (list-unique-commutative-pairs (all-subexprs expr))]

[abstractions (map-apply (curry anti-unify-abstraction expr) subexpr-pairs)])

(filter-abstractions abstractions)))

The following example illustrates the abstraction transformation on a language slightly simpler than the
tree example (no sizes or continuous properties).

(uniform-choice

(node a (node a (node b) (node b)))

(node a (node a (node c) (node c))))

A transformed version of this program looks like this:

(begin

(define (F1 V1 V2)

(node a (node a (node V1) (node V2))))

(uniform-choice (F1 b b) (F1 c c)))

Both programs have the same behavior, i.e., this transformation preserves semantics. Both programs return
(a (a (b) (b))) and (a (a (c) (c))) with equal probability.
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+

+ 2 2 - 2 5

Figure 4: The expression (+ (+ 2 2) (- 2 5)) rep-
resented as a tree. Anti-unification recursively finds
common subtrees between two syntax trees. Match-
ing this tree against itself, there are three partial
matches: [2,2], [(+ 2 2), (- 2 5)], and [(+ 2

2), (+ (+ 2 2) (- 2 5))].

This transformation refactors a program with subexpressions that partially match into a program with a
function which contains the common parts of the matching subexpressions as its body. In the example shown
above, the subexpressions that partially match are (node a (node a (node b) (node b))) and (node a

(node a (node c) (node c))). The common subexpression is (node a (node a (node x) (node y))).
The function created using this common subexpression is F1 and the original subexpressions are replaced with
(F1 b b) and (F1 c c). (There is further potential for compression here, due to the repeated arguments,
which we will address using the deargumentation transformation.)

4.1.1 Anti-unification

There exists an abstraction transformation for each pair of subexpressions that have a partial match. In the
case of (+ (+ 2 2) (- 2 5)) the following pairs of subexpressions have a partial match: [2,2], [(+ 2

2), (- 2 5)], [(+ 2 2), (+ (+ 2 2) (- 2 5))]. The process of finding a partial match between two
expressions is called anti-unification.

One way to understand the process is in terms of the syntax trees for the expressions. Every s-expression
is a tree where the lists and sublists of the s-expression make up the interior nodes and the primitive elements
of the lists (e.g., symbols, numbers) are the leaves. The tree in figure 4 corresponds to the expression (+ (+

2 2) (- 2 5)). We can find a partial match between two expressions by finding a common subtree between
their tree representations.

Anti-unification proceeds by recursively comparing two expressions, A andB (using the function build-pattern).
If A and B are the same primitive, this primitive is returned. If A and B are lists (a1, . . . , an) and (b1, . . . , bn)
of the same length, a list (c1, . . . , cn) is returned, with each element ci being the anti-unification of ai and
bi. Otherwise, a variable is returned.

(define anti-unify

(λ (expr1 expr2)

(begin

(define variables '())

(define (add-variable!)

(set! variables (pair (sym (var-symbol)) variables))

(first variables))

(define (build-pattern expr1 expr2)

(cond [(and (primitive? expr1) (primitive? expr2)) (if (equal? expr1 expr2) expr1

(add-variable!))]

[(or (primitive? expr1) (primitive? expr2)) (add-variable!)]

[(not (eqv? (length expr1) (length expr2))) (add-variable!)]

[else

(let ([ unified-expr (map (λ (subexpr1 subexpr2) (build-pattern subexpr1

subexpr2))

expr1 expr2)])

unified-expr)]))

(let ([ pattern (build-pattern expr1 expr2)])

(list pattern (reverse variables))))))

We now illustrate the process of anti-unification using the expressions (+ (+ 2 2) (- 2 5)) and (+ (-

2 3) 4):
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1. We first compare the root of the trees and make sure that we have lists of the same size. In this case,
they are both of size 3, therefore we have matching roots.
Partial match: (* * *)

2. We recursively attempt to match the three subexpressions: + against +, (+ 2 2) against (- 2 3), and
(- 2 ) with 4. Since + and + are identical primitives, they match.
Partial match: (+ * *)

3. Comparing (+ 2 2) and (- 2 3), we see that they are both lists of size 3 and therefore they match.
Partial match: (+ (* * *) *)

4. Again, we recursively match subexpressions of (+ 2 2) and (- 2 3), i.e., + against -, 2 against 2,
and 2 against 3. Since + and - are primitives that do not match, we replace them with a variable.
Partial match: (+ (V1 * *) *)

5. We compare 2 to 2 and 2 to 3.
Partial match: (+ (V1 2 V2) *)

6. We compare (- 2 5) and 4 and find that there is no match since (- 2 5) is a list and 4 is a primitive.
Final match: (+ (V1 2 V2) V3).

4.1.2 Refactoring programs

Using the lambda abstractions we created from the partial matches between two subexpressions of some
program P , we now attempt to refactor the program, possibly compressing it. For a given abstraction, we
take the abstraction body and replace all subexpressions of P that match this pattern by a function call.
We apply this replacement to all functions in P as well as to the body of P and insert the definition of our
abstraction into the body of P to generate a refactored program P ′.

(define (compress-program program abstraction)

(let* ([ compressed-abstractions (map (curry compress-abstraction abstraction)

(program- >abstractions program))]

[compressed-body (replace-matches (program- >body program) abstraction)])

(make-program (pair abstraction compressed-abstractions)

compressed-body)))

(define (compress-abstraction compressor compressee)

(make-named-abstraction (abstraction- >name compressee)

(replace-matches (abstraction- >body compressee) compressor)

(abstraction- >vars compressee)))

We find and replace pattern matches of an abstraction F in an expression E by recursively matching the
body of F against E using unification. If a match exists, then we return a function call to F . If there is no
match, we return E with matches replaced in each of its subexpressions. If E is a non-matching primitive,
we return E.

(define (replace-matches s abstraction)

(let ([ unified-vars (unify s

(abstraction- >body abstraction)

(abstraction- >vars abstraction))])

(if (false? unified-vars)

(if (list? s)

(map (λ (si) (replace-matches si abstraction)) s)

s)

(pair (abstraction- >name abstraction)

(map (λ (var) (replace-matches (rest (assq var unified-vars)) abstraction))

(abstraction- >vars abstraction))))))
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We illustrate refactoring using the expression (+ (+ 2 2) (- 2 5)). The partial match resulting from
anti-unification between the subexpressions [(+ (+ 2 2) (- 2 5)), (+ 2 2)] is (+ V1 V2). We refactor
the original expression (+ (+ 2 2) (- 2 5)) in terms of (+ V1 V2) by creating a function (define (F1

V1 V2) (+ V1 V2)) and replacing occurrences of its body in the original expression. For example, one
such replacement is (F1 (+ 2 2) (- 2 5)), another is (+ (F1 2 2) (- 2 5)). In general, we apply the
function wherever possible and get a refactored program such as:

(+ (+ 2 2) (- 2 5))

=>

(begin

(define (F1 V1 V2) (+ V1 V2))

(F1 (F1 2 2) (- 2 5)))

The input to the refactoring procedure is a function F created from anti-unification and an expression E
which will be refactored in terms of F . In the example above, F is (define (F1 V1 V2) (+ V1 V2)), E is
(+ (+ 2 2) (- 2 5)), and the result of refactoring is

(begin

(define (F1 V1 V2) (+ V1 V2))

(F1 (F1 2 2) (- 2 5)))

In the example, (+ (+ 2 2) (- 2 5)) matches (+ V1 V2), therefore we return an application of F1 to
arguments (+ 2 2) and (- 2 5), resulting in (F1 (F1 2 2) (- 2 5))1.

4.1.3 Unification

The problem of determining whether there is a match between an expression E and an abstraction F is
known as unification [3]. We have described anti-unification, the process of creating an abstraction given a
pair of expressions. Unification is the opposite of this process. The return value of successful unification is
a list of assignments for the arguments of F such that F applied to these arguments results in E.

The unification algorithm recursively checks whether the body of F and E are lists of the same size. If
they are, then unification returns a list containing the unification of each of the subexpressions. If they are
not the same size or only one of them is a list, unification returns false. If both expressions are primitives,
unification returns true if they are equal, false otherwise. In the case where the function expression of the
unification is a variable, we return an assignment, i.e., the variable along with the expression passed to
unification. If any subunifications have returned false, we return false. If a variable that repeatedly
occurs in F is assigned to different values in different places, we also return false. Otherwise, unification
succeeds and we return the assignment of each unique variable of F .

(define unify

(λ (s sv vars)

(begin

(define (variable? obj)

(member obj vars))

(define (check/remove-repeated unified-vars)

(let* ([ repeated-vars (filter more-than-one (map (curry all-assoc unified-vars)

(map first unified-vars)))])

(if (and (all (map all-equal? repeated-vars)) (not (any false? unified-vars)))

(delete-duplicates unified-vars)

#f)))

(cond [( variable? sv) (if (eq? s 'λ) #f (list (pair sv s)))]

[(and (primitive? s) (primitive? sv)) (if (eqv? s sv) '() #f)]

[(or (primitive? s) (primitive? sv)) #f]

[(not (eqv? (length s) (length sv))) #f]

[else

1The function F1 is equivalent to the addition function between two numbers, therefore refactoring the program in terms
of this function does not compress the original expression. An example where refactoring can compress an expression is the
expression pair [(+ (+ 2 2) (- 2 5)), (+ (+ 2 2) (- 2 6))].
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(let ([ assignments (map (λ (si sj) (unify si sj vars)) s sv)])

(if (any false? assignments)

#f

(check/remove-repeated (apply append assignments))))]))))

We illustrate unification using the abstraction (define (F1 V1 V2) (+ V1 V2)) and the expression (+

(+ 2 2) (- 2 5)).

1. Since (+ (+ 2 2) (- 2 5)) and (+ V1 V2) are of the same length, we apply unification to the subex-
pression pairs [+,+], [(+ 2 2), V1], [(- 2 5), V2].

2. Unification between + and + returns the empty assignment list since neither is a variable and they
match.

3. Unification between (+ 2 2) and V1 returns the assignment of (+ 2 2) to V1 and likewise for (- 2

5) and V2.

4. It follows that the function F1 matches the expression (+ (+ 2 2) (- 2 5)) with variable assignments
V1:=(+ 2 2) and V2:=(- 2 5).

If the expression had been (- (+ 2 2) (- 2 5)), then unification between the outer - of the expression
and the + of F1 would have returned false and unification would have failed.

4.1.4 Summary

Abstraction is a program transformation that identifies repeated computation in a program by finding
syntactic patterns. If the program has been generated using data incorporation, syntactic patterns directly
correspond to patterns in the observed data. While this formalization of the notion of a pattern may seem
limited at first, it is worth contemplating the central role of lambda abstraction in the lambda calculus and
the expressiveness of this language.

The abstraction process has two steps: First, create abstractions from common subexpressions in a
program using anti-unification. Second, compress the program using these abstractions by replacing instances
of the abstractions with function calls via unification. It is important to note that a given program will usually
have many possible abstraction transformations, corresponding to the different repeated patterns.

We now illustrate abstraction using the tree example that we first used in the section on data incorporation
(figure 2). For this program, anti-unification finds 17 possible abstractions. As examples, we show both the
abstraction that results in the best compression (smallest program) and the abstraction that results in the
5th smallest program:

(abstraction F1 (V1 V2)

(data (color (gaussian V1 25)) (size V2)))

(abstraction F1 (V1 V2 V3 V4)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

The programs compressed using these abstractions look like this (size 55 and 66):

(program

(( abstraction F1 (V1 V2)

(data (color (gaussian V1 25)) (size V2))))

(uniform-choice

(node (F1 70 1)

(node (F1 37 0.3) (node (F1 213 0.3))

(node (F1 207 0.3)) (node (F1 211 0.3))))

(node (F1 43 1)

(node (F1 47 0.1)
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(node (F1 33 0.3) (node (F1 220 0.3))

(node (F1 224 0.3)) (node (F1 207 0.3)))))))

(program

(( abstraction F1 (V1 V2 V3 V4)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3))))))

(uniform-choice

(node (data (color (gaussian 70 25)) (size 0.7))

(F1 37 213 207 211))

(node (data (color (gaussian 43 25)) (size 0.7))

(node

(data (color (gaussian 47 25)) (size 0.1))

(F1 33 220 224 207)))))

The second abstraction corresponds to a “flower”-like pattern. In this pattern, we could capture even more
structure by replacing the variables for the petal colors with a fixed value, since they are similar. Instead
of explaining the data as drawn from multiple Gaussians with slightly different means, we could explain the
data as generated by a single Gaussian. Our second program transformation, deargumentation, addresses
this issue.

4.2 Deargumentation

Deargumentation is a program transformation that takes a function F in a program and changes its definition
by removing one of the function arguments. Wherever this removed argument is used within F , we instead
have an independent sample from a new constant or distribution. This new value depends on the values of the
original argument in the overall program; depending on how we map these argument values to replacements
(specified via replacement-function), we create different program transformations.

(define (deargument replacement-function program abstraction variable)

(let* ([ abstraction* (remove-abstraction-variable replacement-function program

abstraction variable)])

(if (null? abstraction*)

'()
(let* ([ program+abstraction* (update-abstraction program abstraction*)]

[program* (remove-application-argument program+abstraction* abstraction

variable)])

program*))))

The abstraction whose variable is being removed keeps the same body, but the variable removed is now
assigned a value within the body instead of having its value passed in as an argument.

(define (remove-abstraction-variable replacement-function program abstraction variable)

(let* ([ variable-instances (find-variable-instances program abstraction variable)]

[variable-definition (replacement-function program abstraction variable

variable-instances)])

(if (equal? variable-definition NO-REPLACEMENT)

'()
(let* ([ new-body ‘((λ (,variable) ,(abstraction- >body abstraction))

,variable-definition)]

[new-variables (delete variable (abstraction- >vars abstraction))])

(make-named-abstraction (abstraction- >name abstraction) new-body

new-variables)))))

(define (program- >abstraction-applications program target-abstraction)

(define (target-abstraction-application? sexpr)

(if (non-empty-list? sexpr)

(if (equal? (first sexpr) (abstraction- >name target-abstraction))

#t

#f)
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#f))

(let* ([ abstraction-bodies (map abstraction- >body (program- >abstractions program))]

[possible-locations (pair (program- >body program) abstraction-bodies)])

(deep-find-all target-abstraction-application? possible-locations)))

(define (deep-find-all pred? sexp)

(filter pred? (all-subexprs sexp)))

(define (all-subexprs t)

(let loop ([t (list t)])

(cond [(null? t) '()]
[( primitive? (first t)) (loop (rest t))]

[else (pair (first t) (loop (append (first t) (rest t))))])))

(define (find-variable-instances program abstraction variable)

(let* ([ abstraction-applications (program- >abstraction-applications program abstraction)]

[variable-position (abstraction- >variable-position abstraction variable)]

[variable-instances (map (curry ith-argument variable-position)

abstraction-applications)])

variable-instances))

(define (ith-argument i function-application)

(list-ref function-application (+ i 1)))

After the abstraction for function F has been adjusted, we change all applications of F by removing the
appropriate argument.

(define (remove-application-argument program abstraction variable)

(define (abstraction-application? sexpr)

(if (non-empty-list? sexpr)

(equal? (first sexpr) (abstraction- >name abstraction))

#f))

(define (change-application variable-position application)

(define (change-recursive-arguments argument)

(if (abstraction-application? argument)

(change-application variable-position argument)

argument))

(let* ([ ith-removed (remove-ith-argument variable-position application)])

(map change-recursive-arguments ith-removed)))

(let* ([ variable-position (abstraction- >variable-position abstraction variable)]

[program-sexpr (program- >sexpr program)]

[changed-sexpr (transform-sexp abstraction-application? (curry change-application

variable-position) program-sexpr)]

[program* (sexpr- >program changed-sexpr)])

program*))

(define (remove-ith-argument i function-application)

(append (take function-application (+ i 1)) (drop function-application (+ i 2))))

(define (transform-sexp pred? func sexp)

(if (pred? sexp)

(func sexp)

(if (list? sexp)

(map (curry transform-sexp pred? func) sexp)

sexp)))

In the following, we demonstrate that this transformation is useful for compactly representing continuous
values that may have been distorted by noise, for identifying replicated arguments, and for inducing recursive
structure.

4.2.1 Compactly representing noisy data

When we unify two expressions to create abstractions, all places where the expressions do not exactly match
result in the creation of a variable. For example, given (+ 2 1.99) and (+ 2 2.01), we unify to (+ 2 V). If
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we know that the system we are modeling is noisy, we may want to treat these two expressions as essentially
identical, i.e., unifying to (+ 2 2) instead. We achieve this effect by using the deargumentation transform
with a replacement-function called noisy-number-replacement. This function replaces a variable within
an abstraction with the mean of the values of all its instances.

(define (noisy-number-replacement program abstraction variable variable-instances)

(if (all (map number? variable-instances))

(mean variable-instances)

NO-REPLACEMENT))

Suppose that abstraction results in this program (samples shown in figure 5(a)):

(begin

(define flower

(λ (V1 V2 V3 V4)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3))))))

(uniform-choice

(flower 200 213 207 211)

(flower 33 220 224 207)))

If we apply the deargumentation transform to the flower function and variable V2, we identify the two
instances of V2, 213 and 220, and we are going to replace this variable by its mean, 216.5. The abstraction
flower is then changed using remove-abstraction-variable to:

(define flower

(λ (V1 V3 V4)

((λ (V2)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

216.5)))

The program is now adjusted to incorporate the new version of flower using remove-application-argument

(samples in figure 5(b)):

(begin

(define flower

(λ (V1 V3 V4)

((λ (V2)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

216.5)))

(uniform-choice

(flower 200 207 211)

(flower 33 224 207)))

The more applications of flower exist within the program, the bigger the impact of this simplification.
This transform will affect the likelihood of the data under the program. Since we search based on posterior
probability, incorporating both prior and likelihood, we trade off improvements in model complexity and fit
to the data in a principled way. If we had applied the deargumentation transform to the flower argument
V1, which is used with values that are less similar, we would get a program that gives lower likelihood to the
data than the program generated by removing V2 (samples in figure 5(c)):

(begin

(define flower

(λ (V2 V3 V4)

((λ (V1)

(node (data (color (gaussian V1 25)) (size 0.3))
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(a) Samples from the original program.

(b) An argument with values of uniform color has been replaced with a stochastic choice.

(c) An argument with non-uniform values has been replaced with a stochastic choice.

Figure 5: Replacing arguments with stochastic choices. When an argument takes on similar values
in all its instantiations, replacing it with a stochastic choice can result in samples almost indistinguishable
from the original program (b). When values are dissimilar, using a Gaussian centered on the mean of the
values will result in samples that look unlike the samples of the original program (c).

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

116.5)))

(uniform-choice

(flower 213 207 211)

(flower 220 224 207)))

4.2.2 Merging similar variables

Abstraction creates functions whose arguments represent expression parts that differ between specific ab-
straction instances. Arguments that take on similar values in each of their instantiations might have the same
underlying generative process. We take advantage of this potential redundancy by merging these arguments.
This is achieved by using the deargumentation transform with the following replacement-function:

(define (same-variable-replacement program abstraction variable variable-instances)

(let ([ possible-match-variables (delete variable (abstraction- >vars abstraction))])

(find-matching-variable program abstraction variable-instances

possible-match-variables)))

(define (find-matching-variable program abstraction variable-instances

possible-match-variables)

(define (equal? a b)

(if (and (pair? a) (pair? b))

(and (equal? (car a) (car b)) (equal? (cdr a) (cdr b)))

(if (and (number? a) (number? b))

#t

(eq? a b))))

(if (null? possible-match-variables)

NO-REPLACEMENT

(let* ([ hypothesis-variable (uniform-draw possible-match-variables)]

[hypothesis-instances (find-variable-instances program abstraction

hypothesis-variable)])

(if (equal? hypothesis-instances variable-instances)

hypothesis-variable
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(a) Samples from the original program.

(b) Two arguments with similar instantiations have been merged.

(c) Two arguments with dissimilar instantiations have been merged.

Figure 6: Merging arguments. When two arguments take on similar values in all instantiations, merging
them into one argument results in samples almost indistinguishable from the original program (b). When
instantiations are dissimilar, the samples look unlike the samples of the original program (c).

(find-matching-variable program abstraction variable-instances (delete

hypothesis-variable possible-match-variables))))))

If two variables take on similar values in all of their applications, we consider them to be the same.
Above, we define two items to be similar if they have the same list structure or if they are both numbers.
We still consider two objects as similar even if the numbers have different values and allow the resulting
likelihood to filter out models that do not explain the data.

To detect matching variables, we first choose an abstraction, choose a variable for this abstraction, and
then check whether any of the other variables of this abstraction have a matching set of instance values. If
a variable matches, we return it as the new definition of the variable that is being removed2.

Suppose again that we start with the following program:

(begin

(define flower

(λ (V1 V2 V3 V4)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3))))))

(uniform-choice

(flower 200 213 207 211)

(flower 33 220 224 207))

If we apply the deargumentation transform with same-variable-replacement to variable V2, we get a
program that generates data similar to the original as long as V2 is matched to a variable that is a “petal”,
i.e., V3 (shown here) or V4:

(begin

(define flower

(λ (V1 V3 V4)

((λ (V2)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

2Alternatively, we could directly replace the variable name in the abstraction body and get slightly better compression. We
chose to go the redefinition route in order to keep the interface within the class of deargumentation transforms.
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V3)))

(uniform-choice

(flower 200 207 211)

(flower 33 224 207)))

If the variable does not match a petal—which is only the case for V1—we get a program that generates
data that is unlike the data generated by the original program:

(begin

(define flower

(λ (V2 V3 V4)

((λ (V1)

(node (data (color (gaussian V1 25)) (size 0.3))

(node (data (color (gaussian V2 25)) (size 0.3)))

(node (data (color (gaussian V3 25)) (size 0.3)))

(node (data (color (gaussian V4 25)) (size 0.3)))))

V2)))

(uniform-choice

(flower 213 207 211)

(flower 220 224 207)))

4.2.3 Inducing recursive functions

We now illustrate a deargumentation transform that discovers and compactly represents recursive patterns.
The replacement-function for this transform, recursion-replacement, redefines a variable as a random
choice between a recursive call and a non-recursive call. This redefinition is useful whenever the argument
values that are passed to a function F are calls to F itself. The probability of recursion depends on how
many argument instances are in fact calls to the same function. Every program generated in this way will
terminate with probability one. While this approach to inducing recursive programs is limited, we view it
as an interesting illustration of how recursion can be identified and captured.

(define (recursion-replacement program abstraction variable variable-instances)

(let* ([ valid-variable-instances (remove has-variable? variable-instances)]

[recursive-calls (filter (curry abstraction-application? abstraction)

valid-variable-instances)]

[non-recursive-calls (remove (curry abstraction-application? abstraction)

valid-variable-instances)]

[terminates (terminates? program (abstraction- >name abstraction)

non-recursive-calls)])

(if (or (null? valid-variable-instances) (null? recursive-calls) (not terminates))

NO-REPLACEMENT

(let* ([ prob-of-recursion (/ (length recursive-calls) (length

valid-variable-instances))])

‘(if (flip ,prob-of-recursion) ,(first recursive-calls) (uniform-choice

,@non-recursive-calls))))))

(define (terminates? program init-abstraction-name non-recursive-calls)

(define abstraction-statuses (make-hash-table eq?))

(define (initialize-statuses)

(let ([ abstraction-names (map abstraction- >name (program- >abstractions program))])

(begin

(map (curry hash-table-set! abstraction-statuses) abstraction-names (make-list

(length abstraction-names) 'unchecked))
(hash-table-set! abstraction-statuses init-abstraction-name 'checking))))

(define (status? name)

(hash-table-ref abstraction-statuses name))

(define (set-status! name new-status)

(hash-table-set! abstraction-statuses name new-status))

(define (terminating-abstraction? abstraction-name)
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(cond [(eq? (status? abstraction-name) 'terminates) #t]

[(eq? (status? abstraction-name) 'checking) #f]

[(eq? (status? abstraction-name) 'unchecked)
(begin

(set-status! abstraction-name 'checking)
(if (base-case? (program- >abstraction-body program abstraction-name))

(begin

(set-status! abstraction-name 'terminates)
#t)

#f))]))

(define (base-case? sexpr)

(cond [( branching? sexpr) (list-or (map base-case? (get-branches sexpr)))]

[( application? sexpr) (if (any-abstraction-application? sexpr)

(and (terminating-abstraction? (operator sexpr)) (all

(map base-case? (operands sexpr))))

(all (map base-case? (operands sexpr))))]

[else #t]))

(begin

(initialize-statuses)

(list-or (map base-case? non-recursive-calls))))

We will illustrate this transform using the program (begin (node (node a))). Samples from this
program are shown in figure 7(a). We apply the abstraction transform and get:

(begin

(define (F1 x)

(node x))

(F1 (F1 a)))

We now remove the argument to F1 using deargumentation with the remove-abstraction-variable re-
placement function. This changes the definition of F1 such that x is drawn from a uniform distribution on
the instances of its former argument:

(begin

(define (F1 x)

((λ (x)

(node x))

(if (flip .5)

(F1 a)

a)))

(F1 (F1 a)))

In this case, the instances of x previously were a and (F1 a). Note that a is a constant and that the
(outer) argument x to F1 is not used in the body. We therefore remove the argument from F1 and from any
applications of F1 (using remove-application-argument) and get:

(begin

(define (F1)

((λ (x)

(node x))

(if (flip .5)

(F1)

a)))

(F1))

The data generated by this program (figure 7(b)) is much more varied than the data of the program we
started out with.

4.2.4 Inducing noisy data constructors

In the following, we demonstrate that noisy data constructors make it possible to represent some datasets
much more compactly. We describe an instance of the deargumentation transform that can therefore infer
when to use such constructors and we show an example of this process.

22



(a) Samples from the original program.

(b) Samples from the transformed (recursive) program.

Figure 7: The stochastic recursion transform allows the program to account for a wider range of data.

Figure 8: A stochastic generative process can represent these observations compactly.

Consider the set of observations shown in figure 8. Without noisy data constructors—i.e., if there was
no gaussian inside calls to color—we would have to represent these observations using a program such as:

(if (flip .9)

(node (data (color 0) (size .4)) (node (data (color 85) (size .4))))

(node (data (color 0) (size .4)) (node (data (color 140) (size .4)))))

If the observations are representative for the generative process we want to model, then we just paid a large
penalty in terms of model size for a small gain in explanatory power. Noisy data constructors provide a
similar gain at a much lower cost in program size:

(node (data (color 20) (size .4))

(node (data (color (gaussian 85 25) (size .4)))))

Previously, we have used noisy data constructors as part of incorporate-data. We now show how
the gain in compactness due to the use of noisy constructors allows us to infer when to use them. We
make two minor adjustments to incorporate-data and noisy-number-replacement. First, we change
node-data->expression, a helper function used by incorporate-data, such that it does not automatically
add a call to gaussian. Instead, it now constructs deterministic nodes:

(define (node-data- >expression lst)

‘(data (color ,(first (second lst))) (size ,(first (third lst)))))

Second, we move the creation of noisy data constructors into the deargumentation replacement function
noisy-number-replacement. Instead of returning the sample mean, this function now returns a call to
gaussian that uses the sample mean and variance as parameters:

(define (noisy-number-replacement program abstraction variable variable-instances)

(if (all (map number? variable-instances))

(let* ([ instances-mean (mean variable-instances)]

[instances-deviation (sqrt (sample-variance variable-instances))])

‘(gaussian ,instances-mean ,instances-deviation))

NO-REPLACEMENT))

To generate observations for an example of inducing noisy data constructors, we use the following program
to sample trees. Each tree consists of three nodes with small variance in the color of the third node. Figure
9 shows observations with this property.
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Figure 9: Small variance in the data can be accounted for using stochastic data constructors.

(define (three-node shade)

(node (data (color 0) (size .4))

(node (data (color 0) (size .4))

(node (data (color (gaussian shade 10)) (size .4))))))

(list (three-node 200) (three-node 200) (three-node 200) (three-node 200)

(three-node 200) (three-node 200) (three-node 200) (three-node 200)

(three-node 200) (three-node 200))

Running data incorporation on a sample from this generative process results in a program that uniformly
chooses between ten generated three-node structures.

(λ ()

(uniform-choice

(node (data (color 0) (size 0.4))

(node (data (color 0) (size 0.4))

(node (data (color 209.0) (size 0.4)))))

(node (data (color 0) (size 0.4))

(node (data (color 0) (size 0.4))

(node (data (color 196.0) (size 0.4)))))

.

.

.

(node (data (color 0) (size 0.4))

(node (data (color 0) (size 0.4))

(node (data (color 206.0) (size 0.4)))))))

Bayesian program merging using the search moves we have described so far compresses this program into
a representation that has one function for the three-node structure3. When this function generates the value
of the third node, it makes use of a stochastic noise process.

(begin

(define F2 (λ (V2) (data (color V2) (size 0.3))))

(define F1

(λ ()

((λ (V1)

(node (F2 0) (node (F2 0) (node (F2 V1)))))

(gaussian 202.3 9.286190463980603))))

(uniform-choice (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1)))

While the discussion above hints at the representational benefits of probabilistic data constructors and
probabilistic programs, we must postpone a more complete treatment of the implications of this design
decision to future work.

4.2.5 Deargumentation as program induction

Deargumentation solves the following problem: Given all values that a function argument takes on in the
course of running the overall generative process, we want to determine whether there is a compact stochastic
program that can generate all of these values—if this is the case, we can remove the argument and use
the definition of this compact program within our function. When phrased in these terms, it is clear that
the problem addressed by deargumentation is itself a problem of program induction. We can rephrase the
deargumentation moves we have presented as induction steps limited to particular sets of programs:

3We ran the system with α = 3, beam width 1, and depth 10 for this example.
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1. In the case of noisy-number deargumentation, we induce programs that generate all of the occurring
number values, restricting our search to programs corresponding to one-dimensional Gaussian distri-
butions.

2. In the case of recursion deargumentation, we restrict the induced programs to stochastic recursions of
the program being deargumented.

3. In the case of the identical variable deargumentation, we assume that the generative process of the
values for one variable is identical to the other, hence we “induce” the program for the other variable
by simply referring to the first one.

This suggests a reformulation of the deargumentation transform in terms of recursive calls to the overall
Bayesian program merging procedure, which could make this class of transforms much more general.
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5 Search strategy: Beam search

In our search through program space, we are interested in programs with high posterior probability. Many
different search strategies are possible, but in this report, we limit ourselves to beam search using the
posterior probability as a search heuristic.

(define (beam-search data init-program beam-size depth)

(let* ([ all-transformations

(beam-search-transformations data init-program beam-size depth)]

[top-transformations (sort-by-posterior data all-transformations)])

(if (null? top-transformations)

init-program

(program+- >program (first top-transformations)))))

(define (beam-search-transformations data program beam-size depth)

(let* ([lp (log-prior program)]

[ll (log-likelihood data program 10)]

[init-program+ (make-program+ program 0 ll lp #f)])

(depth-iter-transformations (λ (programs+)

(best-n data programs+ beam-size))

init-program+

depth)))

(define (best-n data programs+ n)

(max-take (sort-by-posterior data programs+) n))

The main part of the search is performed by depth-iter-transformations, which recursively applies pro-
gram transformations to the best programs at a given search depth and then filters the results to get the
best programs for the next depth.

(define (depth-iter-transformations cfilter program+ depth)

(let* ([ transformed-programs+

(apply-and-filter-transformations depth cfilter program+)]

[next-depth (λ (prog)

(depth-iter-transformations cfilter prog (- depth 1)))])

(delete '()
(append transformed-programs+

(apply append

(map next-depth

transformed-programs+))))))

We reduce the amount of computation required when choosing the best programs at each level of search
by separating program transformations that preserve semantics from those that do not. Marking programs
based on their transformation type allows us to reuse previously computed likelihoods for programs that
were created by a semantics preserving transformation.

(define (apply-and-filter-transformations depth cfilter program+)

(if (= depth 0)

'()
(let* ([ semantics-preserved-programs+ (apply-transformations program+

semantic-preserving-transformations #t)]

[semantics-changed-programs+ (apply-transformations program+

semantic-changing-transformations #f)])

(cfilter (append semantics-preserved-programs+ semantics-changed-programs+)))))

(define (apply-transformations program+ transformations semantics-preserving)

(let* ([ program (program+- >program program+)]

[transformed-programs (delete '() (concatenate (map (λ (transform) (transform

program #t)) transformations)))]

[transformed-programs+ (map (λ (program) (program+- >program-transform

semantics-preserving program+ program)) transformed-programs)])

transformed-programs+))
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We compute an estimate of the posterior probability of each program by combining an estimate of the
likelihood with the length prior:

(define (sort-by-posterior data programs+)

(let* ([ programs (map program+- >program programs+)]

[semantics-flags (map program+- >semantics-preserved programs+)]

[log-priors (map log-prior programs)]

[log-likelihoods (map (λ (prog+ semantics-flag)

(if semantics-flag

(program+- >log-likelihood prog+)

(log-likelihood data (program+- >program prog+) 10)))

programs+ semantics-flags)]

[posteriors (map + log-priors log-likelihoods)]

[new-programs+ (map make-program+ programs posteriors log-likelihoods log-priors

semantics-flags)]

[posteriors > (λ (a b) (> (program+- >posterior a) (program+- >posterior b)))])

(list-sort posteriors > new-programs+)))
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(a) Samples from the original program.

(b) Samples from the induced program.

Figure 10: Example 1: Single color flower.

6 Examples

We illustrate our program induction method using small examples drawn from the domain of colored trees.
All examples have the following shape: We present a probabilistic program, show observations (trees) sampled
from this program, highlight the key patterns that are visible both in the original program and in the observed
trees, and then show which patterns Bayesian program merging recovers. The results below are representative
of running Bayesian program merging on the examples, but the detailed results of any given run will differ
due to the stochastic nature of likelihood estimation.

6.1 Single color flower

The program below generates ten “flower” instances that are roughly the same color.

(define (flower shade)

(node (data (color (gaussian shade 25)) (size .3))

(petal shade)

(petal shade)

(petal shade)))

(define (petal shade)

(node (data (color (gaussian shade 25)) (size .3))))

(repeat 10 (λ () (flower 20)))

We create an initial program that represents these ten flowers using data incorporation and then compress
it (result shown below). We learn a function F1 that takes no arguments and creates a flower with petals
that are similar in color. The system parameters were α = 1, beam width 1, and depth 10.

(begin

(define F2

(λ (V5)

(data (color (gaussian V5 25)) (size 0.3))))

(define F1

(λ ()

((λ (V4)

((λ (V2)

((λ (V1)

((λ (V3)

(node (F2 V1) (node (F2 V2))

(node (F2 V3)) (node (F2 V4))))

17.2))

32.9))

2.0))

19.7)))

(λ ()

(uniform-choice (F1) (F1) (F1) (F1) (F1) (F1) (F1)

(F1) (F1) (F1))))
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(a) Samples from the original program.

(b) Samples from the induced program.

Figure 11: Example 2: Multiple color flower.

6.2 Multiple color flower

We use a program similar to the previous one to generate ten “flower” instances, some of which have mostly
red petals, some mostly green.

(define (flower shade)

(node (data (color (gaussian 0 25)) (size .3))

(petal shade)

(petal shade)

(petal shade)))

(define (petal shade)

(node (data (color (gaussian shade 25)) (size .3))))

(repeat 10 (λ () (flower (if (flip) 100 220))))

Bayesian program merging results in the program shown below. The abstraction F2 corresponds to petal

and F1 corresponds to flower. System parameters: α = 1, beam width 1, and depth 10.

(begin

(define F2

(λ (V5)

(data (color (gaussian V5 25)) (size 0.3))))

(define F1

(λ (V2)

((λ (V1)

((λ (V3)

((λ (V4)

(node (F2 V1) (node (F2 V2)) (node (F2 V3))

(node (F2 V4))))

V2))

V1))

V2)))

(λ ()

(uniform-choice (F1 91.0) (F1 85.0) (F1 254.0) (F1 234.0) (F1 82.0)

(F1 243.0) (F1 104.0))))

6.3 Simple recursion

The next program generates a tree made of a single stem of nodes.

(define (stem)

(if (flip .1)

(node (data (color 200) (size .5)))

(node (data (color 200) (size .5)) (stem))))

(repeat 5 stem)

With parameters α = 1, beam width 1, and depth 10, Bayesian program merging finds the following recursion:
F1 recursively calls itself or stops at F2, thus building up a line of nodes.
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(a) Samples from the original program. (b) Samples from the induced program.

Figure 12: Example 3: Simple recursion.

(begin

(define F3 (λ () (node (F2))))

(define F2

(λ () (data (color (gaussian 200 25)) (size 0.5))))

(define F1

(λ ()

((λ (V1) (node (F2) V1))

(if (flip 29/33)

(F1)

(uniform-choice (F3) (F3) (F3) (F3))))))

(λ () (uniform-choice (F1) (F3) (F1) (F1) (F1))))

Once the size of the observations generated by the original recursive program reaches a length threshold,
the trade-off between prior and likelihood favors recursive programs due to their small size. We can adjust
where this threshold occurs using the size constant, α, in the prior.

6.4 Vine

In this example, we use Bayesian program merging to induce a model of a “vine with identical flowers”. This
demonstrates multiple types of program transformations, all applying to the same data. System parameters:
α = 1, beam width 1, depth 10.

(define (vine)

(if (flip .1)

(node (data (color 100) (size .1)))

(node (data (color 100) (size .1)) (vine) (flower))))

(define (flower)

(node (data (color (gaussian 20 25)) (size .3))

(petal 20)))

(define (petal shade)

(node (data (color (gaussian shade 25)) (size .3))))

In the induced code below, F1 roughly corresponds to vine.

(begin

(define F3 (λ () (F2 100 0.1)))

(define F2

(λ (V4 V5)

30



(a) A sample
from the origi-
nal program.

(b) Samples from the induced program. A single observation is sufficient for the
induction of a recursive program.

Figure 13: Example 4: Vine.

(data (color (gaussian V4 25)) (size V5))))

(define F1

(λ (V2)

((λ (V1)

((λ (V3)

(node (F3) V1

(node (F2 V2 0.3) (node (F2 V3 0.3)))))

12.538461538461538))

(if (flip 12/13)

(F1 28.0)

(uniform-choice (node (F3)))))))

(λ () (uniform-choice (F1 42.0))))

6.5 Tree

This example demonstrates learning both a parameterized function and a recursion and applying these
functions in multiple places within the same program. We use the functions shown below to generate flower-
like patterns and a tree that consists of two branches, each of which ends in a flower of different color. We
ran the system with α = 3, beam width 1, and depth 10. Setting α = 1 results in a trade-off between prior
and likelihood that does not make introducing recursion worthwhile. We expect that the system could learn
a similar program with α = 1 if we provide training examples with more branch instances, since this would
increase the amount of program compression.

(define tree

(λ ()

(uniform-choice

(node (body) (branch) (branch)))))

(define (body)

(data (color (gaussian 50 25)) (size 1)))

(define (branch)

(if (flip .1)

(uniform-choice (flower 20) (flower 220))

(node (branch-info) (branch))))

(define (branch-info)

(data (color (gaussian 100 25)) (size .1)))

(define (flower shade)

(node (data (color (gaussian shade 25)) (size .3))

(petal shade)

(petal shade)))
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(a) Observations used for pro-
gram induction.

(b) Samples from the induced program.

Figure 14: Example 5: Tree.

(define (petal shade)

(node (data (color (gaussian shade 25)) (size .3))))

Bayesian model merging produces a program that has structure similar to the original generating program.
F3 plays a similar role to the flower function by taking a single color as argument and creating three nodes
of size .3 with the passed in color. F2 is a function that creates a branch that ends in a flower with either
red or brown petals.

(begin

(define F4 (λ (V9 V10) (node (F1 V9 0.1) V10)))

(define F3

(λ (V6)

((λ (V7)

((λ (V8)

(node (F1 V6 0.3) (node (F1 V7 0.3)) (node (F1 V8 0.3))))

V6))

V6)))

(define F2

(λ (V3 V4)

((λ (V5) (F4 V3 (F4 V4 V5)))

(if (flip 6/7)

(F2 110.0 67.0)

(uniform-choice (F3 225.0) (F4 82.0 (F3 43.0)))))))

(define F1

(λ (V1 V2)

(data (color (gaussian V1 25)) (size V2))))

(λ ()

(uniform-choice (F3 -4.0) (F3 192.0)

(node (F1 48.0 1) (F2 163.0 85.0) (F2 108.0 84.0))

(F3 -6.0))))
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7 Conclusion

We have presented Bayesian program merging, an approach to inducing generative models from data. The
central idea of this approach is to first translate the data into a program without abstractions and to then
compress this program by identifying repeated computations. We perform this compression using program
transformations, with a goal of maximizing the posterior probability of the program given the data.

Many possible improvements of the system described in this paper present themselves. These include
more sophisticated search strategies, more efficient ways of computing the likelihood, more sophisticated
and robust methods of program transformation. Furthermore, considerations such as those in section 4.2.5
suggest that a more systematic development of the general framework is possible, uniting many of the
individual search moves that we have proposed.

There are many barriers to overcome before probabilistic program induction can compete with state-of-
the-art machine learning algorithms on real world problems. The potential for capturing rich patterns with
only limited dependence on human engineering makes this a worthy pursuit.
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