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Abstract

In this short note we show that the proposed parameters of the modi-
fied version of Layered-ROLLO-I fall short of the claimed security levels.
We further improve on these complexities by providing a direct attack
to the modified version which reduces the system to a smaller version of
ROLLO-I.

1 Introduction and background

We analyze Layered-ROLLO-I [KKN23b, KKN22a, KKN22b], a rank metric
code-based KEM. The scheme was attacked by Chee, Jeong, Lee, and Ryu [CJLR23],
showing how to reduce the security to the original ROLLO-I. Six weeks later,
the designers of Layered–ROLLO-I released an updated version of their design.
We now show that the modified version can be reduced to ROLLO-I [ABD+19]
by slightly modifying the attack in [CJLR23]. ROLLO (including ROLLO-I)
was deselected from the NIST competition after round 2 because of attacks on
rank-metric codes decreasing the security below the required levels.

This report is organized as follows. The rest of this section is dedicated to
some background and notation. For the sake of simplicity, we will refrain from
introducing the entire framework of rank metric codes, (ideal and blockwise in-
terleaved ideal) low-rank parity check (LRPC) codes, since these notions will
not be directly used in the attacks and analysis. Section 2 introduces the orig-
inal ROLLO-I proposal [ABD+19], submitted to the second round of NIST’s
competition on post-quantum cryptography, and gives its specification. In sec-
tion 3 we give the specification of Layered-ROLLO-I and the attack proposed
on the KpqC forum [CJLR23]. Finally in section 4 we describe the Modified
Layered-ROLLO-I system and recompute the attack costs of Rank Syndrome
Decoding (RSD) following the improvements in [BBC+20]. We show that we
can slightly modify the attack in section 3 to reduce this system to ROLLO-I
and further improve on the attack complexities.
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1.1 Notation

In the specifications in this report we will make use of the following objects.
Denote by Sn

w(Fqm) the set of vectors of length n and rank weight w over Fqm :

Sn
w(Fqm) := {x ∈ Fn

qm | wtR(x) = w}.

The Rank Support Recovery (RSR(F, s, r)) algorithm is used as a decoder in
the decapsulation procedures of ROLLO-I and the followup designs. It recovers
the support of (Fq-linear subspace of Fqm generated by) the error vector given
the support E of the secret key and the rank of the error. This corresponds to
actually finding the error coordinates, by solving a linear system of equations
(see p. 13 of the ROLLO specification [ABD+19]).

Let P (x) ∈ Fq[x] be a polynomial of degree n. We can identify the vector
space Fn

qm with the ring Fqm [x]/(P (x)), where (P (x)) is the ideal of Fqm [x]
generated by P (x). Given u ∈ Fn

qm , denote by u(x) ∈ Fqm [x] the polynomial

u(x) =
∑n−1

i=0 uix
i. Given u,v ∈ Fn

qm , we define their product uv as the
unique vector w ∈ Fn

qm such that w(x) = u(x)v(x) mod P (x). Similarly, we
define Qu = Q(x)u(x) mod P (x) for Q(x) ∈ Fqm [x] and u−1 for u(x) invertible
modulo P (x).

1.2 Acknowledgments

The authors would like to thank Daniel J. Bernstein for discussions regarding
recovering PI in the attack presented in section 4.1.

2 ROLLO-I

The values (q, n,m, r, d, P ) are the system parameters, where q, n,m, r, d are
integers and P ∈ Fqm [x] is a primitive polynomial of degree n.

KeyGen:

• Pick random x,y ∈ Sn
d (Fqm).

• Set h = x−1y mod P .

• Return pk = h and sk = (x,y).

Encap(pk):

• Pick random e1, e2 ∈ Sn
r (Fqm).

• Set E = ⟨e1, e2⟩.
• Return K = hash(E) and c = e1 + e2h mod P .

Decap(sk):

• Set s = xc mod P , F = ⟨x,y⟩ and E = RSR(F, s, r), where ⟨x,y⟩
denotes the Fq-vector space spanned by the columns of x and y (in-
terpreted as vectors in Fm

q ).

• Return K = hash(E).
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3 Layered-ROLLO-I

This description follows [KKN23b] apart from skipping the explicit maps be-
tween coefficient vectors and polynomials. The values (q, n,m, r, d, b, P ) are the
system parameters, where q, n,m, r, d, b are integers, with n a multiple of b, and
P ∈ Fqm [x] is a primitive polynomial of degree n/b. For all given parameter sets
b = 2 and in any case b < n/b. The map Ψ : Fqm [x]/(P ) → Fqm [x]/(P b) casts
polynomials of the first quotient into the second quotient by mapping the input
to the unique polynomial of degree < n/b that is congruent to it modulo P b.
Similarly the map Ω : Fqm [x]/(P b) → Fqm [x]/(P ) reduces the input modulo P .
Since P b is a multiple of P these maps are well defined.

KeyGen:

• Pick random x,y ∈ S
n/b
d (Fqm).

• Pick random irreducible PI ∈ Fqm [x]/(P ) of degree (b− 1).

• Pick random PO, PN ∈ Fqm [x]/(P b) of degree n, with PO invertible
(this last restriction is not stated but required for functionality).

• Set z = PIx
−1y mod P .

• Set PP = POΨ(PI) mod P b and PH = POΨ(z(x)) + PNP mod P b.

• Return pk = (PP , PH) and sk = (x,y, PO, PI).

Encap(pk):

• Pick random E = ⟨e1, e2⟩ ∈ S
n/b
r (Fqm), with e1, e2 each correspond-

ing to a polynomial of degree < n/b− b.

• Set PE1 = Ψ(e1(x)) and PE2 = Ψ(e2(x)).

• Compute c(x) = PPPE1 + PHPE2 mod P b.

• Return K = hash(E) and c.

Decap(sk):

• Compute PC = P−1
O c(x) mod P b.

• Compute c′(x) = P−1
I Ω(PC) mod P .

• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

3.1 Reduction of Layered-ROLLO-I to ROLLO-I

Chee, Jeong, Lee, and Ryu [CJLR23] recomputed the costs of some rank de-
coding attacks, finding out that the proposed parameters were not suitable for
the requested security levels. They also proposed a new reduction of Layered-
ROLLO-I to ROLLO-I by using exclusively the public key of the former. We
give an overview of how the reduction works.
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To start with, notice that PO must has an inverse modulo P b. This has not
been declared in the specification but the decapsulation process requires P−1

O . If
not, decapsulation fails. Also, PI is irreducible of degree (b− 1) < n/b = degP ,
so it has an inverse modulo P and thus Ψ(PI) is invertible modulo P b. Therefore
we can invert PP modulo P b and compute

P−1
P PH = Ψ(PI)

−1Ψ(z(x)) + P−1
P PNP + kP b (1)

for some k ∈ Fqm [x]. Since P divides P b we can take the mod P of the equation,
obtaining

P−1
P PH ≡ Ψ(PI)

−1PIx
−1y ≡ x−1y mod P,

where we use the fact that Ψ(PI) mod P = PI mod P and Ψ(z(x)) mod P =
PIx

−1y.
This shows that the public key of (q, n,m, r, d, b, P )-Layered-ROLLO-I can

be reduced to the public key of (q, n/b,m, r, d, P )-ROLLO-I. The same can be
done for ciphertexts by computing P−1

P c and proceeding as explained above.
Therefore it is possible to reduce an entire instance of (q, n,m, r, d, b, P )-Layered-
ROLLO-I to an instance of (q, n/b,m, r, d, P )-ROLLO-I.

Their paper does not include a table for the new attack costs, but with the
reduction [CJLR23] show that the security is even less than their initial tables
show.

4 Modified Layered-ROLLO-I

This section extracts the description of the modified system from [KKN23a].
The values (q, n1, n2,degPI ,m, r, d, b), where degPI < n1 < n2 are the sys-

tem parameters. There are also two primitive polynomials P1 and P2 of degrees
n1 and n2 respectively. These are not stated among the system parameters but
are needed for the functioning of the system. In the Implementation Codes from
19 May 2023, the polynomial P1 is still the same hardcoded polynomial as for
ROLLO-I; the polynomial P2 may be included either in the system parameters
or in the public key. The slides introducing modified Layered ROLLO-I point to
an increase in the public key size which could be compatible with including P2

in the public key, however it is not stated and we see no benefits of generating
P2 per user, and thus increasing the size of the public key, over including it in
the system parameters. In the following we assume that P1 and P2 are part of
the system parameters.

KeyGen:

• Pick random x,y ∈ Sn1

d (Fqm).

• Pick random irreducible PI ∈ Fqm [x]/(P1) of degree degPI .

• Pick random PO ∈ Fqm [x]/(P2).

• Set z = PIx
−1y mod P1.

• Set PP = POΨ(PI) mod P2 and PH = POΨ(z) mod P2.
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• Return pk = (PP , PH) and sk = (x,y, PO, PI).

The proposed parameters for the modified Layered-ROLLO-I along with
the attacks costs are displayed in Table 1. The complexities of the attacks
are computed using the script provided in [LPR23], the Sage script performs
puncturing of the public code to find the optimal complexity.

Security parameter (q, n1, n2,m, r, d) Cost [BBC+20]

128 (2, 37, 61, 67, 6, 2) 93.72
192 (2, 43, 71, 79, 7, 3) 105.90
256 (2, 53, 103, 97, 7, 3) 114.10

Table 1: Suggested parameters and values of the log2 of attack costs for modified
Layered-ROLLO-I’s suggested parameters. See Modified Layered-ROLLO-I.

This table shows that the security is still lower for these parameters than
the targeted security levels, even though the designers were now aware of the
attacks in [BBC+20].

The modified version of Layered-ROLLO-I overcomes the reduction in sec-
tion 3.1 by replacing the two moduli P and P b by two primitive polynomials
P1 and P2 of degree n1 and n2, respectively. This implies in particular that
the polynomials are coprime. Note that for P2 it is sufficient to choose it as an
irreducible polynomial. In this setting, replacing P with P1 and P b with P2 in
equation (1), one cannot simply reduce modulo P1 as the term kP2 would not
vanish.

This might make it seem like decapsulation cannot recover (e1, e2) because
the moduli are incompatible. The KEM works around this problem by reducing
the degrees of e1 and e2. In this setting, Ω first lifts to Fqm [x] choosing the
unique polynomial of degree less than n2 and then reduces modulo P1, Ψ simi-
larly lifts to Fqm [x] choosing the unique polynomial of degree less than n1 and
then considers this polynomial modulo P2. Given that n2 > n1 no reduction is
needed.

Encap(pk):

• Pick random E = ⟨e1, e2⟩ ∈ Sn2
r (Fqm), with e1, e2 each correspond-

ing to a polynomial of degree < n2 − n1 − deg(PI).

• Set PE1
= e1(x) and PE2

= e2(x).

• Compute c(x) = PPPE1
+ PHPE2

mod P2.

• Return K = hash(E) and c.

Decap(sk):

• Compute c′′ = P−1
O c(x) mod P2.

• Compute c′ = P−1
I Ω(c′′) mod P1.
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• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

Decapsulation works because

c′′ = P−1
O (PPPE1

+ PHPE2
)

= P−1
O (POΨ(PI)PE1

+ POΨ(z(x))PE2
)

= Ψ(PI)PE1
+Ψ(z(x)PE2 mod P2

and the degree of Ψ(PI)PE1
+ Ψ(z(x))PE2

is < n2 by the choice of the error
vectors. Hence, c′′ = Ψ(PI)PE1 +Ψ(z(x)PE2 in Fqm [x] and thus the reduction
modulo P1 preserves the factors PI which can then be divided out.

4.1 Reduction of modified Layered-ROLLO-I to ROLLO-I

In this section we will describe a reduction of the modified Layered-ROLLO-I
to ROLLO-I. Along the way we compute PI and PO, meaning that the system
leaks private information.

The idea of the reduction remains the same, observing that PH/PP can-
cels the PO. However, because of the coprimality of the moduli, we cannot
proceed directly from there to reducing modulo P1. However, we know that
the polynomials involved have very low degrees. Let R = PH/PP mod P2 then
deg(R) < n2 and R = Ψ(z)/Ψ(PI) mod P2 with deg(z) < n1 and deg(PI) small.
Note that the division might cancel common factors of PI and z, however, given
the degrees this is unlikely.

Let MR be the (degPI +1)×n2 matrix over Fqm representing multiplication
of a polynomial of degree degPI by R modulo P2. Consider

Ψ(PI)MR = Ψ(z) (2)

as a linear system of equations in the coefficients of Ψ(PI) and Ψ(z), where
in this case we view Ψ(z) as an element of Fn2

qm consisting of the unknown
coefficients of Ψ(z) and n2−n1 trailing zeroes. Since deg(Ψ(PI))+n1 < n2, the
system has a solution corresponding to the representatives of PI and z modulo
P1 (here we remove the Ψ notation as the solutions will have degree lower than
n1).

We can actually compute PI from a subset of the equations defined by (2).
Indeed, let J ⊂ {n1, . . . , n2 − 1} having cardinality #J = degPI + 1. Denote
by MR(J) the submatrix of MR consisting of the columns indexed by J . We
only require MR(J) to be invertible, which holds for most choices of J as this
system is defined over Fqm , so typically we take the last deg(PI) + 1 columns.
Then from (2) we can compute PI by solving

Ψ(PI)MR(J) = 0 (3)

Since also λΨ(PI)MR(J) = 0 for any constant λ ∈ Fqm we can recover
PI only up to such a constant factor. We will now show that this is not a
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problem. Let P ′
I = λPI . We can recover P ′

O = PP /P
′
I = PO/λ, then z′ =

PH/P ′
O = P ′

Ix
−1y = λPIx

−1y, and finally x−1y = z′/P ′
I which corresponds to

a ROLLO-I public key.
Similarly, for the ciphertext we can recover λc′′ = (P ′

O)
−1c = λΨ(PI)PE1

+
λΨ(z(x))PE2 mod P2. Since λ is constant, the degree of the right-hand side
is below n2 and we can reduce modulo P1 and divide by P ′

I = λPI to get
PE1

+ λx−1yPE2
, matching the ROLLO-I ciphertexts. Note that the degree

constraint on deg(PEi
) < n2−n1−deg(PI) for all proposed parameters implies

that deg(PEi
) < n1, hence this is a valid ciphertext. While this is not pointed

out in the slides, this is also required for the ROLLO-I decoder to work as
RSR(⟨x,y⟩,xc′, r) in the regular decapsulation procedure.

Our experiments show that the time to recover PI is split roughly equally
between the costs of polynomial division modulo P2 to obtain R on the one side
and the costs of computing the matrix MR and computing the left kernel of
MR(J) on the other side, where J is a set of degPI + 1 columns J chosen as
explained above.

The time in seconds to compute the public key transformation described in
this section, on a Linux Mint virtual machine, is stated in Table 2.

Security level degPI Time (s)

128 11 1.85
192 15 2.42
256 20 4.21

Table 2: Average time in seconds (on 50 samples for each security level) needed
to reduced a modified Layered-ROLLO-I public key to ROLLO-I public key.

Note that here we use degPI as stated on the slides. The parameters file in
the implementation package instead uses degPI = 4 for all security levels.

4.2 Updated estimates for the security of modified Lay-
ered ROLLO-I

For each security level, the parameters of the reduced ROLLO-I along with the
attacks costs are reported in Table 3, again using the same script.

Security parameter (q, n,m, r, d) Cost [BBC+20]

128 (2, 37, 67, 6, 2) 84.48
192 (2, 43, 79, 7, 3) 95.04
256 (2, 53, 97, 7, 3) 99.69

Table 3: Values of the log2 of attack costs for modified Layered-ROLLO-I’s
suggested parameters.
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The reduction in code length and dimension from using n2 to using n1 re-
duces the security further compared to Table 1 by more than 10 bits for each
security level.
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