Llite Dcache Cleanup
Dcache Code Analysis
1. dentry instantiation
1.1
Llite open codes d_instantiate and call d_rehash_cond in ll_d_add. However, the logic of ll_d_add is quite similar with VFS d_add. And it has two callers, one is ll_lookup_it_finish, which takes dcache_lock, call ll_d_add and then release dcache_lock. It is identical to just calling d_add therefore can be replaced with d_add.
[This is already done in latest RCU walk patch. See http://review.whamcloud.com/#change,1865 for details.]
Another caller is ll_find_alias, which is called by ll_lookup_it_finish to find proper local alias to put the dentry. It looks very much like d_splice_alias and the only difference is ll_find_alias flags the dentry with DCACHE_LUSTRE_INVALID which is cleared if client has LOOKUP lock. However we cannot simply replace it with d_splice_alias as lustre lookup(IT_OPEN) doesn’t acquire child LOOKUP lock. So we need to instantiate the dentry even if client doesn’t have LOOKUP lock in order to make lookup success and meanwhile mark dentry as DCACHE_LUSTRE_INVALID to hide it from other lookup processes. The same is true for do_statahead_enter , the other caller of ll_find_alias.
1.2
When ll_lookup_it() finds a negative dentry but loses parent UPDATE lock, it flags dentry with DCACHE_LUSTRE_INVALID and calls d_rehash and d_drop just to initialize d_hash list. However, it is to work around an old bug in d_move (bug 11179) that tries to access hash list without checking whether the dentry is hashed. After checking kernel code, the d_move bug no longer exists neither in oldest supported 2.6.18-latest kernel nor upstream kernel. So the negative dentry DCACHE_LUSTRE_INVALID logic can be safely dropped from ll_lookup_it(), and llite can just set d_inode to NULL and return in such case.
Also in ll_find_alias(), becase d_move() on longer has that bug, it is unnecessary to call d_rehash() before d_move().
2. dentry invalidation.
2.1
Lustre uses MDS_INODELOCK_UPDATE bitlock to protect file size, links, timestamps. When a directory’s MDS_INODELOCK_UPDATE is canceled, llite drops all negative child dentries if not in use, otherwise unhashes them and flags with DCACHE_LUSTRE_INVALID.
Lustre has to unhash all negative child dentries upon MDS_INODELOCK_UPDATE cancelation because otherwise if client regains UPDATE lock, it will think the negative child dentries still valid. However, DCACHE_LUSTRE_INVALID is unnecessary in the case because the dentry is already unhashed so anyone holding the dentry count can detect it by checking d_unhashed() if it really matters (by replacing DCACHE_LUSTRE_INVALID checks with d_unhashed). In fact, the only user may be interested is d_revalidate, while d_compare results will be passed to d_revalidate and d_delete already checks d_unhashed by its callers in VFS layer.
OCFS2 deals with this by saving parent inode dir_lock generation in each child negative dentry’s d_fsdata field during lookup and popping parent inode dir_lock generation upon lock acquiring and canceling, so that lock-cancel-relock sequence can be detected in d_revalidate. The d_fsdata field is overloaded with two usages, parent inode lock generation for negative dentry and dentry lock data for positive dentry, while d_inode pointer is used to distinguish between them.
2.2
Also Lustre uses MDS_INODELOCK_LOOKUP bitlock to protect dentry, mode, owner and group attributes. When MDS_INODELOCK_LOOKUP is canceled, llite frees all unused aliases of the inode. If an alias directory dentry is still in use, llite flags it with DCACHE_LUSTRE_INVALID instead of unhashing it to preserve sys_getcwd functionality (NB: Why can’t sys_getcwd() fail –ENOENT when the cwd directory is removed? Because it is not always removed. Other client setattr on the directory can cause LOOKUP lock revoked as well.). The flagged dentry will be unhashed and freed when last user calls dput() where ll_ddelete() that tell dput() to kill the dentry when it is flagged with DCACHE_LUSTRE_INVALID.
For similar situation, OCFS2 uses a PR lock to protect each lookuped positive dentry and once it is canceled, OCFS2 knows that it is either unlinked or renamed. So it just calls d_delete to mark the dentry negative.
Llite cannot call d_delete in this case because losing LOOKUP lock doesn’t necessarily mean file is unlinked or renamed. In fact, none of the inode bitlocks in Lustre uniquely represents the validity of a dentry. So when these locks are canceled, llite doesn’t know if it is because the file is deleted or just someone wants to update the file metadata. The downside is that llite has to query MDS again for these possible negative dentries flagged with DCACHE_LUSTRE_INVALID, instead of finding out true negativity from local dcache like OCFS2 does.
3. DCACHE_LUSTRE_INVALID flag consideration
DCACHE_LUSTRE_INVALID flag lives in dentry->d_flag field but it is a Lustre private state flag. So in order to make the code more acceptable to mainline kernel, it is best to save the private flag in a Lustre private data section, namingly dentry->d_fsdata field.
To do it, we can add int lld_flags field to ll_dentry_data structure and add three functions, ll_mark_dentry_invalid() to set the bit, ll_clean_dentry_invalid() to clear it, and ll_dentry_invalid() to test it. Because during lookup, whether dentry is positive or negative, in ll_lookup_it_finish ll_dentry_data is attached to dentry->d_fsdata before hashing, therefore d_fsdata exists for all dentries in hash and the three functions can be called in non-blocking context (e.g., under spinlock) for dentries after that.
4. other cleanups on dcache code
4.1
line 454 if ((it->it_op == IT_OPEN) && de->d_inode) { 	can be cleaned up as dentry must be positive when it comes there.
Cleanup Proposals
a) Perform trivial cleanup listed in 4.
b) Remove code setting negative dentry DCACHE_LUSTRE_INVALID then initializing d_hash from ll_lookup_it(). Let llite just set d_inode to NULL and return if client finds negative dentry but loses parent’s UPDATE lock.
c) Remove d_rehash before d_move in ll_find_alias.
d) When UPDATE lock is canceled, don’t flag in-use negative dentry DCACHE_LUSTRE_INVALID, but just unhash it and change negative dentry DCACHE_LUSTRE_INVALID checks to d_unhashed in ll_revalidate_it.
e) Add lld_flags field to struct ll_dentry_data, and define LLD_LUSTRE_INVALID to replace DCACHE_LUSTRE_INVALID flag. Add three functions (ll_mark_dentry_invalid(), ll_clear_dentry_invalid() and ll_dentry_invalid()) to set, clear, and test LLD_LUSTRE_INVALID flag in ll_dentry_data->lld_flags. Replace all DCACHE_LUSTRE_INVALID reference with above three functions.
