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Abstract

Two methods are known for comparing binned data to predictions in the pres-
ence of correlated systematic uncertainties. The first method uses a chisquared
expression with a covariance matrix that incorporates statistical and systematic
uncertainties and their correlations. For the second method, known as best-fit,
one writes down a chisquared with diagonal covariance matrix and one fit pa-
rameter for each systematic uncertainty. This chisquared is then minimized with
respect to the free parameters. In this note we show that the two methods are
equivalent.
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1 Introduction

In the best-fit formulation one minimizes the following χ2:

χ2 =
N
∑

i=1

(

di − ti −
∑K

j=1 αjsji
)2

σ2
i

+
K
∑

j=1

α2
j , (1)

where:

• di = content of data bin i;

• ti = model prediction for bin i;

• sji = systematic uncertainty from source j on the contents of bin i;

• σi = statistical uncertainty on the contents of bin i;

• αj = fit parameter;

• N = number of bins;

• K = number of sources of systematic uncertainties.

The purpose of this note is to calculate the value χ2
min of the above χ

2 at the minimum
with respect to all the αk, and to show that it can be written as:

χ2
min = ∆T C−1 ∆, (2)

where ∆ is a column matrix with elements di − ti and C is the covariance matrix of
the measurements di, taking into account statistical and systematic uncertainties as
well as their correlations. The only assumption we will need to make is that the χ2 of
equation (1) has a unique analytical minimum.

2 Matrix Algebra

Calculations can be made more transparent by working with matrices instead of scalars.
Define the following quantities:

• a K × 1 matrix α: αk ≡ kth fit parameter,

• a K ×N matrix R: Rji ≡
sji

σi
,

• an N × 1 matrix u: ui ≡
di−ti
σi

.

With this notation the χ2 can be rewritten as:

χ2 =
(

u−RTα
)T (

u−RTα
)

+ αTα (3)

=
(

uT − αTR
) (

u−RTα
)

+ αTα (4)

= uTu− uTRTα− αTRu+ αTRRTα + αTα (5)

= uTu− 2αTRu+ αTRRTα + αTα. (6)
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The minimum of the χ2 satisfies ∂χ2/∂αk = 0, or:

−Ru+RRTαmin + αmin = 0. (7)

Left-multiplying this equation by αTmin yields:

−αTminRu+ αTminRR
Tαmin + αTminαmin = 0, (8)

which shows that the last three terms of equation (5) cancel at the minimum:

χ2
min = uTu− uTRTαmin. (9)

Next, we solve equation (7) for αmin:

αmin =
(

1K +RRT
)

−1
Ru, (10)

where 1K is the unit matrix in K ×K dimensions. The existence of an inverse for the
matrix (1K+RR

T ) follows from the assumption that the χ2 of equation (1) has a unique
analytical minimum. Before going any further, we need to show that if (1K +RRT ) is
invertible, then so is (1N +RTR):

(

1N +RTR
)

−1
= 1N −RT

(

1K +RRT
)

−1
R (11)

Indeed:

(

1N +RTR
)

[

1N −RT
(

1K +RRT
)

−1
R
]

= 1N +RTR−
(

1N +RTR
)

RT
(

1K +RRT
)

−1
R

= 1N +RTR−
(

RT +RTRRT
) (

1K +RRT
)

−1
R

= 1N +RTR−RT
(

1K +RRT
) (

1K +RRT
)

−1
R

= 1N +RTR−RTR

= 1N

The equality of the left-inverse and the right-inverse follows from the symmetry of the
matrix (1N +RTR). Having proved the existence of (1N +RTR)−1, we can rewrite the
expression for αmin as follows:

αmin =
(

1K +RRT
)

−1
R
(

1N +RTR
) (

1N +RTR
)

−1
u, (12)

=
(

1K +RRT
)

−1 (

R +RRTR
) (

1N +RTR
)

−1
u, (13)

=
(

1K +RRT
)

−1 (

1K +RRT
)

R
(

1N +RTR
)

−1
u, (14)

= R
(

1N +RTR
)

−1
u. (15)
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Substituting this expression in (9) yields:

χ2
min = uTu− uTRTR

(

1N +RTR
)

−1
u, (16)

= uT
[

1N −RTR
(

1N +RTR
)

−1
]

u, (17)

= uT
[(

1N +RTR
)

−RTR
] (

1N +RTR
)

−1
u, (18)

= uT
(

1N +RTR
)

−1
u. (19)

Finally, define:

• an N × 1 matrix ∆: ∆i ≡ di − ti,

• an N ×N matrix S: Sij ≡ σiδij,

so that:
u = S−1∆ (20)

and

χ2
min = ∆TS−1T

[

1N +RTR
]

−1
S−1∆, (21)

= ∆T
[

S
(

1N +RTR
)

ST
]

−1
∆, (22)

= ∆TC−1∆, (23)

with:
C ≡ S

(

1N +RTR
)

ST . (24)

The elements of the matrix C are:

Cij =
N
∑

k=1

N
∑

l=1

σiδik

(

δkl +
K
∑

m=1

smk

σk

sml

σl

)

σlδlj, (25)

= σ2
i δij +

K
∑

m=1

smismj. (26)

Hence C is simply the covariance matrix of the measurements.

3 Conclusion

The above derivation shows the equivalence of the best-fit and covariance-matrix meth-
ods for the case where the χ2 fit is unconstrained. This is not necessarily a trivial
condition. For example, one may want to require that

ti +
K
∑

j=1

αjsji ≥ 0 for all i (27)

in order to obtain a physically meaningful solution. In such a case the solution is
no longer given by equation (10), and χ2

min no longer equals the covariance-matrix
expression.
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