
Scala

Scala is a programming language for the JVM, that inte-

grates both features from object-orientated and func-

tional programming languages. The bytecode of Scala

programs is fully compatible with Java, and developers

can call Scala from Java, and Java from Scala.

In July, 2010, the Scala community celebrated another

milestone with the release of Scala 2.8, which featured

a completely redesigned collection library and brand

new, specialised type parameters – among a list of other

updates and improvements.

The Joy of Scala
Scala Technology share their
experiences of working with Scala

What’s New In Lift 2.0?
A look at the latest release
of the Web framework for Scala

Game of Life in Scala
The tutorial shows us how to
play the Game of Life with Scala

Java, Enterprise Architecture, Agile and Eclipse

www.jaxenter.comIssue August 2010 | presented by

#2

www.JAXenter.com | August 2010 2

Scala Changes the Java World

When Java set out to conquer the world, many were im-
pressed by its clarity, simplicity and elegance. Derived from
C++, Java offered a range of modern and simplified elements,
but was much cooler than, say, Delphi or Visual Basic (which
at the time were the most popular languages for rapid and
easy programming.)

Polyglot Programming
Java was originally considered as a single-language platform
or, as most people still view it today, as a programming lan-
guage. But, it rapidly evolved into a multi language platform,
making polyglot programming possible. However, different
languages on the Java platform are nothing new: languages
such as Beanshell, the expression language for JSF, and many
more have been around for more than a decade. But, they
were only ever niche languages, and never threatened Java's
dominance within the Java ecosystem.

Then, came Ruby on Rails and shortly after that, JRuby,
the Ruby implementation for the Java Virtual Machine. Ever
since then, developers have been able to use Ruby inside the
Java ecosystem. Shortly afterwards, Groovy came along with
very similar concepts, but tailored for the Java developers who
had no desire to learn something so fundamentally different.

All this development has turned the single-language plat-
form, into a multi language platform. The time is ripe for
other languages to appear. Now, Scala – in development since
2003 – is about to conquer the Java world!

Welcome Scala!
Martin Odersky, the creator of Scala, is one of many devel-
opers who were fascinated by Java, as it appeared in the mid
90's. What fascinated him, was that it was the first program-
ming language with a sophisticated garbage collection (be
sure to check out our video of Martin's Keynote during our
conference in Munich, Germany, for more info on this topic!)
A few years later, Martin and his team supported Sun Micro-
systems in developing Generics for Java but, after that, they
dived into creating their own language project. Although it
was not related to Java the language, Martin and his team
remained committed to the JVM: Scala was standards com-
pliant and fully supported the JVM.

Today, we see a robust language that follows many aspects
of the functional paradigm, but does not disregard object-
orientated principles.

Scala code has captured the community's imagination, with
its compact syntax and ability to define internal DSLs, which
describe a project or domain-specific task through specific
language extensions.

Scala Changes the Java World

Editorial Team JAXmag

Hartmut Schlosser

Jessica Thornsby Sebastian Meyen

Claudia Fröhling

This issue is all about that very programming language!
This issue of JAXmag is dedicated to this exciting program-
ming language:

Scala! Scala has the potential to substantially alter the Java
world, while supporting all the standards of the Java plat-
form. Scala requires developers to adopt a new mindset, but
in return promises increased productivity.

Read on, for a tutorial taking you through creating your
very first serious Scala component, and discover whether or
not Scala is right for you. Take a look at the Scala web frame-
work, Lift. You may find yourself telling your boss you're
sure you'll have more fun with Scala – and will be more pro-
ductive, to boot! ;)

Read on, and see if JAXmag's Scala experts can't persuade
you to come over to the other side!

Yours,
Sebastian Meyen
Editor in Chief, JAXenter.com & JAXmag

PS: If you wish to learn more about Scala, we recommend che-
cking out our full day tutorial with Ted Neward, at JAX London
in late September (www.jaxlondon.com for more details!

Joy of Scala

www.JAXenter.com | August 2010 3

Jon Pretty, Peter O’Sullivan, Vince Kenealy

Picture a sunny morning in 2004: a light and airy office in a
village in rural England where a group of people are seeking
the ideal development language. An innate and intuitive dist-
rust of proprietary options; a less visceral - but nonetheless
real - dislike of PHP; a positive feeling for some aspects of
Java but a sense it could be cleaner, less cumbersome and
altogether “better”; an evaluation of the lesser-known and
more exotic languages; and an evolving admiration for, and
growing recognition that there was one: expressive, fast, safe,
maintainable, scalable. It had to be Scala!

Looking back this was an ambitious but risky step. In those
days Scala was not the stable, tried and tested solution to our
problems it is now. The compiler was buggy. There were few
libraries, limited documentation and even less sample code.

The community was very small but punched above its weight
to support other members when they encountered problems.
But we all knew that we had found something good and, des-
pite these early teething problems, it was worth sticking with.
With greater knowledge came intellectual satisfaction rather
than contempt.

As time goes by ….
Over the last five odd years we have completed a variety of
projects, for many clients in many different environments and
domains. Each has brought its own unique challenges, but
from each assignment we have learned: where to start; how
to integrate Scala into a multi-language, multi-paradigm en-
vironment; how to build Scala web applications that scale
and are easy to replicate; design patterns and “best practice”;
about Scala libraries and what makes them more or less ge-

Experiences of working with Scala

The Joy of Scala
People embark on their Scala journeys in different ways. Maybe it’s a personal interest in
finding out the best way of achieving something; an interest spawned by a conversation
or an article on the Internet; a language that your boss heard some cool stuff about. Our
interest started from a feeling that the world of programming languages had much more to
give than what we had seen so far.

Joy of Scala

www.JAXenter.com | August 2010 4

neral and flexible. And also of course how to construct the
development environment and team structure that makes us
most effective and efficient.

Health warning
What follows in an attempt to pass on some of the things
we’ve learnt. We’re not saying all these will be right for you in
your environment, that they’re the best ways of doing things
or that they will work for everyone. This is just what we’ve
picked up along the way.

Why we still use Scala? The benefits.
The benefits we originally sought to obtain from Scala have,
largely, been realised but as we’ve been through full develop-
ment cycles we’ve found that some of the delights of using
Scala are both more subtle and more profound than we re-
alised.

Expressivity
Scala is hugely capable at giving the programmer more power
to express code in the way he wants to think about it. Be it
through case classes, custom extractors for pattern matching,
user-defined operators or just utilising existing Java libraries
in more eloquent code, the language has charisma!

Conciseness
From expressiveness comes conciseness. Or at least, the op-
tion to be concise: it's for the programmer to decide whe-
ther to directly mirror the verbosity of Java, or to imitate
Haskell's terseness. Unsurprisingly, most users will pick a
happy medium!

Scala code is generally a boilerplate-free zone. There is of-
ten a tendency amongst certain developers to get a misplaced
sense of satisfaction from writing boilerplate code: writing
hundreds of lines of code without thinking about them seems
like productivity, but it doesn't take a genius to work out that
it's basically wasted time and completely contrary to the DRY
(Don't Repeat Yourself) principle, maybe the single most im-
portant consideration in software engineering.

But why? If you find perpetual repetition in your code, it's
most likely a deficiency of the language you're using. A few
years ago, Jean-Paul Nerrière of IBM identified 1500 of the
most useful English words and combined with a simplified
English grammar he created a language called “Globish”. It's
great because it makes it very easy for non-English speakers
to communicate. But just imagine how frustrating it is when
you want to talk about your cousin but have to refer to her
as your father's sister's daughter every time you mention her.
Like Globish, Java simply doesn't have the vocabulary or con-
structs to avoid this repetition.

What might take several lines of code in Java, or the use of
a common design pattern, might be expressed in a single line
of functional Scala code. This not only makes it quicker to
write but also makes it easier to pick up someone else’s code
and understand it, not to mention old, long-forgotten (and of
course undocumented) code of your own...

Let's not overlook the other edge of this sword: that with
conciseness can come incomprehensibility: anyone who has

dabbled with Code Golf [1] will know the sorts of symbolic
soup your code can resemble if conciseness is your only mas-
ter. Scala is all about striking that balance.

Static typing
Many beginners find static typing a pain: You're trying to get
something working quickly, but the compiler is just whinging
about the sloppiness of your coding. Sure, the code might
have worked, but you wouldn't have known without actually
running it. But “oh!,” I almost hear you crow, “I wrote a unit
test first to check that...”

I'm going to be blunt about this: can you seriously tell me
you would rather write a unit test than have the compiler tell
you your program is never going to work, so there's no point
even trying (and by the way, your errors are here, here, here
and here)?

After a while static typing will become the biggest time-
saver in your development cycle. It's the crux of what gives
Scala developers so much confidence to develop. Instead of
developing in tiny iterative steps, Scala mitigates the risk of
making tremendous refactorings across multiple crosscut-
ting concerns. If you've been using Scala for long enough,
you won't think twice before embarking upon a significant
rewrite; knowing that the Scala typechecker is there as an im-
mensely powerful safety-net gives you the confidence to na-
ively shuffle code around, safely assured that – although the
compiler might give you a long 'to do' list of errors – once
you've fixed them, your code will just work.

Speed and Robustness
Scala's combination of expressivity and static typing means in
practice that it takes far less time to develop working applica-
tions, from tiny toy code, to heavyweight applications.

From a business perspective, this means you have a choice
of doing more with the same resource, to develop applications
more quickly, or do the same with less.

The greatest efficiency and effectiveness gains are made
with the addition of frameworks, customised libraries to
your domain, a well set up development environment, a well-
structured and appropriately-skilled development team and
robust architecture.

Native Scala libraries have been a while coming. This is
possibly because existing Java libraries have been adequate
for the purpose, but more likely because building good, reu-
sable and effective frameworks is hard.

It's a common criticism of Scala that it's too complex. And
it's true that Scala's feature list is not small. Most Scala deve-
lopers probably use less than half of the features available to
them. But unless you're building libraries or doing academic
research, this is all that's necessary: all the productivity bene-
fits stem from Scala's everyday features, not from the more
esoteric details. If you don't need them, don't use them (and
you won't even know they're there).

The Scala development team, ably lead by Martin Odersky,
are very conscious of Scala's position at the intersection
between cutting-edge academic research, and commercial
pragmatism. Much thought has gone into the design of the
language to make it coherent and practical across the length

Joy of Scala

www.JAXenter.com | August 2010 5

of the learning curve, by means of appropriate documentati-
on and meaningful error messages.

Java compatibility
In case you had made it this far without realising, Scala and
Java are compatible. A fundamental premise of Scala's deve-
lopment has been full compatibility with Java. That is to say,
you can use Java libraries in your Scala code, and you can use
Scala libraries in your Java code.

But how is this possible, given Scala's vastly superior capa-
bilities? Some ingenious ideas have gone into making Java's
many warts evaporate when referencing Java from Scala.
There's no need to cloud your mind wondering about special
cases for primitives or boxing; Scala makes it an implemen-
tation detail.

But what about in the other direction? Well, unfortuna-
tely there's no water-into-wine miracle to suddenly turn
Java into Scala just because you're using Scala libraries, so
if you're calling Scala code from Java, you have to do it in
the usual Java way, and you may need to know some imple-
mentation details. But let's not forget that compiled Scala
is plain old Java bytecode, and the Java compiler can't tell
the difference.

Developer Satisfaction
This should not be overlooked. Scala is simply a far more
satisfying language to work with. On top of the added confi-
dence you get as a programmer, there's never the sense that
you're fighting the language to be productive; the code just
flows.

The job of programming is fundamentally that of transla-
ting: programmers are given a human description of a pro-
blem which needs to be solved, and they convert that into a
form the computer understands. Humans aren't getting any
better at framing their problems in code, but Scala is making
the computer better at understanding human language. This
reduces the work involved in the translation; the steps neces-
sary to encapsulate the problem as code, so the programmer
can spend less time solving the syntax of the problem and
more time solving the semantics.

Morale and productivity tend to be higher in Scala teams
and the community is stronger because it's simply a more sa-
tisfying way to code, and seeing development happen more
quickly makes the productivity more tangible to the develop-
ment team.

Competitive edge
We believe that all of the above virtuously conspire to give
us an edge (as Scala application developers and consultants),
and an edge to our customers (reliant on speed of delivery,
speed to change, quality and cost effectiveness).

How do I get started?
Clearly there are a number of different starting points and
each will have its requirements: a startup will have different
needs from an established organisation’s Java development
team. However there are a number of common questions that
occur: What do I do first?

Analyse and prioritise
Many organisations will have a backlog of development
needs: new features, new applications, new releases, major
and minor changes along with a pipeline of projects that are
desirable but have not passed business-case hurdles. Whilst it
is our core belief that in the long term most of these would be
better performed in Scala, the key issue is one of prioritisati-
on: where is the greatest benefit to be attained soonest, and
with the least risk?

Sadly there is no easy answer to this question – we have de-
veloped a process, enabled by software (developed in Scala,
of course) to facilitate a development team (senior technical
managers, line-of-business owners, and developers) identify
the best projects to start with. The key considerations are:

Complexity•	
Risk•	
Business criticality and impact•	
Performance requirements•	
Scalability•	
Scala expertise•	
Quality•	
Timescales•	
Team development•	

Analysis of these factors allows us to produce a portfolio of
candidate projects to migrate to Scala.

Assess and develop your organisation
You might have a great team of developers, but which of them
have the motivation and propensity to become great Scala de-
velopers? Your prioritisation above will give you a good idea
about which projects should use Scala first, and some idea of
the resources you will need but what team will be optimal to
deliver now and in the future?

Do you already have the Scala resources or are you re-trai-
ning, hiring or seeking to bring in outside expertise to help?
You may find that a lot of your Java developers are secret
Scala devotees in their spare time.

Many organisations may choose to bring in Scala experts
at the start to work alongside their Java developers, to help
set things up, get things going and to act as mentors once the
team is running on their own.

Create your development environment and process
Despite being relatively new, there are already a great many
open-source frameworks, methodologies and tools on offer
from the Scala community to help you develop your first Scala
application. Each has its own merits and we don’t believe
there is a one-size-fits-all answer. You could ask one of your
developers to research and recommend an answer, or you
could seek advice from a Scala specialist to recommend the
optimal toolset, environment and process based around your
existing setup, requirements and future aspirations.

Position Scala within your environment
Most organisations have a heterogeneous environment invol-
ving a range of technologies which have been well integra-

Joy of Scala

www.JAXenter.com | August 2010 6

ted to fulfil their needs. These include databases, application
frameworks, business applications, security infrastructure,
web interfaces and multiple layers of messaging and commu-
nications services and protocols.

You will need to understand where and how Scala needs to
integrate; how to achieve the greatest benefit from it; how to
insulate your application from the future, and all the uncer-
tainty that brings.

Operational management and support
Having reached the milestone of having initial applications
developed and running, they need to be supported and mana-
ged. Scala fits comfortably into a Java environment, though
there are still specific support considerations. Scala applica-
tions can be considerably more robust than other languages,
though – like any system – require support and maintenance.
This could be developed through an internal operations team,
while second and third level support may be provided by the
development team or a third party.

Quality assurance and audit
Any new Scala development, especially by an inexperienced
team should be quality-assured and audited. Scala's flexibility
offers many possible ways of implementing the same project,
but each will have different performance characteristics, and
some will be easier to manage than others. Scala goes a long
way towards facilitating best practice in software develop-
ment, but there's more than one way to skin a cat. It's not
always clear which architectural approach is the most appro-
priate from a perspective taking into account long-term con-
siderations like maintainability and future releases.

Development support
The success of many projects relies on the expertise and ex-
perience of external resources. Bringing in vital skills can be
important at critical times on all projects. The Scala market
is on the cusp of great things, but it's not yet as mature as the
Java marketplace.

More mature Scala organisations
Many organisations have been using Scala for some time.
Perhaps not for all their development projects but with some
elements of Scala mixed with the major Java applications. Very

Links & Literature

[1] http://codegolf.com

[2] www.scalatechnology.com

few have the experience of evaluating how effective their Scala
implementations actually are, how they are performing compa-
red to how they could perform, how their teams are working
and how efficient their development environment is.

Summary
We believe that developing in Scala offers significant benefits
to most organisations, and for organisations already using
Java, Scala offers low-hanging fruit as a boost to productivity.
These benefits are obtainable almost immediately but will be
even more applicable in the long term as well. We believe that
maximising the benefits of Scala implementation relies on the
skills and experience of the team involved.

Scala Technology [2] exists to help organisations maximise
the benefit of their use of Scala. Working closely with Martin
Odersky and the Scala team in Switzerland, Scala Technology
promotes the use of best practice in implementing Scala in in-
dustry. Led by the team which launched the first commercial
applications in Scala in 2004, our team has the tools, proces-
ses and experience to develop teams and applications that can
truly take advantage of everything Scala has to offer.

Jon Pretty is a technologist, developer, systems architect and Scala evan-
gelist with over five years' hardcore Scala experience under his belt.

Vince Kenealy has 25 years experience in the IT industry focused on the
business value of innovation and service garnered at IBM, TIBCO and
Symantec.

Peter O'Sullivan has worked with many organisations in the public and
private sector, over the last 20 years, helping them generate maximum
value from their use of IT.

www.JAXenter.com | August 2010 7

More Scala on JAX TV

More Scala on

JAX TV
Are you reading JAXmag while connected to the in-
ternet? Then check out JAX TV, with a keynote from
Scala creator Martin Odersky, plus an interview
with Scala geek Ted Neward!

Scala Tutorial

www.JAXenter.com | August 2010 8

Heiko Seeberger, Marcus Denison

There is always one question at the beginning of a tutori-
al: “What kind of example application should we build?” It
should be appealing and, if possible come with a graphical
user interface. However, making it too complex could end up
breaking the mold. Furthermore we want to get along without
any dependencies (except for test tools,) because we want to
check out Scala itself and not drift into any frameworks like
Lift [1] or Akka [2].

So, we have chosen an idiomatic and simple implementa-
tion of the fantastic Game of Life [3]. If you haven't heard
about this interesting biological simulation, you really should
take a look. We will not focus on a highly performant or dis-
tributed solution, but rather attempt to present Scala to you
as simply as possible.
EndJoin us in building this example step by step. You can
take a look at the code provided on http://www.github.
com/weiglewilczek/gameoflife.Our sample project is open
source and is published under the Eclipse Public License [4].
Using Git, you can take a look at the commit history to fully
understand each step we take.

Development Environment
Another important question we have to answer: How should
our development environment look? Java developers are used
to the comfort offered by IDEs like Eclipse, IntelliJ IDEA or
NetBeans and the release of Scala 2.8 has finally brought us a
few good plugins for the “big” IDEs.

Nevertheless, we will not require an IDE at this point! De-
velopers tend to be picky about IDEs, which means that some
might stop reading if we selected the “wrong” one. Moreover
our example has very few lines of code, which is typical for
Scala. Thus, we will get along with a plain text editor. But of
course you may use any IDE to follow this example.

Compiling? Testing? Running the application? For this mat-
ter we are bringing in a nice build tool called SBT [5] (Sim-

Game of Life: Rules

Our playing field is an infinite grid. Every square represents one cell,
which has one of two possible states: alive or dead. A generation is
made up from all cells at a certain point in time. The following rules
describe how we get from one to the next generation:

Any live cell with fewer than two live neighbours dies because of ■
under-population.
Any live cell with more than three live neighbours dies because of ■
overcrowding.
Any live cell with two or three live neighbours lives on to the next ■
generation.
Any dead cell with exactly three live neighbours becomes a live cell ■
as if by reproduction.

Most Java developers have probably heard about Scala, a promising new language for the Java Virtual Machi-
ne. In this tutorial we get our hands dirty in order to get a feel for what Scala is really about. Please join us, as
we build a small application step by step.

Play the Game!

Tutorial:
Game of Life in Scala

http://github.com/weiglewilczek/gameoflife/
http://github.com/weiglewilczek/gameoflife/

Scala Tutorial

www.JAXenter.com | August 2010 9

ple Build Tool). If you know Ant
or Maven, you will love SBT. If
you're new to SBT, you'll quickly
come to understand why it has
"Simple" in its name. SBT is writ-
ten in Scala itself and takes into
account some of its specialities.
Actually building works pretty
fast, starting the interactive con-
sole (REPL) with the entire class
path of the project just works, and
we are able to cross-build against
various Scala versions - these are
just a few features we wish to
highlight. Projects like Lift or
Akka are already using SBT, or
planning to use it.

Of course SBT is not the only
possibility out there for compi-
ling and running Scala code. So
if you have your preferred IDE

or want to use the command line tools that ship with the
Scala distribution, you may skip the next part.

Starting a new SBT Project
Before starting our project, we need to “install” SBT. It's re-
ally easy since SBT is only a JAR file: Download the latest
version sbt-launch-0.7.4.jar from the SBT website, you'll find
this in the Downloads [6] section. After that, just follow the
simple steps provided in the Setup [7] section: “how to create
a startup script” Within MacOS it could look like this:

 java -Xmx1024M -jar sbt-launch-0.7.4.jar "$@"

One more step before starting a project: make yourself a pro-
ject-folder, e.g. gameoflife and go into that directory using the
shell. Now we are good to go; run the SBT startup script to
create a new project and answer the following questions:

 gameoflife$ sbt
 Project does not exist, create new project? (y/N/s) y
 Name: gameoflife
 Organization: com.weiglewilczek.gameoflife
 Version [1.0]:
 Scala version [2.7.7]: 2.8.0

Following the output, notice that SBT is downloading Sca-
la 2.7.7 and Scala 2.8.0, which makes our lives easier as we
don't have to worry about that anymore. You may wonder
why SBT is also downloading Scala 2.7.7? That's because
SBT itself runs on 2.7.7.

Starting SBT without any arguments will call the interac-
tive SBT console, which provides commands such as exit,
compile, test or run. Running exit or compile should be self-
explanatory, but what happens when we execute run? It will
look for and execute a singleton object with a main method.
Now, there is a nifty little feature: when putting the “tilde”
in front of the command, SBT will go into “triggered” mode

where it will wait for changes in the filesystem and with any
change, the command will be executed again. Using ~com-
pile as an example, SBT will compile every time a file in the
project is changed and saved. For further commands and
details, please take a look at the excellent documentation on
the SBT website.

Running test for the first time will create some additional
folders. When taking a look at illustration 1 you will see
how your project should look. If you have ever worked with
Maven, the src and target folders should look familiar, whe-
reby the various Scala versions we are building our project
against are held in the target folder. Looking at the project
folder we can find configuration and downloaded files. We
can drop libraries into the lib folder which are automatically
added to the class path. Another feature compliant with
Maven are “Managed Dependencies,” but we don't actually
need them here.

Before we get down to business, let's code up and run the
most legendary piece of code. Switch into the folder src/main/
scala and create Hello.scala:

object Hello {
 def main(args: Array[String]) {
 println("Hello World!")
 }
}

Calling run in SBT will give us the well known “Hello World!”
message.

Classes and Packages
Being a Java developer, we know the principles of object-ori-
entated programming. Due to this, we will take an approach
at Scala from the side we already know. That's indeed possib-
le, because Scala is a hybrid language combining the best fea-
tures of object-orientated and functional [8] programming.
We won't get too theoretical in this tutorial, but have outlined
some of the basics of object-orientation in Scala in the adja-
cent box.

The Game of Life is all about dead and live cells. Therefore
we will start with creating a file called Cell.scala in the source
directory src/main/scala. There we define the class Cell using
the keyword class, just like in Java:

 class Cell

Starting with an empty class without fields or methods, we do
not need curly braces or a semicolon thanks to the semicolon
inference. Unlike Java, there is no access modifier public, be-
cause that is the default in Scala.

Packages are similar yet more powerful compared to Java
packages. One important difference is that there is no need to
mirror the package structure in the file system. Therefore, it is
possible to omit the “root package” of a project, but of course
underlying packages should be represented by the directory
structure. In our example we will have only the com.weigle-
wilczek.gameoflife package and therefore there is no need for
subfolders. According to this our Cell should look like:

Ill. 1: SBT project structure

Scala Tutorial

www.JAXenter.com | August 2010 10

 package com.weiglewilczek.gameoflife
 class cell

The REPL
Although our cells are not too useful yet, we now want
to introduce an important Scala tool: the interactive Sca-
la console, also called Read Evaluate Print Loop (REPL).
Running console in SBT will give us the REPL using the
complete class path of our project. In the REPL we can wri-
te code and have it interpreted and executed immediately.
With :help we can list various commands which we might
need.

First, let's get our package imported. We'll use the keyword
import, followed by a whitespace and use the tab key to find
our package with the autocompletion.

scala> import com.weiglewilczek.gameoflife._
import com.weiglewilczek.gameoflife._

Similar to Java's “*” is the underline in Scala, which means
that everything gets imported from our package.

Now, let's create a new instance of our cell using the key-
word new just as we know it from Java. Since we are not
using any arguments, parentheses are not needed yet.

scala> new Cell
res0: com.weiglewilczek.gameoflife.Cell = com...

Watching the REPL output, it will automatically create a new
variable called res0 (later we will point out how we can pro-
vide our own variable names), printing its type and the result
of the toString method.

Let's quit the REPL entering :quit (or :q) and get back to the
code where we can give our cells some additional features.

Class Parameters, Fields and Methods
As cells are placed on a grid, we want to add their coordi-
nates. Adding so called class parameters enclosed in parenthe-
ses after the class name will make this possible:

class Cell(x: Int, y: Int)

That looks different from that what we know from Java,
right? First, there are no class parameters in Java and second,
we annotate any parameters just like we do in UML, starting
with the name followed by a colon and then the type.

OK, but what do these class parameters mean? And don't
we have a constructor? The compiler will take the class pa-
rameters and create the so called primary constructor for
this class. This means that now we create our cells like this:

scala> new Cell(1, 2)
res0: com.weiglewilczek.gameoflife.Cell = com...

Class parameters are like private fields which means that we
cannot access the coordinates and we cannot change the state
of our cells. Later we will change the visibility of the coor-
dinates, but immutability is one of the most important prin-
ciples of functional programming. Even in Java, immutable
objects are well known and going by Effective Java [9] it is al-
ways better to use immutable, rather than mutable, objects.

Using the keyword val defines an immutable field or local
variable, just like using the final modifier in Java. There is also
var to define mutable fields or local variables. Now we will
create a private immutable field which will return the position
of a cell as a String:

private lazy val position = "(%s, %s)".format(x, y)

But how does the compiler know that this field is a String?
The Scala compiler is pretty smart: based on the value that
is assigned, it recognizes that position shall be a String. This
feature - called type inference - is also applicable for methods
and generic types, making Scala code very lightweight even
though it is statically typed.

But, what is the keyword lazy doing there? When using lazy,
the initialization and therefore the evaluation of the “right side”
only happens when the field is being approached for the first
time. Until now that was not happening, since position is a pri-
vate field and it is not used internally in Cell. But taking a look
at the REPL output suggests that we could use position to over-
write the toString method, because our cells are immutable:

override def toString = position

Using the keyword def will create a method. override must
be used when overwriting concrete methods or fields and may
optionally be used when implementing abstract ones. As be-
fore, type inference allows us to omit the return type. In this
case that's fine, but when implementing non-trivial methods
it is always good style to give the type. In our case it would
look like this:

override def toString: String = position

Even if we do annotate the type, the code is still more light-
weight than it is in Java: first, we don't need curly braces
when having a one-liner and second we don't need a return
statement, since a method returns the last line of a block by
default. Moving ahead in this tutorial, we'll see more of this

Being purely object-orientated

Everything being an object in Scala makes it a little stricter tha Java.
Forget about static and primitive types. Except for the allocation there
aren't any operators either, only methods.
As an example, expecting two primitives and a plus operator when
adding two numbers would be wrong here. Instead we have got two
Int objects and one of them calls the + method, which is defined on
Int. Since + is a method, we could write 1.+(2), but Scala allows us
to write 1 + 2. That is the so called infix operator notation and can be
used whenever a method has only one argument.
 Instead of static, Scala has got singleton objects, which represent a
class and an instance at the same time. These are first class objects
and may be used as arguments when calling methods.

Scala Tutorial

www.JAXenter.com | August 2010 11

in more complex methods. Let's see how our changes will
affect things on the REPL:

scala> new Cell(1, 2)
res0: com.weiglewilczek.gameoflife.Cell = (1, 2)

That looks better, right? However, we still can't access the
coordinates, because the class parameters are still private.
Putting the keyword val in front will make them public:

class Cell(val x: Int, val y: Int) { ...

Let's take a quick look into the REPL in order to see how
this works. Now we are also using the keyword val to define
a local variable with a meaningful name which we can use to
further access our cell:

scala> val cell = new Cell(1, 2)
cell: com.weiglewilczek.gameoflife.Cell = (1, 2)
scala> cell.x
res0: Int = 1

Case Classes
Now let's get even easier. Using the keyword case in front of
the class definition will convert our cell to a case class. This
makes the compiler provide us with the following features,
amongst others:

Class parameters are vals by default, so there is no need to •	
write val in front of our parameters anymore.
Instances may be created without the keyword new, but •	
explaining this would be to much for our tutorial.

Reasonable implementations are provided for equals, •	
hashCode and toString; in this case we have overwritten
toString ourselves, of course.

In listing 1, the complete code for our cells is shown after all
these changes were made. Let's take a quick look at the REPL,
just to make sure that things work as expected:

scala> val cell = Cell(1, 2)
cell: com.weiglewilczek.gameoflife.Cell = (1, 2)
scala> Cell(1, 2) equals Cell(1, 2)
res0: Boolean = true
scala> Cell(1, 2) equals Cell(1, 1)
res1: Boolean = false

For Comprehensions
This might be a tick too early, but referring to our example
it is necessary that we now look at one very interesting lan-
guage feature called “for comprehensions.” In Scala like in
other functional programming languages, it is common that
everything has a return value. For example, there is an if-
else, but that's not only for control flow like in Java but also
has a result value, which can be assigned to a variable or can
be used as a return value for a method. Therefore the if-else
in Scala matches the conditional operator (x ? y : z) in Java.

Now let's talk about for comprehensions. In their primitive
form, they are like loops:

for (i <- 1 to 10) { ... }

Exceptionally having no return value, they will only wield
some sort of side effect. By the way, to is not a keyword,
but a method which, because of one advanced feature called
implicit conversions, may be used on Int values and returns a
collection of the type Range.

Having for comprehensions in their functional form, they
end with the keyword yield and have a result value. A quick
little example:

scala> for (i <- 1 to 10) yield i + 1
res0: ...IndexedSeq[Int] = Vector(2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

We can observe that a collection (Range 1 to 10) is mapped
onto another one (Range 2 to 11). Now we want to use for
comprehensions in order to calculate the neighbours of a cell:

def neighbours: Traversable[Cell] =
 for {
 i <- (x - 1 to x + 1)
 j <- (y - 1 to y + 1) if (i != x) || (j != y)
 } yield Cell(i, j)

OK, let's explain this from the top to the bottom:

Since we do not have a trivial one-liner here, we are giving •	
the return type; as one can observe, type parameters are
defined in brackets.

Ill. 2: Important collections

Listing 1: Cell.scala

package com.weiglewilczek.gameoflife
case class Cell(x: Int, y: Int) {
 override def toString = position
 private lazy val position = "(%s, %s)".format(x, y)
}

Scala Tutorial

www.JAXenter.com | August 2010 12

Using curly braces instead of round ones; thanks to this, •	
we can write more lines without using a semicolon.
Using two so called generators in an effort to run trough •	
all x- and y-coordinates around our cell.
To lock out our own cell we are using a filter.•	
Employing yield creates a collection of neighbour cells.•	

Taking a look at listing 2, we see the complete code for our
cell after applying these changes. Let's take a quick look at the
REPL again, where we find the eight neighbours for the given
cell as expected:

scala> cell.neighbours
res1: Traversable[...Cell] = Vector((0, 1), (0, 2), (0, 3), ...)

Unit Testing with specs
Running code in the REPL will give us a good feel for our
code, but of course the need for systematic testing also ap-
plies to Scala. We could use JUnit, but there are some Scala
test tools which are very powerful in creating self-explanatory
tests.

We are going to take a look at specs [10]: Please down-
load the current version 1.6.5 for Scala 2.8.0 (specs_2.8.0-
1.6.5.jar) and put the JAR file into the lib directory of the
project.

Switch to the src/test/scala folder, which is our test folder,
and create a class called CellSpec. We will use the same packa-
ge as we have used for Cell and extend the class Specification
form specs. Put the following lines into the body of the class:

"A Cell" should {
 "have eight neighbours" in {
 Cell(0, 0).neighbours must haveSize(8)
 }
}

That looks more like prose, but is valid Scala code. Again we
have implicit conversions working for us, so that the methods
should and can be called on the Strings or the method must on
the result from neighbours. As a result, we have got a pretty
self-explanatory test.

Concluding, let's see how tests are executed in SBT. Execu-
ting test will result in all tests being compiled and executed.

As we can see, the strings which describe the test in our Scala
code are used in the test report. Failed tests in particular, are
outlined very nicely. To see how a failed test looks, we just
apply a little change in the for comprehension like this: i <- (x
– 1 to x – 1):

[info] A Cell should
[info] x have eight neighbours
[info] 'Vector((-1, -1))' doesn't have size 8. It has size 1 …

Collections
After finishing the cells, we will move to the generations,
which represent the collective of all cells at a specific time.
This leads us to collections, which are perfectly made for de-
monstrating the functional character of Scala.

Taking a look at illustration 2 we will see important repre-
sentatives of the collection hierarchy. Traversable with about
100(!) methods is found on top. That amount makes it clear
that Scala collections are very powerful, which is typical for a
functional programming language.

We want to describe a generation based on its living cells.
Let's create a new class Generation with the class parameter /
field aliveCells of the type Set[Cell]:

package com.weiglewilczek.gameoflife
class Generation(val aliveCells: Set[Cell] = Set.empty)

We would like to point out two things here: for one thing,
collections are typed in Scala. No surprise, because Java ge-
nerics also came from Martin Odersky, Scala's “godfather.”
Another thing, we are defining an empty Set as default value,
which is a new feature of Scala 2.8. With this, we can create a
generation without the aliveCells argument.

scala> val generation = new Generation
generation: com.weiglewilczek.gameoflife.Generation = ...
scala> generation.aliveCells
res0: Set[com.weiglewilczek.gameoflife.Cell] = Set()

Of course, defining preconditions is also a part of a good style
in Scala. Let's define a precondition where null is not valid for
the aliveCells parameter. For this matter we use a method called
require, which comes from the singleton object Predef whose
members are automatically imported by the Scala compiler.

require(aliveCells != null, "aliveCells must not be null!")

Filtering Collections
According to the game rules, when moving from one given
generation to the next we have to determine the (number of)
alive neighbours for a cell. For this we can make use of our
already implemented method Cell.neighbours, although we
still have to determine which of the resulting neighbours are
alive.

For this purpose we will employ the power of functional pro-
gramming, as we use the filter method that is a member of every

Listing 2: Cell.scala

package com.weiglewilczek.gameoflife
case class Cell(x: Int, y: Int) {
 def neighbours: Traversable[Cell] =
 for {
 i <- (x - 1 to x + 1)
 j <- (y - 1 to y + 1) if (i != x) || (j != y)
 } yield Cell(i, j)
 override def toString = position
 private lazy val position = "(%s, %s)".format(x, y)
}

Scala Tutorial

www.JAXenter.com | August 2010 13

collection. This method does not
take a “normal” argument, but
a function. Functions are simi-
lar to methods, since they may
be called with arguments and
have a return value. However,
functions are not members of a
class, but objects themselves, just
in terms of “everything is an ob-
ject.” As for numbers and Strings,
so called literals are available for
functions, too, which gives us
the opportunity to simply write
down a function.

The filter method expects a function that takes a parameter
of the same type as the one the collection is parameterized,
and returns a Boolean. In our example we have to provide a
function that has a Cell parameter:

private def aliveNeighbours(cell: Cell) =
 cell.neighbours filter { neighbour => aliveCells contains neighbour }

We notice that function literals are written with the arrow
symbol. On the left side we have our arguments and on the
right side the body of the function. Once again, thanks to the
type inference, we don't have to give any types.

Also, a shorter notation is possible. filter requires a function
Cell => Boolean and looking at the contains method from the
Set aliveCells we see the exact same signature. Luckily the
Scala compiler is working for us, converting this method into
a function. All we have to write now is:

private def aliveNeighbours(cell: Cell) =
 cell.neighbours filter aliveCells.contains

Besides the alive neighbours, we also need the dead ones. The
code is pretty similar to aliveNeighbours. Although, since we
are not only working with the contains method but also using
some extra logic with the negation, we have to write the func-
tion the “wordy” way.

private def deadNeighbours(cell: Cell) =
 cell.neighbours filter { neighbour => !(aliveCells contains neighbour) }

Our generation should at the moment look like listing 3.

Mapping Collections
Now we want to determine the next generation, which is built
from cells that stay alive and those that wake up from the
dead.

def next: Generation = {
 val stayingAlive = ...
 val wakingFromDead = ...
 new Generation(stayingAlive ++ wakingFromDead)
}

Once again we can see that there is no return necessary, as
the last line in Scala is always our return value. Both varia-
bles staylingAlive and wakingFromDead are supposed to be
Sets, which allows us to use the ++ method to create a new
Set[Cell] for the next generation.

From what we already know, we are able to implement
staylingAlive: Let's filter out all alive cells which have only
two or three neighbours:

val stayingAlive =
 aliveCells filter { 2 to 3 contains aliveNeighbours(_).size }

This is another short form to write function literals: we aban-
don the parameter list and arrow symbol, directly writing the
function body, where the underline is a placeholder for the
missing parameter. Having more parameters would force us
to supply more underlines. Of course we could also have pro-
vided a more explicit notation:

aliveCells filter { cell => 2 to 3 contains aliveNeighbours(cell).size }

The next step is to implement wakingFromDead. Luckily
we don't have to look at all the dead cells on the playing
field, but only at those that are in the neighbourhood of alive
cells, because only a cell with three neighbours will wake up.
Therefore we have to provide a way to get from the alive ones
to their dead neighbours. We already have the method dead-
Neighbours for a single cell, but how do we retrieve the dead
neighbours for all alive cells?

Getting our result in the imperative way often used in Java,
we would probably provide some sort of loop and write very
detailed code in order to define how things must happen.
Using functional programming our life is a tad bit easier. We
just write what we want, but not how it shall be done!

OK, back to the topic! What we are trying to do here here
in two steps: we know the set of alive cells (aliveCells) and
want to transform this into the set of dead neighbour cells.
Thereafter, we have to filter if the dead neighbour cells have
got exactly three alive neighbours.

For our first task, we'll try the collection method map,
which transforms a collection into a new one. Let's look at a
quick example in the REPL:

scala> List(1, 2, 3) map { x => x + 1 }
res15: List[Int] = List(2, 3, 4)
When porting this to our example, it could look like this:
aliveCells map deadNeighbours

Ill. 3: Swing surface

Listing 3: Generation.scala

package com.weiglewilczek.gameoflife
class Generation(val aliveCells: Set[Cell] = Set.empty) {
 require(aliveCells != null, "aliveCells must not be null!")
 private def aliveNeighbours(cell: Cell) =
 cell.neighbours filter aliveCells.contains
 private def deadNeighbours(cell: Cell) =
 cell.neighbours filter { neighbour => !(aliveCells contains neighbour) }
}

Scala Tutorial

www.JAXenter.com | August 2010 14

Once again, the Scala compiler makes our lives easier,
making a function out of the deadNeighbours method,
so that this code can compile. But that is not what we
wanted, because we are transforming a Set[Cell] into a
Set[Traversable[Cell]], since deadNeighbours returns a
Traversable[Cell] for every Cell. For such a case we have a
collection method called flatMap, which takes nested coll-
ections and literally pounds them flat. Once again a little
example in the REPL:

scala> List(1, 2, 3) map { x => List(x - 1, x, x + 1) }
res18: List[List[Int]] = List(List(0, 1, 2), List(1, 2, 3), List(2, 3, 4))
scala> List(1, 2, 3) flatMap { x => List(x - 1, x, x + 1) }
res19: List[Int] = List(0, 1, 2, 1, 2, 3, 2, 3, 4)

With this knowledge we can implement wakingFromDead in
the following way:

val wakingFromDead =
 aliveCells flatMap deadNeighbours filter { aliveNeighbours(_).size == 3 }

Taking a look at this, you can see that we are chaining two
calls: First calling flatMap on top of aliveCells giving dead-
Neighbours as an argument. Until now we have had a re-
turn value of Set[Cell] that will be called using filter with a
function literal, which gives us the dead cells with three alive
neighbours.

Listing 4 provides the complete code for the class Gene-
ration and Listing 5 provides a few tests, which feature two
interesting source generations. On the one hand we have
the so called “blinker:” three horizontally aligned cells that
are transformed into three vertically aligned ones, and back
again. On the other hand we have a generation called “block”
which does not change at all.

Swing GUI
We're almost there! It is fascinating to watch the process of
how generations evolve. In order to see this, we are going to
build a little graphical user interface.

The goal is to have a nice little tutorial, and not how to
build a powerful visualization of the Game of Life. So we will
create a basic user interface, shown in illustration 3, which
has the following features:

Only views a finite section of the infinite playing field.•	
The opportunity to toggle the status of the displayed cells •	
via the mouse at any time.
A “next” button which take us to the next generation. •	

As we want to get along with Scala we are only using the Scala
Swing library [11], which makes working with Swing easier. Unfor-
tunately explaining in detail what we have done in listing 6 would
break the mold of this tutorial. Even though it is not too much code,
there are a few concepts used that are way ahead of the basics. In the
following, we try to pick out a few nice little highlights.

First, we see how easy it is to write a Swing application: We
are extending SimpleSwingApplication and overriding the top
method. Components are built by adding more components
to the contents field. Overwriting reactions in a component
and adding so called Reactions is necessary in order to handle
events. Actions are associated directly with a button, as calling
the singleton object Button and providing the code for the ac-
tion as an argument.

Next we return to a few concepts that we have talked
about and used earlier, e.g. building the playing field with a
for comprehension or passing a function determining whe-
ther a cell is alive or dead as an argument.

Even though the class SwingUI is a bit more complicated
than we have learned up until now, we will get a good idea
of the possibilities offered by Scala and the Scala Swing li-
brary.

Conclusion
So far we have covered the most important Scala basics. Not
only have we learned about the language itself, but also dis-

Listing 4: Generation.scala

package com.weiglewilczek.gameoflife
class Generation(val aliveCells: Set[Cell] = Set.empty) {
 require(aliveCells != null, "aliveCells must not be null!")
 def next: Generation = {
 val stayingAlive =
 aliveCells filter { 2 to 3 contains aliveNeighbours(_).size }
 val wakingFromDead =
 aliveCells flatMap deadNeighbours filter { aliveNeighbours(_).size == 3 }
 new Generation(stayingAlive ++ wakingFromDead)
 }
 private def aliveNeighbours(cell: Cell) =
 cell.neighbours filter aliveCells.contains
 private def deadNeighbours(cell: Cell) =
 cell.neighbours filter { neighbour => !(aliveCells contains neighbour) }
}

Listing 5: GenerationSpec.scala

package com.weiglewilczek.gameoflife
import org.specs.Specification
class GenerationSpec extends Specification {
 "Generation.next" should {
 "return an empty Generation for the empty Generation" in {
 new Generation(Set.empty).next.aliveCells mustBe Set.empty
 }
 "yield three horizontal cells for three vertical cells" in {
 val vertical3 = Set(Cell(0, -1), Cell(0, 0), Cell(0, 1))
 val horizontal3 = Set(Cell(-1, 0), Cell(0, 0), Cell(1, 0))
 new Generation(vertical3).next.aliveCells mustEqual horizontal3
 }
 "stay constant for a 2x2 block of cells" in {
 val block = Set(Cell(0, 0), Cell(0, 1), Cell(1, 0), Cell(1, 1))
 new Generation(block).next.aliveCells mustEqual block
 }
 }

}

Scala Tutorial

www.JAXenter.com | August 2010 15

cussed tools like the REPL and SBT. Hopefully with this
practical example we have not only shown that Scala is con-
cise (e.g. Cell) and understandable (e.g. CellSpec), but is also
capable of offering straightforward solutions to many prob-
lems through its functional character (e.g. Generation.alive-
Neighbours).

We are certainly hoping to get some feedback, questions,
bug-reports (please use the issue tracker [12]) or ideas on how
to improve our tutorial! Have fun with Scala!

Listing 6: SwingUI.scala

package com.weiglewilczek.gameoflife

import java.awt.Color

import javax.swing.border.LineBorder

import scala.swing._

import scala.swing.event.MouseClicked

object SwingUI extends SimpleSwingApplication {

 override def startup(args: Array[String]) {

 dimension = args.headOption map { arg =>

 try { arg.toInt } catch { case _ => DefaultDimension }

 } getOrElse DefaultDimension

 super.startup(args)

 }

 override def top = new MainFrame {

 title = "Game of Life"

 resizable = false

 contents = new BoxPanel(Orientation.Vertical) {

 contents += new GenerationPanel(new Generation, update(contents(0) = _))

 contents += Button("Next") {

 val next = contents(0).asInstanceOf[GenerationPanel].generation.next

 update(contents(0) = _)(next)

 }

 }

 private def update(swap: GenerationPanel => Unit)(generation: Generation) {

 swap(new GenerationPanel(generation, update(swap)))

 pack()

 }

 }

 private class GenerationPanel(

 val generation: Generation,

 update: Generation => Unit)

 extends GridPanel(dimension, dimension) {

 contents appendAll cells

 private lazy val cells = {

 def cell(cell: Cell, alive: Cell => Boolean) = {

 new FlowPanel {

 border = LineBorder.createBlackLineBorder

 background = if (alive(cell)) Color.BLUE else Color.WHITE

 contents += new Label("")

 listenTo(mouse.clicks)

 reactions += {

 case e: MouseClicked => {

 val aliveCells =

 if (alive(cell)) generation.aliveCells - cell

 else generation.aliveCells + cell

 update(new Generation(aliveCells))

 }

 }

 }

 }

 for {

 y <- 0 until dimension

 x <- 0 until dimension

 } yield cell(Cell(x, y), generation.aliveCells.contains)

 }

 }

 private lazy val DefaultDimension = 25

 private var dimension: Int = _

}

Links & Literature

 [1] Lift Web-Framework: http://liftweb.net

 [2] Akka: http://akkasource.org

 [3] Game of Life: http://en.wikipedia.org/wiki/Conways_Game_
 of_Life

 [4] Eclipse Public License: http://www.eclipse.org/legal/epl-v10.html

 [5] Simple Build Tool: http://code.google.com/p/simple-build-tool

 [6] Download SBT-Launcher: http://code.google.com/p/simple-
 build-tool/downloads

 [7] SBT start script: http://code.google.com/p/simple-build-tool/
 wiki/Setup

 [8] Functional programming: http://en.wikipedia.org/wiki/
 Functional_programming

 [9] Joshua Bloch, Effective Java: http://java.sun.com/docs/books/
 effective

 [10] specs: http://code.google.com/p/specs

 [11] Scala Swing: http://www.scala-lang.org/sid/8

 [12] Issue Tracker: http://github.com/weiglewilczek/gameoflife/
 issues

Heiko Seeberger is managing director of WeigleWilczek and is respon-
sible for the technological strategy with a strong focus on Java, Scala,
OSGi, Eclipse RCP, Lift and Akka. Additionally he is an active open sour-
ce committer and shares his expertise in articles and conference talks.

Marcus Denison is studying Computer Science at the University of Ap-
plied Sciences Schmalkalden, focusing on software development. Pre-
sently working on projects for the Weigle Wilczek GmbH expanding his
remarkable Scala and Lift knowledge.

September 27 – 29, 2010
Novotel London West

jaxlondon.com
15% Special Discount for JAXmag

readers. Please use discount code:

JLJM15

Join stellar experts & thought leaders for 3 days of talks,
debate & interactive workshops

Java, Enterprise Architecture,
Agile & Cloud

Lift 2.0

www.JAXenter.com | August 2010 17

Marius Danciu

Lift 2.0 was released in June 30 2010. New in Lift 2.0, is
NoSQL support including built-in support for MongoDB and
CouchDB. Using the Record framework, Lift abstracts the
underlying persistence store allowing users to build support
for a large variety of data back-ends. Lift 2.0 comes with sup-
port for MongoDB and CouchDB.

Also new in Lift 2.0, is high performance JSON support
including an elegant JSON DSL and bidirectional JSON <->
Class conversion. Lift allows working with JSON const-
ructs in a type-safe manner via bi-directional conversions,
query support for JSON sub-construct etc. Listing 1 shows
an example.

There is powerful, concise REST support, as Lift facilitates
the implementation of REST APIs taking leverage of Scala
pattern matching. Thus, we can pattern match by the request
path, HTTP method type, Accept header etc. Example:

serve {
case "api" :: "static" :: _ XmlGet _=> Static
case "api" :: "static" :: _ JsonGet _ => JString("Static")
}

Here, first case matches /api/static path for GET method and
second case matches /api/static path for GET method if Ac-
cept header points to a JSON mime type.

Web Framework for Scala

New in Lift 2.0
Lift [1] is one of the few web frameworks for Scala and is, most famously, the framework that the
location-based game Foursquare is built on. In this article, co-author of "The Definitive Guide to Lift"
and Lift team member Marius Danciu, gives us his run-through of the best new features in Lift 2.0.

Lift 2.0

There is support for running Lift apps outside of a J/EE
Servlet container. Lift fully abstract the HTTP API stack in
order to allow using Lift outside of JEE web containers. Using
different implementations of Lift’s HTTP provider API, one
can run Lift on top of other containers such as Netty or even
on top of proprietary HTTP servers.

Lift 2.0 features declarative systems for single Screen in-
put and validation [2], as well as multiple screen Wizards.
Much of the web is creating input forms for users to submit,
validating those input forms and if the forms pass validation,
an action is performed. If the forms don’t pass validation,
the user is told which fi elds caused the validation problems
and is given an opportunity to fi x the problems. Lift provides
a single-screen input/validation mechanism called LiftScreen
and a multi-page input/validation mechanism (with stateful
next/previous buttons) called Wizard. This post will discuss
LiftScreen and the next post will discuss Wizard.

Both Wizard and Screen share the following attributes:

All logic can be tested without involving HTTP•
All logic is declarative•
All state is managed by Lift•
The back-button works as the user would expect it to •
work
The form elements are strongly typed•
The rendering logic and templates is divorced from the •
form logic

Also:

Radically improved development experience, including 1.
much better error messages and support for dynamically
changing system confi guration.
Support for enterprise infrastructure including JTA and 2.
LDAP.
Improved Comet support including modern browser 3.
detection and better connection starvation detection.
Improved support for testing including super-concise 4.
dependency injection and run-mode detection.

Links & Literature

[1] Lift: http://liftweb.net/

[2] Lift's Screen: https://liftweb.assembla.com/wiki/show/liftweb/Lift%27s_Screen

[3] Simple Build Tool: http://code.google.com/p/simple-build-tool/

Marius Danciu has been working with various Java technologies for about
9 years mostly architecting designing and implementing server side ap-
plications based on Java platform. For a relatively small period of time he
has designed and developed Windows mobile applications using C/C++.
For about two and a half years he has been a committer for Lift framework

contributing with various features, bug became and trying to help out Lift communi-
ty folks. It's safe to say that Scala quickly become his favorite programming langua-
ge due to numerous reasons, such as expressiveness, conciseness, powerful
functional programming support, powerful type system etc.

Support for Simple Build Tool [3].5.
Performance improvements.6.

This is an important step for Lift as it becomes a more and
more robust web framework with features helping address-
real business needs. Lift will continue evolving in multiple
dimensions such as:

features set•
improved programming model – i.e. evolving more to-•
wards functional programming paradigms
robustness •
documentation•
community support•

All these aspects are strongly driven by the Lift community
and committer's vision.

Publisher
Software & Support Media GmbH

Editorial Offi ce Address
Geleitsstraße 14
60599 Frankfurt am Main
Germany
www.jaxenter.com

Editor in Chief: Sebastian Meyen

Editors: Jessica Thornsby, Claudia Fröhling, Hartmut Schlosser

Authors: Jon Pretty, Peter O’Sullivan, Vince Kenealy, Heiko Seeberger,

 Marcus Denison, Marius Danciu

Copy Editor: Nicole Bechtel

Creative Director: Jens Mainz

Layout: Melanie Hahn, Patricia Schwesinger

Sales Clerk:
Mark Hazell
+44 (0)20 7401 4845
markh@jaxlondon.com

Entire contents copyright ©2010 Software & Support Media GmbH. All rights reserved. No
part of this publication may be reproduced, redistributed, posted online, or reused by any
means in any form, including print, electronic, photocopy, internal network, Web or any other
method, without prior written permission of Software & Support Media GmbH

The views expressed are solely those of the authors and do not refl ect the views or po-
sition of their fi rm, any of their clients, or Publisher. Regarding the information, Publisher
disclaims all warranties as to the accuracy, completeness, or adequacy of any informa-
tion, and is not responsible for any errors, omissions, in adequacies, misuse, or the con-
sequences of using any information provided by Pub lisher. Rights of disposal of rewarded
articles belong to Publisher. All mentioned trademarks and service marks are copyrighted
by their respective owners.

Imprint

	Cover_JAXmag_monitor
	2-7 the joy of scala_monitor
	8-16 scala-tutorial-en 3_monitor
	17-18 Lift_monitor

