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1. Introduction

Factor analysis is the common term for a number of statis-
tical techniques for the resolution of a set of variables in
terms of a small number of hypothetical variables, called
factors. Within the statistical framework factor analysis
belongs to the field of multivariate analysis. 1In fact, as
we shall see, factor analysis can be formulated in terms of
partial correlations.

Though the models and methods of factor analysis are of
a statistical nature, factor analysis has been developed mainly
by psychologists, particularly for analyzing the observed scores
of many individuals on a number of psychological tests such
as aptitude and achievements tests. The phenbmeﬂon continually
observed in this situation is that the tests correlate (positi-
vely) with each other. Factor analysis attempts to "explain"
these corrélations by an analysis, whicﬁ, when carried out
successfully, yields underlying factors, smaller in number
than the number of observed variables, that contain all the
essential.information«about the linear inter-relationships
among the test scores.

Factor analysis is most often employed in the behavioral
sciences for studying the measurement .properties (reliabili-
ties and validities) of the instruments used in these sciences.
But the technigques of factor analysis are not limited to
behavioral sciences applications only. Factor analysis has
been used in such diverse fields as meteorology, pelitical

sclence, medicine, geography and business. For a comprehensive



general description of the concepts, theories and techniques
of factor analysis, see Harman (1967). For a statistical treat-
ment of factor analsyis, see Lawley and Maxwell (1971).

This paper gives an elementéry introduction to the basic
ideas and concepts of factor analysis, developed by means of
a simple example. To begin with we shall deal with population
properties and ignore any sampling aspects that may arise.
Thus we are concerned here with the explication of the meaning
of the model rather than with the fitting of the model to
empirical data.

Suppose six tests with test scores denoted by xl, xz, ceey
Xg have been a&ministered to a large population of individgals.
Let us assume that x |

X and x6 are three different

1’ 72
measures of verbal ability and that Xqr X, .and' xg are three
different measures of numerical ability. For simplicity we |
assume that the tests are measured in standard scores so that
each test ﬁas zero mean and unit standérd deviation in the

population. Furthermore suppose the following intercorrelations

are obtained:

Xy X, X4 X, Xg Xe
Xq C1.000 0.720 0.378 0.324 0.270 0.270.1
X, 0.720 1.000 0.336 0.288 0.240 0.240
Xq 0.378 0.336 1.000 .0.420 0.350 0.126
X4 0.324 0.288 0.420 1.000 0.300 0.108
Xg 0.270 0.240 0.350 0.300 1.000 0.090

X 0.270 0.240 0.126 0.108 0.090 1.000

A typical correlation in this symmetric matrix is denoted by pij .



(The symbol p here indicates a population correlation

as distinct from a sample correlation denoted by r .)

For example Pyy = Pp3 = 0.336 1s the correlation between

xz and x3 .

2. Factor Analysis

Factor analysis sets out to explain these correlations
by introducing underlying factors fl’ fz, ... that account
for the correlations. This is done in the following way. One
first asks the gquestion: 1Is there a factor fl such that if
this is partialed out there remains no intercorrelations between

the tests? If so the partial correlation between any pair of

tests Xy and xj after fl has been eliminatgd must vanish,

i.e.,
p(xil ij fl) =0, i#3 . | (1)

This is the same as to say that there exists numbers A A

ll 2!

ey X6 and residual variables @17 €5s «cer € such that
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and such that the correlation between any pailr of residuals

e, and ej is zero, i.e.,



p(ei, ej) =0 . (3)

Each equation in (2) represents the linear least squares

regression of a test score on the factor £ Since all x-

l L ]
variables have been assumed to have zero means we omit the cons-
tant terms in the regressions. A well known property of least

squares regression is that the residual e, in the i:th equation

is uncorrelated with £ [for a proof, see Cramér (1945),

1
section 23.3]. Without loss of generality we may assume that
fl is scaled so that its mean is zero and its variance is one.

Using these results it is easily verified that

= A Ay o 173 . (4)

Pij5 15

Hence the correlatioﬁs in any pair of rows or éolumns of the
correlation matrix are proportional. This does not hold,
however, for the given correlation matrix. For example,
Pgy/Pgy = 1 but p-3/peq = 0.350/0.126 # 1 . We therefore
conclude: that no such factor fl exists.

It is then natural to try to explain the given correlations
by means of two underlying factors instead of one. One then
asks, Are there two factors fl and f2 such that,
when these are partialed out, there remains no intercorrelations

between the tests? If so, the partial correlation between Xy

and xj , given fl and f2 is zero:

o(xi, x.; £

; £, =0, i#j (5)

ll
and the linear least squares regressions of the tests on these

factors may be written as
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X = A, F. + Aszf + e

2 G_J
where the )'s are the regression coefficients and the e's are
residuals in each equation that are uncorrelated with both fl
and f2 . As before, we may, without loss of generality, assume

that E(f,) = E(£,) = 0 and E(fi) = E(f‘;) =1 , where E(x)

is the expected value or mean of a random variable x. The

condition of partial linear independence expressed in (5) is

now equivalent to
plej, e) =0, 1#3 . | (7)

If fl and' f2 are uncorrelated we have, using these results,

p(x,., xj) = E(xixj)
= E[(A; 8, + A, + e;) Ay 5y + ijfz + ej)]
2 2
= A,A AL
11 le(fl)-+A12AJZE(f2) + AilAjZE(flfz).+ AizleE(f]
= Ag1hap * Agphyp - (8)
In our example the following coefficient matrix A = (Aim)

satisfies this equation for all pairs of i and j
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0.889
¢.791
0.501
0.429
0.358
0.296

~0.138 ]
~0.122
0.489
0.419
0.349

-0.046d

This matrix of regression coefficients has actually been obtained

by the method of maximum likelihood,but this should not be of

any concern now,.

At this point,

it is sufficient to

verify that this matrix does indeed reproduce the given corre-

lations, as predicted in equation

verify that

Mitag

+ A

12

A

22

= 0.889 x 0.791 + 0.138 x 0.122

P12

0.7200

(8).

0.7032 + 0.0168

For example, we may

Thus we have established the fact that, for the particular

correlation matrix at hand,

fl and £
X, = 0.
Xy = c.
Xy = 0.
X, = 0.
Xe = 0.
X = 0.
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> such that the representation

;)

there exists two uncorrelated factors

(9)



holds with the condition (7) fulfilled for all pairs 41 and
j. The factors fl and f2 are not, however, the only factors
that satisfy these requirements. For example, the following

two factors also do it

£ 0.988 £, -~ 0.153 f2

*
1 1
. (10)

th
No*
I

0.153 fl + 0.988 f2

* * *
It is easily verified that E(fl) = E(fz) =0 and Var (f;) =

* . * *
= Var (fz) = 1 and that fl and f2 are uncorrelated if fl
and f2 have these properties. Solving (10) for fl and
*® x
f2 in terms of fl and f2 we get
£ = 0.988 £. 53 £.
l - O..r 8 fl + Ool 2
(11)
£, = -0.153 £ + 0.988 £.
2 : 1 * 2

Substituting (11) into (9) , we get the regression of each
x

test on _the factors fI and f2 , as

*

x, = 0.90 £, + el\\
E

X, = 0.80 fl + e,
‘* *

Xy = 0.42 fl + 0.56 f2 + e . (12)
* *

X, = 0.36 f1 + 0.48 f2 t+ e, Z
* * .

Xe = 0.30 fl + 0.40 f2 + eg

xg = 0.30 £, * e



The matrix of regression coefficients is now

[
0.90 0
0.82 @
« . |0.42  0.56
é .

The difference between Q* and é is that Q* exhibits a
kind of simplicity in the sense that some elements are zero.
Factor analysts want to find factors such that the regression
matrix Q is as simple as pessikle in the sense that it contains
as many zero elements as possible. In general, even greater
simplicity may be cbtained by allowing the factors to become

correlated. For example, the following factors

f**-f*
1 "1
P (13)
* % x e
* %
with p(fl r f2 ) = 0.6 , yields
0.9 o ]
0I8 0
*% 0 0.7
A =
- 0 0.6
0 0.5
| 0.3 g0

: 13 - - *
as 1s easily verified by sclving (13) for f and £, and



> % '
substituting these into (12). Note that é has three zeroes

* ' .
in each column whereas A  has only three zerces in one column.

-~

Geometrically, the transformation from one set of factors

to another, as in (10) or (11) , corresponds to a rotation
of coordinate axes in Euclidean space. The two elements in

each row of the matrix é may be regarded as the coordinates of
a point in two-dimensional Euclidean space and these poihts may
be plotted in this space as in Fig. 1. The points in the space
are fixed but the coordinate axes are arbitrary. The correlation
between the two factors is equal to the cosine of the angle
between the two coordinate axes. If the axes are orthogonal the
factors are uncorrelated. In Fig. 1, the axes labeled Ail and

Aiz correspond to the matrix A . If the axis A is rotated

- il
clockwise so that it passes through the points (1),

(2) and (6) while maintaining the orthoggnality--+? 

. * *
of the axes, we get the coordinate system lil and 112 corre-

. x *
sponding to the matrix A . If the first axis is kept at Ail

and the second axis rotated clockwise so that it passes through

the points (3), (4) and (5), we obtain the coordinate system

x|

. * %
Ail and Aiz , in which the cosine of the angle between

the coordinate axes is 0.60 . This cocrresponds to the matrix

* % £ .2 %k
A and the correlation p(fl, fz) = 0.6 . Note that zero

-~

* x %
elements in A or A correspond to points in the space

-~

lying on one coordinate axis.
We have demonstrated the two basic principles of factor

analysis. The first one is the principle of conditional linear

independence. This principle expresses the idea that the factoxs

shall account for all linear relationships among the variab%es~



Once the factors have been partialed out there shall remain
no correlation between the wvariables. In this sense factor

analysis is a method for classification of linear dependence.

In general, for p variables Xy0 X50-04, X, oONCe it has

P
been established that correlation exists, we may ask whether

we can find one factor fl such that

p(xi, Xy £) = 0, 1i#j ,

for all pairs i1 and Jj . 1If the answer is yes we say that

Xyr Xgreeo xp has linear dependence of degree 1. 1If, on the
other hand, the answer is no we ask for two factors fl and

£ such that

2
p(xi. xj; fl' fz) =0, 1i#j .

If such factors can be found we say that Xy xz,...{ xp have

linear dependence of degree 2, etc. It may be shown that this

process always ends after having found some k < p factors

£ £ such that

l, 2,..., fk

p(xll xj; fll le"'t k) = O [4 i#j 1 (14)

in which case we have linear dependence of degree "k among the

tests.

Equation (14) is equivalent to the linear factor analytic

model



Ll

+ AyLf, + o + AL E + e

*1 1171 1252 1k "k

Xy = A21f1 + kzzfz + s.. + kzkfk + e

L . . . . - - . L3 . . L] - . L] - [ 3 . ’ (ls)

xp = kplfl + Apzfz + ... + Apkfk + e
where

o(ei, ej) =0, i#3 ., (16)
for all pairs of i1 and Jj . Each equation in (15) represents

the linear least scuares regression of a variable on the factors

f letoo, f

1’ k °
clents. In psychological terminology these are called factor

The coefficients Xim are regression coeffi-~

loadings. The factors £ fz,..., fk are éalléd common factors

ll
because they measure attributes that are common to two or more

of the variables. The residuals el, €ogrevns ep are called

residuals or unique factors. They représent what is left over

of each variable when the factors have been determined so as to
account for all intercorrelations of the tests. A unique factor

is usually regarded as a sum of an error of measurement and a

specific factor, the specific factor having to do only with the

the particular variable. None of these parts contribute to any
correlation between variables. Each equation in (15) decompos

the variable Xy into two uncorrelated parts,

=c, +e, , (17)



where

c; = Ailfl + Aizfz + ve. + )‘ikfk (18)

is called the common part of x

i
Once a set of k factors has been found that account
for the intercorrelations of the tests, as in (15), these may
be transformed to another set of k factors_that account
equally well for the correlations. In fact, any non-singular
linear transformation of the first set of factors yields a new
set of factors with this property. For our particular data,
(fl’ fz) p (fI, f;) and (f;* , f;*) are three sets of factors,
each one accounting for the correlations in the sense that (15)
and (16) are fulfilled. The regression of the tests on the
factors, as represented by the matrix of factor loadings, for
two different sets of factors, may be gquite different. Since
there are infinitely many sets of factors this is a great in-
determinacy in the model. However, Thurstone (1947) pro-
posed giving attention only to factors for which the variables
have a simple representation. The matrix of factor loadings
shall have as many ze;o elements as possible. If Aim =0,
the m:th factor does not enter into the i:th test. A variable
should not depend on all common factors but only on a small
portion of them. Alsc the same facto; should be involved
only in a small portion of the variables. Such a matrix is
regarded as giving the simplest structure and presumably the
one with the most meaningful psychological interpretation. This

is the second basic principle of factor analysis, the principle




of simple structure. The factor analyst usually tries to -

meet these requirements when he chooses the tests to be in-
cluded in the factorial study.

In our particular example, the matrix éf represents a
simple structure with two uncorrelated factors and Q** repre-

sents a simple structure with two correlated factors. Uncorre-

lated factors are also called orthogonal and correlated factors

are called oblique. Usually simple structure is better achieved
with oblique factors than with orthogonal. In our particular

*
example the interpretation of the matrix A might be that

-~

*
there is some general factor fl that is required to perform

well in all the six tests. In addition to this general factor
*

fI there is a second factor f;_ .- which has nothing to do with fl
but which is necessary to perform well on the numerical tests
Xy X, and Xg - This intergretation is not a vefy-reasonable
one. A better interpretation is based on Q** . Here the.
factors f;* and f;* are interpreted as a verbal and a numeric
factor. These factors correlate 0.6 in the population of
individuals examined. This means that individuals who perform
well on verbal tests are likely to perform well on numerical
tests too.

Consider the equation (17) . Since the common part cy

and the unigque part e are uncorrelated this equation also

i

partitions the variance of x; as

Var (xi) = Var (ci) + Var (ei) . (19)

Var (ci) is called the common variance or the communality of

x; and Var (e;) is called the unique variance or the uniguene




of X4 - The communality of a variable is the portion of a
variable's total variance that is accounted for by the common
factors. The uniqueness is the portion left unexplained by
the common factors.

To determine the communality of Xy Wwe use equation (18)

and get

2

2 2 2 2 2
E(c xilE(fl) + AizE(fz) + ... + AikE(fk) +

+ 2), (f ) + 2) E(f f ) + ...

117 42F 11143

+ 22X £

! AigE(E 8D -

I1£f £,, f2""' £ all have unit variances this becomes

1 k
_ .2 2 2
var (ci) = Ail + *12 + s + Aik + .
+2Ailxizp(fl, fz) +2Ailki3p(fl, f3) + o0 +

+2) fk) . (20)

i,x-125kP (F-1v
If the factors are uncorrelated this reduces further to

-var (ci) = A? + Az + ... + A?

il 12 (21)

which is simply the sum of squares of the elements in the i:th

row of A .

’ »
Using (21) and the matrix A in our example we get



Test Communality Unigqueness

1 0.81 0.1°
2 0.64 0.36
3 0.49 0.51
(22)
4 0.36 0.64
5 0.25 0.75
6 0.09 0.91
Total 2.64 3.36

The same result is obtained if we apply the general formula
(20) to the matrix A~ . This shows that communalities and
uniquenesses are unaffected by linear transformation of factors
such as (13) . That this property is general is evident from
the fact that the unique factors themselves ey ez,..., eP

are unaffected by linear transformations of the common factors.
Hence their variances, the uniquenesses, and their counter-
parts, the communalities, ére invariant under such transforma-

tions.

3. Factor Analysis vs. Component Analysis

Factor analysis 'is often confused with principal component
analysis. The two methods of analysis are similar to some exten
but have entirely different aims. The distinction between factc
and component analysis has been emphaéized by Kendall and
Lawley (1956), Lawley and Maxwell (1971) and others. It is
advisable to keep this distinction clear.

The first principal component of Xir Xoreees xp is de-

fined as the. linear combination of Xl' xz,..-, Xp '

uy = Bllxl + 821x2 + ... + Bplxp



that has . maximal variance, subject to the restriction that

2

2 2 _
Bll + 321 + .. + Bpl = 1 .

The coefficients Bll' 821,..., Bpl are determined as
the elements of the latent vector of the covariance matrix
of X0 Xoreeay xp which corresponds to the largest latent
root 81 {see e.g. Anderson, 1958 , Chapter 11} . The variance
1 is 81 . |

The second principal component of Xyr Xyreeey xp is

of u

that linear combination

u, = Blle + Bzzx2 + J.. + szxp ’
which have maximal variance and is uncorrelated with u; .
The coefficients 812' 822,..., sz are the elements of the
latent vector of the covariance matrix corresponding to the

second largest latent root 6 The variance of u, is 62 .

2 *

The third, fourth, ... principal cémponents of X101 Xy
Feses xp are similarly defined. There will be as many princi-
pal components as there are positive latent roots el, 62,...
of the vaiiance-covariance matrix. Usually the covariance

matrix is positive definite and then all p roots are positive,

thus giving rise to p principal components

+ i=l,2,...,p . (2:

u, = Blixl + BZiXZ ve. + Bpixp'
The matrix of coefficients B = (Bij) form an orthogonal

matrix Ysee e.g. Anderson, 1958', Chapter 11l) and equation (23)

can therefore be inverted to give



+ L BN )

Xy Bilul + Bizuz + Bipup , 1=1,2,...,p- (24)
The equation (24) expresses each variable x; as a linear
combination of p uncorrelated variables with descending
variances.

In some applications of principal component analysis a
few principal components account for a large portion of the
total variance of éll the variables. Equation (24) may then

be cut off after a certain number of terms, k < p say, so that

+ e + v (25)

i = Bijpuy * B4, * BygUx g0

where

v (26)

17 B kei%er F OBy ke2Bke2 Yoo Y Bipl

is interpreted as a ;esidual with small variance.

To bring out the formal éimilarity between factor and
component analysis,we standardize the components Uy s uz,.;., uy
to unit variance by dividing them by /el, /82,..., /Gk '

respectively. If we write

T o
u; = (l//ei)ui

and
x
By3 = Byg7®y

equation (25) becomes

_ *x %* * * * 27)
Xy = By * Byousy voeee F Bhup vy, (

an equation '.that formally resembles the i:th equation in (13).

However, the residuals Vir Voreeey vp are not all uncorrelated



as in (16) . To show this, multiply (25) by Bim , sum over
i from 1 to p and use (23) and the property that the

matrix B 1s orthogonal. We then obtain, for m=1,2,...,k,

EB gB 1}? ]7-58 8 (28)
v, = X, _ ;4
j=p Ly AR =y ey iR

T

=O.

The residuals €17 €5reeny ep , therefore, satisfy the k
linear equations (28) and hence cannot all be uncorrelated.

Summing up we may say that factor analysis is correlation-
. oriented: and principal component analysis is variance-
oriented. Whereas factor analysis aims at reproducing the
intercorrelations of the'variables, principal coﬁponent analysis
aims at reproducing fheir total variance. Although,'in princip=z
component analysis, a few components may extract a large portion
of the total variance, all components are required to reproduce
the correlations exactly. In factor analysis, on the other
hand, the;e are, by definition, a certain number of factors,
fewer than the number of variables, that reproduce the inter-
correlations exactly; These factors, however, do not account
for as much variance as does the same number of principal com-
ponents.

We may illustrate these -~ remarks on the basis of the
example considered in the previous section. The first two

principal components (of unit variances) of Xg Xoreres x6



are

+ 0.24 x, + 0.2 x. + 0.15 x,

0.32 x, + 0.30 x, + 0.26 x

Y 1 2 3 4 5 6
*x
u2 = -0.29x1 - 0.32 x2 + 0734 x3 + 0.38 x4 + 0.42 x5 - 0.60 x6
The equations corresponding to (27) are
_ * 0 *
xl = 0.81 u1 - 0,31 u2 + vl
* *
0.68 u. + 0.36 u. +
X, = 0. u . u v
3 1 23 . (30)
* *
X, = 0.62 ul + 0.40 uz + Vy
= * *
x5 = 0.55 ul + 0.45 U, + Ve
_ * *
Xe = 0.39 ul - 0.60 u, 4 ii)

It is readily verified that these representations do not

reproduce the intercorrelations as do (9) . For example,—

* % *  x .78 0
Bilsjl + BiZBjZ = 0.81 x 0.78 + 0.31 x 0.34

0.6318 + 0.1054

0.7372

which is not equal to The variance of each variable

P12 -
accounted for by the two principal components and the residual

variances are

(2¢



. % %* * * v
i var (Bilul + Bizuz) ~ Var (vi)

1 0.75 0.25
2 0.72 0.28
3 0.59 0.41
4 0.55 0.45 (31)
5 0.51 0.49
6 0.51 0.49
Total 3.63 2.37

This is to be compared with the corresponding table (22) .
The residual variances in (31) are smaller than those of
(22) except for Xy o The total variance accounted for
by the ‘two principal components is 3.63 compared with
2.64 for the two factors. This is a reflection of the
specific factor included 1nAeaéh e, but not in Vioe
In precisely the same way as in factor analysis the two
principal components may be transformed linearly to another
set of components that together account for as much variance
as do the-original principal components. In component
analysis this mayfalsd be done to obtain some interesting
interpretation. Prinicpal components do not usually have
a meaningful interpretation except in terms of their variance
and correlation properties. Another difference betwéen factor
analysis is that components are, by definition, linear
combinations of the variables Kyr Xoreves X whereas the

P
common factors are not. Instead the factors are linear



combinations of the common parts s Co reces cp of the

% % % %
variables. For example, the factors fl and f2 in (13)

have the following representations

R 2 2 2. ~1
f1 =(0.9" + 0.87 + 0.37) (0.9cl + 0.8c2 + 0.3c6)
P (32)
X% 2 2 2,-1
f2 =(0.7° + 0.6 + 0.5%) (0.7c3 + 0.§c4 + 0.5c5)

These are easily verified by substituting Cys Cyreves Cg
from the equations corresponding to (18) into the right

sides of (32) .

Principal'éomponeqt analysis is not a model in the
usual sense. It is merely a descriptive method of analysis
that can be used to analyze all kinds of quantitétive variables.
Factor analysis, on.the other hand, postulates a cer£ain
model (15) , which is to be tested against empirical data.
The equations (15) are not capable of direct verificaﬁion,
since the p variables x, are expressed in terms of p+k
other variables which are not observable, but the equations
iniply a hypothesis that can be tested, namely that the corre-

lations pij of the x's are of the form

= . .o D N X 33
pij Ailkjl +_A12A32 + + Alkxjk (33)
If k is small, then (33) imposes restrictions on the p's

The smaller k 1is,the more restrictive the factor analysis

model is.



4, Estimation

The basic model in factor analysis, as given by (15) ,

can be written in matrix form as

%

= éf + e, (34)

where x 1s a column vector of observations on p variables,

~

§ is a column vector of k common factors, e is a vector
of p residuals, which represent the combined effects of
specific factors and random measurement error, and é = (Aim)
is a pxk matrix of factor locadings.

The residuals in e are assumed to be uncorrelated with
each other and with the common factors £ . All three vectors

-~

x, £ and e are assumed to have zero meaﬁ veétors and their
covariance matrices are denoted respectively by §(pkp) '
®(kxk) and Y¥°(pxp) . The matrix ¥° is diagonal with
elements @ii , i=1,2,...,p , which are the residual or unique
variances of the variables. Since each column of é may be

scaled arbitrarily, we may assume, without loss of generality,
that the éommon factors have unit varilances, so that the diagone.
elements of ¢ are unity.  In-addition, if for k >.1 , -the
common factors are orthogonal or uncorrelated, then the "off-
diagonal elements of ¢ are zeroes and the matrix 9 is an
identity matrix. Otherwise, if the factors are correlated,

$ 1is the correlation matrix of the factors.

~

In view of equation (34) and the assumptions just made,

-~

the covariance matrix I , of the observed variables X is



™M
"

E(xx")

= EL(AL + e) (Af + e)']

= E(AL£'A) + E(Mfe') + E(ef'A’) + E(ee’)

AA' + ¥2 (35)

—~

since the second and third terms are zero because _f and
e were assumed to be uncorrelated.

Equations (34) and (35) represent a model for a
population of individuals. This population is characterized
by the parameters Q, ? and fz . In practice, these para-
meters are unknown and must be estimated from data on N
individuals. Let X4 be the observed value of variable 1
for individual o . Then the available data may be written

as a data matrix X of order Nxp. From this we can compute

the sample mean vector %' = (il, §2,..., §p) and the sample
covariancg matrix § =(sij) ;, Where
- N
X, = (l/N)ailxai, (36)
: N _ _
Si3 = (l/n}mil(xmi - xi)(xmj - xj) ’ (37)

with n=N-1.
The information provided by S may also be represented
by a correlation matrix R = (rij) and a set of standard
deviations Syr Spreees s, where s, = /sii and ryy = Sij/SiS
In most applications both the origin and the unit of

measurement in the observed variables x are arbitrary or

irrelevant, and then only the correlation matrix B is of any



interest. In such cases one takes S to be a correlation
matrix R in what follows. This is what we did in the
previous sections.

In practical work with empirical data, the factor analysic
model does not fit the data perfectly as it did in the artifi-
cial example used in the previous sections. The statistical
problem then is how to fit the model.matrix § of the form
(35) to a sample covariance matrix s . This assumes that
the number of factors k 1s known or specified a priori.
However, in most exploratory factor studies this is not the
case. .Instead.the-investigator wants to determine the smallest X
for which the model fits the data. This is usually:done by-

a sequential procedure testing‘increasing values of k until
a sufficiently good £fit has been obtained (éee é.g. Lawley &
Maxwell, 1871).

Several methods have been developed for estimating the

parameters of the factor analysis modei. Three different

methods of fitting I to S will be considered here, namely

the method of unweighted least squares (ULS), which minimizes

the sum of squares of all the elements of S - I:

U=tr(s - D?, (38)

the method of generalized least squares (GLS), which minimize:
-1

the sum of squares of all the elements of I - S

-~

§ :

G=+¢tr(I - s "2)°, (39)



and the method of maximum likelihood (ML) , which minimizes

M = tr(g'lg) - 1ogl§'1§| -p, (40)
where tr(A) and |A| denotes the trace and the determinant of A, respectively.
The lasg methoa is equivalent to the maximization 6} the
likelihood of the observations under multinormality of X
hence the name maximum‘likelihood method.

Each fitting function U, G and M is to be minimized
with respect to é, ¢ and VY . Derivations and justifications
of these methods are found in Anderson (1959), Jb6reskog (1967),
Lawley & Maxwell (1971) and J&reskog & Goldberger (1972).

All three functions may be minimized numerically by basically
the same algorithm. For details-of the minimization procedure;
see Jbreskog (1977).

The GLS and ML methods are scale-free iﬁ the sense that
analyses of the same variables in two different sets of scales
are related by proper scale factors in the rows of Q and yo.
This property does not hold for ULS. When X has a multivariac
normal distribution,both GLS and ML yield estimates that have
good proéerties in large samples. Both GLS and ML require a
positive definite matrix § , while ULS will work even on a
matrix which is non-Gramian.A

When k > 1 , so that there ismore than one common factor,
it is necessary to remove an element of indeterminacy in the
basic model before the procedure for minimizing the fitting
function can be applied. As demonstrated in the previous
section, this indeterminacy arises because there exists a non-

singular linear transformation of the common factors which
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changes é and in general also g, but leaves I and there-
fore the function unaltered. Hence, to obtain a unique set
of parameters and a corresponding unique set of estimates,
we must impose some additional conditions. These have the
effect of selecting a pérticular set of factors and thus of
defining the parameters uniquely.

The usual way to choose the conditions in exploratory
factor analysis is to choose ¢ =1I, Q'Q to be diagonal in

ULS and A'Y "2

A to be diagonal in GLS and ML and to estimate

é and ¥ subject to these conditions. This leads to an
arbitrary set of factors that may then be subjected to a
rotation to another set of factors to facilitate a more meaning
ful interpretation. .The rotation is guided by the principle

of simple structure. Techniques for rotation of factors are

given by Harman (1967).
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