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tion of the computational differences between PCA and EFA can be found
in multivariate and factor analytic textbooks (e.g., Tabachnick & Fidell,
2001).

Factor Selection

Next, the factor analysis is run using the selected estimation method (e.g.,
ML, PF). The results of the initial analysis are used to determine the
appropriate number of factors to be extracted in subsequent analyses. This
is often considered to be the most crucial decision in EFA because
“underfactoring” (selecting too few factors) and “overfactoring” (selecting
too many factors) can severely compromise the validity of the factor model
and its resulting estimates (e.g., introduce considerable error in the factor
loading estimates), although some research suggests that the consequences
of overfactoring are less severe than those of underfactoring (cf. Fabrigar
et al., 1999). Despite the fact that EFA is an exploratory or descriptive
technique by nature, the decision about the appropriate number of factors
should be guided by substantive considerations, in addition to the statisti-
cal guidelines discussed below. For instance, the validity of a given factor
should be evaluated in part by its interpretability; for example, does a fac-
tor revealed by the EFA have substantive importance? A firm theoretical
background and previous experience with the variables will strongly foster
the interpretability of factors and the evaluation of the overall factor
model. Moreover, factors in the solution should be well defined—that is,
comprised of several indicators that strongly relate to it. Factors that are
represented by two or three indicators may be underdetermined (have
poor determinacy, see below) and highly unstable across replications. The
solution should also be evaluated with regard to whether “trivial” factors
exist in the data; for instance, factors based on differential relationships
among indicators that stem from extraneous or methodological artifacts
(e.g., method effects arising from subsets of very similarly worded or
reverse-worded items; see Chapter 5).

It is also important to note that the number of factors (m) that can be
extracted by EFA is limited by the number of observed measures (p) that
are submitted to the analysis. The upper limit on the number of factors
varies across estimation techniques. For instance, in EFA using PF, the
maximum number of factors that can be extracted is p — 1.7 In ML EFA,
the number of parameters that are estimated in the factor solution (a)
must be equal to or less than the number of elements (b) in the input cor-
relation or covariance matrix (i.e., a < b). As the number of factors (m)
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increases, so does the number of estimated parameters (a) in the solution.
The [act that the maximum number of [actors is mathemaltically limited by
the input data can be problematic for ML analyses that use a small set of
indicators; that is, the data may not support extraction of the number of
factors that are posited to exist on conceptual grounds. For example,
because only four observed measures (p = 4) were involved, it was possible
to extract only one factor (m = 1) in the EFA presented in Table 2.2.
Although a two-factor solution may be conceptually viable (e.g., Cognitive
Depression: D1, D2; Somatic Depression: D3, D4), the number of parame-
ters associated with a two-factor model (b) would exceed the number of
pieces of information in the input correlation matrix (a); a and b can be
readily calculated by the following equations:

a=(p*rm+[(m*x(m+1)]/2)+p-—m? (2.7)
b=[p*x@p+1)]/2 (2.8)

where p = number of observed variables (indicators), and m = number of
factors.

Solving for b indicates that the input matrix contains 10 pieces of
information (see Table 2.1), corresponding to the 6 correlations in the off-
diagonal and the 4 standardized variances on the diagonal; that is, b = (4 *
5) /2 =10. Solving for a (when m = 1) indicates that there are 8 parameters
that are estimated in a one-factor solution; thatis,a=(4*1) + [(1*2)/2)]
+4—-1=4+1+4-1 =8. Because the number of elements of the input
matrix (a = 10) is greater than the number of parameters (b = 8), a single
factor can be extracted from the data (as seen in Table 2.2, the degrees of
freedom associated with the 7?2 fit statistic is 2, corresponding to the differ-
ence a — b, 10 — 8 = 2; see Chapter 3). However, two factors cannot be
extracted, because the number of parameters to be estimated in this model
exceeds the number of elements of the input matrix by one, that is, a =
(4+2)+[2%3) /D] +4-4=8+3+4-4=11.

Each aspect of the equation used to solve for a corresponds to specific
parameters and mathematical restrictions in the EFA model (cf. Eq. 2.4).
The first aspect, (p * m), indicates the number of factor loadings (A,). The
second aspect, ([m* (m + 1)] / 2), indicates the number of factor variances
and covariances (V). The third aspect, p, corresponds to the number of
residual variances (0,). The final aspect, m?2, reflects the number of restric-
tions that are required to identify the EFA model (e.g., mathematically
convenient restrictions, which include fixing factor variances to unity).
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For example, as depicted in Figure 2.1, in the one-factor model there are
four [actor loadings (p * m), one [actor variance ([m * (m + 1)] / 2), and
four indicator residuals (p); however, for identification purposes, the fac-
tor variance is fixed to 1.0 (m? = 1% = 1) and thus the model contains eight
estimated parameters. A two-factor solution would entail eight factor load-
ings (4 * 2), two factor variances and one factor covariance [(2 * 3) / 2],
and four residual variances (total number of parameters = 15). After sub-
tracting the identifying restrictions (m? = 22 = 4, 15— 4 = 11), the number
of parameters to be estimated in the two-factor model (b = 11) still exceeds
the pieces in the input matrix (a = 10). Thus, two factors cannot be
extracted from the data by ML when p = 4.

Especially when an estimation procedure other than ML is used (e.g.,
PF), factor selection is often guided by the eigenvalues generated from
either the unreduced correlation matrix (R; i.e., the input correlation matrix
with unities—1.0s—in the diagonal) or the reduced correlation matrix (R
i.e., the correlation matrix with communality estimates in the diagonal).
For example, the selected SPSS output in Table 2.2 provides eigenvalues
from the unreduced correlation matrix under the heading “Initial Statis-
tics.”> Most multivariate procedures such as EFA rely on eigenvalues and
their corresponding eigenvectors because they summarize variance in a
given correlation or variance/covariance matrix. The calculation of eigen-
values and eigenvectors is beyond the scope of this chapter (for an infor-
mative illustration, see Tabachnick & Fidell, 2001), but for practical pur-
poses, it is useful to view eigenvalues as representing the variance in the
indicators explained by the successive factors. This is illustrated in the
final two sections of Table 2.2; specifically, the eigenvalue corresponding
to the single factor that was extracted to account for the interrelationships
of the four ratings of clinical depression. On the SPSS printout, this
eigenvalue is listed under the heading “SS Loadings” and equals 2.579.
Calculating the sum of squares of the four factor loadings (i.e., .828222 +
.. +.75228? = 2.579) provides the eigenvalue for this factor. Dividing this
eigenvalue by the total variance of the input matrix (because indicators are
standardized, total variance is equal to the number of input measures, p)
yields the proportion of variance in the indicators that is accounted for by
the factor model (i.c., 2.579 / 4 = .645) as also denoted under the heading
“Pct of Var” (64.5%) in the “Final Statistics” section of the SPSS printout in
Table 2.2.

The previous paragraph discussed eigenvalues (e.g., 2.579) that were
derived from the reduced correlation matrix (R,) produced by the EFA
solution. The SPSS printout (Table 2.2) also presents eigenvalues for R,
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listed under the “Initial Statistics” heading (i.e., 2.93, .410, .359, .299). In
line with the notion that eigenvalues communicate variance, note that the
sum of the eigenvalues for R is 4 (i.e., total variance = number of input
indicators, p). As was the case for eigenvalues associated with R,, dividing
the eigenvalue by 4 yields an estimate of explained variance (e.g., 2.93 / 4
= .733; see Table 2.2). Thus, eigenvalues guide the factor selection process
by conveying whether a given factor explains a considerable portion of the
total variance of the observed measures.

Three commonly used factor selection procedures are based on
eigenvalues. They are (1) the Kaiser—Guttman rule; (2) the scree test; and
(3) parallel analysis. The Kaiser—Guttman rule (also referred to as “the Kai-
ser criterion,” or “the eigenvalues > 1.0 rule”) is very straightforward: (1)
obtain the eigenvalues derived from the input correlation matrix, R (as
noted by Fabrigar et al., 1999, researchers occasionally make the mistake
of using eigenvalues of the reduced correlation matrix, R.); (2) determine
how many eigenvalues are greater than 1.0; and (3) use that number to
determine the number of nontrivial latent dimensions that exist in the
input data. As seen in the “Initial Statistics” section of the selected SPSS
output provided in Table 2.2, a single eigenvalue from the input correla-
tion matrix (R) was above 1.0 (i.e., 2.93); thus, the Kaiser—Guttman rule
would suggest a unidimensional latent structure.

The logic of the Kaiser—-Guttman rule is that when an eigenvalue is
less than 1.0, the variance explained by a factor is less than the variance of
a single indicator. Recall that eigenvalues represent variance, and that EFA
standardizes both the latent and observed variables (e.g., the variance that
each standardized input variable contributes to the factor extraction is
1.0). Thus, because a goal of EFA is to reduce a set of input indicators (the
number of latent factors should be smaller than the number of input indi-
cators), if an eigenvalue is less than 1.0, then the corresponding factor
accounts for less variance than the indicator (whose variance equals 1.0).
The Kaiser—-Guttman rule has wide appeal because of its simplicity and
objectivity; in fact, it is the default in popular statistical software packages
such as SPSS. Nevertheless, many methodologists have criticized this pro-
cedure because it can result in either overfactoring or underfactoring, and
because of its somewhat arbitrary nature; for example, sampling error in
the input correlation matrix may result in eigenvalues of .99 and 1.01, but
nonctheless the Kaiser—-Guttman rule would indicate the latter is an
important factor whereas the former is not.

Another popular approach, called the scree test (Cattell, 1966), also
uses the eigenvalues that can be taken from either the input or reduced
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correlation matrix (although Fabrigar et al., 1999, note reasons why scree
tests based R, might be prelerred). To provide a more realistic illustration
of this procedure, a larger data set is used (p = 20). As shown in Figure 2.2,
the scree test employs a graph whereby the eigenvalues form the verti-
cal axis and the factors form the horizontal axis. The graph is in-
spected to determine the last substantial decline in the magnitude of the
eigenvalues—or the point where lines drawn through the plotted eigen-
values change slope. A limitation of this approach is that the results of the
scree test may be ambiguous (e.g., no clear shift in the slope) and open to
subjective interpretation. This is evident in Figure 2.2 where the results
could be interpreted as indicating either a four- or five-factor solution.
However, as noted by Gorsuch (1983), the scree test performs reasonably
well under conditions such as when the sample size is large and when
well-defined factors are present in the data.

Another eigenvalue-based procedure for guiding factor selection is
parallel analysis (Horn, 1965; Humphreys & Montanelli, 1975). The
approach is based on a scree plot of the eigenvalues obtained from the
sample data against eigenvalues that are estimated from a data set of ran-
dom numbers (i.e., the means of eigenvalues produced by multiple sets of
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FIGURE 2.2. Scrce test of eigenvalues from the unreduced correlation matrix.
Arrow indicates region of curve where slope changes.
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completely random data).® Both the observed sample and random data
eigenvalues are plotted, and the appropriate number of [actors is indicated
by the point where the two lines cross. Thus, factor selection is guided by
the number of real eigenvalues greater than the eigenvalues generated
from the random data; that is, if the “real” factor explains less variance
than the corresponding factor obtained from random numbers, it should
not be included in the factor analysis. The term “parallel analysis” refers to
the fact that the random data set(s) should parallel aspects of the actual
research data (e.g., sample size, number of indicators). The rationale of
parallel analysis is that the factor should account for more variance than is
expected by chance (as opposed to more variance than is associated with a
given indicator, per the logic of the Kaiser—Guttman rule). Using the 20-
item data set, parallel analysis suggests four factors (see Figure 2.3). After
the eigenvalue for the fourth factor, the eigenvalues from the randomly
generated data (averages of 50 replications) exceed the eigenvalues of the
research data. Although parallel analysis frequently performs well, like the
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FIGURE 2.3. Parallel analysis using eigenvalues from research and random data

(average ot 50 replications). Arrow indicates that eigenvalues from random data
exceed the eigenvalues from research data after the fourth factor.
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scree test it is sometimes associated with somewhat arbitrary outcomes; for
instance, chance variation in the input correlation matrix may result in
eigenvalues falling just above or below the parallel analysis criterion. A
practical drawback of the procedure is that it is not available in major sta-
tistical software packages such as SAS and SPSS, although parallel analysis
is an option in the Stata software and various shareware programs found
on the Internet (e.g., O’Connor, 2001). In addition, Hayton, Allen, and
Scarpello (2004) have provided syntax for conducting parallel analysis in
SPSS, although the user must save and summarize the eigenvalues gener-
ated from random data outside of SPSS.

As noted above, when a factor estimation procedure other than ML is
employed, eigenvalue-based procedures such as application of the Kaiser—
Guttman rule, the scree test, and parallel analysis can be used to assist in
factor selection. Although these methods can also assist in determining the
appropriate number of factors in ML factor analysis, ML has the advantage
of being a full information estimator that allows for goodness-of-fit evalua-
tion and statistical inference such as significance testing and confidence
interval estimation. ML is covered extensively in later chapters, so only a
brief overview relevant to EFA is provided here. It is helpful to consider
ML EFA as a special case of SEM. For example, like CFA and SEM, ML
EFA provides goodness-of-fit information that can be used to determine
the appropriate number of factors. Various goodness-of-fit statistics (such
as %2, and the root mean square of approximation, RMSEA; Steiger & Lind,
1980) provide different pieces of information about how well the parame-
ters of the factor model are able to reproduce the sample correlations. As
seen earlier in this chapter, the factor loadings of D1 and D2 yielded a pre-
dicted correlation of .696 (i.e., Eq. 2.6), which is very similar to the corre-
lation of these indicators in the sample data (i.e., .70; see correlation
between D1 and D2 in Table 2.1). If the remaining observed relationships
in the input matrix are reproduced as well by the factor loading estimates
in this solution, descriptive fit statistics such the %> and RMSEA will indi-
cate that the one-factor model provided a good fit to the data. As shown in
Table 2.2, the SPSS output provides a %2 test of the fit of the one-factor
solution. Because the X2 was statistically nonsignificant, }%(2) = .20,
p = .90, it could be concluded that the one-factor model provides a reason-
able fit to the data. The nonsignificant y? test suggests the correlation
matrix predicted by the factor model parameters does not differ from the
sample correlation matrix. However, it will be seen in Chapter 3 that y?
has serious limitations, and thus it should not be used as the sole index of
overall model fit.
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The goal of goodness-of-fit approaches is to identify the solution that
reproduces the observed correlations considerably better than more parsi-
monious models (i.e., models involving fewer factors) but is able to repro-
duce these observed relationships equally or nearly as well as more com-
plex solutions (i.e., models with more factors). Accordingly, the researcher
conducting ML EFA is apt to estimate the factor model several times (spec-
itying different numbers of factors) to compare the fit of the solutions. As
in other approaches (e.g., eigenvalue-based methods), factor selection
should not be determined by goodness of fit alone, but should be strongly
assisted by substantive considerations (e.g., prior theory and research evi-
dence) and other aspects of the resulting solution. Although a factor solu-
tion might provide a reasonable fit to the data, it may be unacceptable for
other reasons such as the presence of factors that have no strong concep-
tual basis or utility (e.g., factors arising from methodological artifacts; see
Chapter 5), poorly defined factors (e.g., factors in which only one or two
indicators have strong primary loadings), indicators that do not have
salient loadings on any factor, or indicators that have high loadings on
multiple factors. Again, EFA is largely an exploratory procedure, but sub-
stantive and practical considerations should strongly guide the factor ana-
lytic process. Because of this and other issues (e.g., the role of sampling
error), the results of an initial EFA should be interpreted cautiously and
should be cross-validated (additional EFAs or CFAs should be conducted
using independent data sets).

Factor Rotation

Once the appropriate number of factors has been determined, the ex-
tracted factors are rotated, to foster their interpretability. Tn instances when
two or more factors are involved (rotation does not apply to one-factor
solutions), rotation is possible because of the indeterminate nature of the
common factor model—that is, for any given multiple-factor model, there
exist an infinite number of equally good-fitting solutions, each represented
by a different factor loading matrix. The term simple structure was coined
by Thurstone (1947) to refer to the most readily interpretable solutions in
which (1) each factor is defined by a subset of indicators that load highly
on the factor; and (2) each indicator (ideally) has a high loading on one
factor (often referred to as a primary loading) and has a trivial or close to
zero loading on the remaining factors (referred to as a cross-loading or sec-
ondary loading). In applied research, factor loadings greater than or equal
to .30 or .40 are often interpreted as salient; that is, the indicator is mean-



