
WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Authorization-Enhanced Mail System
Igor Zboran

izboran@gmail.com
September 15, 2020

Abstract
Electronic mail (email) is the most pervasive form of business information exchange. Email is often used not only as an
interpersonal communication tool, but also as the default choice to send files. In this paper the User-Managed Access
(UMA) authorization framework is proposed to address data storage, access control and data transfer limitations of
current mail systems. Outgoing mail is typically transferred from the source system to the destination system as a
single text-encoded file using Simple Mail Transfer Protocol (SMTP). SMTP is a push protocol only. The UMA
framework introduces a resource server and an authorization server into the mail system. The resource server is
accessed generally by HTTP protocol that was designed as a pull protocol. The two-way push-pull data transfer in
combination with a data storage system controlled by the standardized authorization framework significantly
leverages email security, enhances mail system utilization and elevates the email ecosystem to the ubiquitous
Content Services platform.

Introduction
The main components of the mail system have been designed between 1971 and 1992 by many inventors. In the
course of time, email has become the most commonly used application of the Internet. Nowadays the email is the
only truly decentralized communication system of the Internet and the email infrastructure forms the backbone of
the worldwide digital identity.

Problem
Despite the importance of email infrastructure, the whole ecosystem still relies on over 40 year-old architecture and
protocol design. There are spam and attachment issues from the very beginning. The mail system, while conceptually
sound as a communication means, is structurally obsolete and functionally deficient.

Current Situation

With the rising popularity of free email providers, such as Gmail or Outlook.com, web-browsers are increasingly being
used to access the mail server. From a user standpoint, it is easy to read and send emails via web-browser on any
device, from anywhere in the world. Centralized access to the mailboxes, increases the security of web-based mail
systems.

Current Flaws

Even though the main email service providers claim email accounts to be safe, the fact remains that major security
and functional flaws are not fixed. There is still an attachments delivery dichotomy; the bulky files are not transferred
as an attachment but are shared via links. An “attachment sharing” is not natural for current mail systems where each
message with attachments is expected to be consistent. Shared links pose a consent phishing attack threat where
attacker tricks users into granting a malicious application access to sensitive resources. This is known as an OAuth 2.0
authorization exploit. The Authorization-Enhanced Mail System is resistant to this security exploit as there are no
direct user involvement in access granting.

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Proposed Solution
Given that mail system is lagging behind modern communication and collaboration tools, we propose an OAuth-based
access control management and consequently a new data exchange channel for the email ecosystem.

Motivation

Email still the most popular communication tool is lacking an important part of today's modern systems – an
authorization framework. Understanding this lead us to implement the UMA authorization framework into the email
ecosystem.

Main Concept

The Authorization-Enhanced Mail System is designed to follow the Identity and Access Management (IAM) best
practices while keeping compatibility with current mail systems. We propose to incorporate the UMA framework
between the mail system with standardized SMTP/POP3/IMAP interface and the proprietary RESTful web-based mail
(Webmail) application as it is illustrated in Figure 1.

Figure 1. Main concept

Key points:

1. The actual contents of email messages and attachments are stored separately in the mail repository. Data at
rest are not typically protected by the UMA framework.

2. The contents of the email in the mail repository are temporarily shared with the recipient. Following a
successful sharing process, links to content are sent to the recipient via the email infrastructure. Data in the
transfer process falls under the UMA framework protection.

3. The recipient’s mail agent receives the email with the links to content, authenticates against the sender’s
UMA authorization server, gets authorized access and downloads the contents of the email from the sender’s
mail repository. The agent then creates copies of the downloaded data and stores them in the recipient's
mail repository.

Mail System Mail System
SMTP Push

UMA

Webmail

UMA

Webmail

REST Pull

SMTP
POP3/IMAP

SMTP
POP3/IMAP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

UMA uses a special jargon. For the sake of brevity of this proposal, the following list of acronyms will be used:

• AS Authorization Server
• RS Resource Server
• RO Resource Owner
• RqP Requesting Party
• PAT Protection API (access) Token
• RPT Requesting Party Token
• PCT Persisted Claims Token

We introduce some new acronyms:

• AEMS (pronounced “aims”) Authorization-Enhanced Mail System
• MFA Mail Fetch Agent
• OAT OAuth (access) Token

The UMA framework plays its role during the data exchange process between mailboxes. The Webmail application – a
UMA Webmail extension – gives the sender a user-centric approach to manage and protect his/her ready-to-send
email resources while the MFA that acts on behalf of the recipient is used to access and download sender’s email
resources as it is illustrated in Figure 2.

Figure 2. AEMS/UMA abstract flow

Authorization
Server

Webmail
(Resource Owner Client)

control

UMA Grant
(needs PCT)

Policy API
(needs OAT)

Protection API
(needs PAT)

Sender
(Resource Owner)

delegation

Resource
Server

Protected Resource
(needs RPT)

Manage API
(needs OAT)

manage

protect

Mail Fetch Agent
(Requesting Party Client)

Recipient
(Requesting Party)

access

push claim tokens

delegation

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Figure 3 provides the sequence diagram for the AEMS/UMA Grant when the MFA client pushes a recipient’s email
address claim.

Figure 3. AEMS/UMA Grant sequence diagram (with pushed claim)

The following is a description of steps to get access to a protected resource:

1. The RqP client (aka MFA) is trying to access an UMA protected resource at the RS.
2. Without an access token, the RS returns a permission ticket.
3. The client presents the permission ticket and claim along with client credentials at the AS token endpoint (the

claim value contains recipient’s email address).
4. The AS returns the access token (RPT) and PCT on successful evaluation of the policies.
5. The client again tries to obtain the resource.
6. The RS returns the protected resource after validating the access token.

UMA
Authorization Server

UMA
Resource Server

foo.com

UMA/MFA
Requesting Party Client

Mail Fetch Agent

bar.com

MAA
Mail Access Agent

UMA
Authorization Server

UMA
Resource Server

UMA/MFA
Requesting Party Client

Mail Fetch Agent

MAA
Mail Access Agent

1. Request resource

2. Permission ticket

3. Permission ticket + claim

4. RPT and PCT

5. Request resource with RPT

6. Return protected resource

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Trust Model

The UMA 1.0 authorization framework – built around the OAuth-like protocol standard – was originally designed for
Business-to-Consumer (B2C) scenarios. In UMA the roles of the AS, RS, RO and RqP client are co-located, they are all
under the realm of a single trust domain. Fortunately during the development of UMA 2.0, the working group also
considered a wide ecosystem where you can access a previously unknown UMA-protected RS. AEMS combines a
decentralized email ecosystem with the UMA wide ecosystem to satisfy both the B2C and Business-to-Business (B2B)
scenarios.

Figure 4 illustrates the decentralized three-way trust relationship model:

• Mail Trust – SMTP to SMTP trust (the most vulnerable).
• Mail to UMA Trust – a trust delegation from the mail system to the UMA framework.
• UMA Trust – a trust between UMA components.

There is no direct contract between authorization servers themselves and the UMA roles remain co-located.

Figure 4. alice@foo.com to bob@bar.com trust model

Mail System Mail System
SMTP Push

UMA

Webmail

UMA

Webmail

REST Pull

SMTP
POP3/IMAP

SMTP
POP3/IMAP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

Mail Trust

Mail to UMA Trust

UMA Trust

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Scenarios and Flows

The following scenario represents an email sent from alice.foo.com address to bob.bar.com address assuming that
this is the first ever communication between the foo.com and bar.com security domains and no previous trusted
relationships was established between them. Trusted communication between users in the two security domains can
be divided into an one-time initial registration action and three main phases.

Registration action - get authorization, register, set up relationship

Before the communication itself, a trust relationship governed by a contract must be established between the
bar.com RqP client (aka MFA) and the foo.com AS. To set up a relationship a registration message in an email must be
sent from foo.com domain to the bar.com domain. The sending of the registration message must be authorized by
the foo.com AS. To make this process streamlined OAuth 2.0 Dynamic Client Registration Management Protocol (RFC
7592) is used to avoid manual registration workflow as it is illustrated in Figure 5. The Initial Access Token and the
Software Statement are sent in the registration message. This registration message is generated by the foo.com RS
and is typically bundled with the main email message sent by the user.

Figure 5. alice@foo.com to bob@bar.com dynamic client registration

After registration a trust relationship is set up between the bar.com RqP client and the foo.com AS.

Mail System Mail System

Initial Access Token
Software Statement

UMA

Webmail

UMA

Webmail

Client Registration Request

SMTP
POP3/IMAP

SMTP
POP3/IMAP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

Client Information Response

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Phase I - put resources under protection, create policy, send resources links to recipient(s)

Let us assume the sender Alice – the resource owner (RO) – has prepared a draft email with an attachment. The draft
message and the attachment are stored separately in the mail repository – the UMA protected RS. The draft
resources are not protected by UMA framework at this stage; data are considered inactive and are referred to as
“data at rest”.

Before Alice presses the “Send” button, she fills in the “To” field with the recipient’s email address – bob@bar.com.
This value will be used to set up an access to the email resources.

After Alice presses the “Send” button mutable draft resources become immutable email resources protected by UMA
framework; at this stage data are considered active and are referred to as “data in transfer”. Email resources are
registered at the AS resource registration endpoint. Next, a policy that gives access to email resources to Bob is
created. Finally an email with links to email resources – in the AEMS email format – is composed and sent to the
recipient Bob. The data flow is illustrated in Figure 6.

Figure 6. alice@foo.com to bob@bar.com – send resources links

Note: The specification of the AEMS email format is outside the scope of this document.

MTA
Mail Transfer Agent

MAA
Mail Access Agent

MTA
Mail Transfer Agent

SMTP Push

MAA
Mail Access Agent

UMA
Authorization Server

UMA
Authorization Server

UMA
Resource Server

Webmail
Resource Owner Client

UMA/MFA
Requesting Party Client

Mail Fetch Agent

UMA
Resource Server

UMA/MFA
Requesting Party Client

Mail Fetch Agent

Webmail
Resource Owner Client

Data
SQL, Disk, S3

Data
SQL, Disk, S3

REST Pull

SMTP SMTP

POP3/IMAP POP3/IMAP

REST REST

SMTP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

REST Pull

SMTP

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Phase II – get email with resources links, push claims, get authorization

An email from Alice with links to her mail repository has just arrived at Bob’s email provider. The mail access agent
(MAA) notifies RqP client (aka MFA) – authenticated via IMAP/OAuth 2.0 protocol – of incoming email. The RqP client
loads the email and checks its format. The data flow is illustrated in Figure 7. If it is the AEMS format, links to the
Alice’s mail repository are extracted and authorization process – using the AEMS/UMA Grant protocol – will proceed
to get access to her email resources. The Bob’s email address is used in the pushed claim value. The AEMS/UMA
Grant sequence diagram is illustrated in Figure 3.

Figure 7. alice@foo.com to bob@bar.com – get resources links

MTA
Mail Transfer Agent

MAA
Mail Access Agent

MTA
Mail Transfer Agent

SMTP Push

MAA
Mail Access Agent

UMA
Authorization Server

UMA
Authorization Server

UMA
Resource Server

Webmail
Resource Owner Client

UMA/MFA
Requesting Party Client

Mail Fetch Agent

UMA
Resource Server

UMA/MFA
Requesting Party Client

Mail Fetch Agent

Webmail
Resource Owner Client

Data
SQL, Disk, S3

Data
SQL, Disk, S3

REST Pull

SMTP SMTP

POP3/IMAP POP3/IMAP

REST REST

SMTP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

REST Pull

SMTP

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Phase III - get data, notify Webmail client

After authorization using the AEMS/UMA Grant protocol flow, Alice’s email resources are downloaded as it is
illustrated in the last section of sequence diagram in Figure 3. The RqP client (aka MFA) should store the downloaded
data in the Bob’s mail repository as it is illustrated in Figure 8. Bob’s Webmail application should be notified of Alice’s
incoming email.

Figure 8. alice@foo.com to bob@bar.com – get data

MTA
Mail Transfer Agent

MAA
Mail Access Agent

MTA
Mail Transfer Agent

SMTP Push

MAA
Mail Access Agent

UMA
Authorization Server

UMA
Authorization Server

UMA
Resource Server

Webmail
Resource Owner Client

UMA/MFA
Requesting Party Client

Mail Fetch Agent

UMA
Resource Server

UMA/MFA
Requesting Party Client

Mail Fetch Agent

Webmail
Resource Owner Client

Data
SQL, Disk, S3

Data
SQL, Disk, S3

REST Pull

SMTP SMTP

POP3/IMAP POP3/IMAP

REST REST

SMTP

REST REST

alice@foo.com bob@bar.com

foo.com bar.com

REST Pull

SMTP

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Features and Comparison with Current Mail System
The novelty of the proposed solution approach can be assessed by comparison with the current mail system.

New Features

The proposed AEMS solution provides several new features that are lacking in current mail systems:

• Intrinsic privacy-preserving properties. Each user can have their own separate RS as an mail repository. The
user can run its own RS, even its own AS.

• Built-in cross-domain autonomic (without conscious user intervention) access control using the standardized
UMA framework.

• Autonomous (without interfering with the mail system) data exchange channel.
• No attachments size limit. Attachments are transferred as separate files without size limit.
• Linked content using a clickable hyperlinks.
• Instant messages. Messages and attachments are transferred separately, there is no need to wait for

incoming bulky message-with-attachments file. Attachments-stripped bare messages are transferred with a
higher priority.

Comparison with Current Mail System

From the users point of view, the use of AEMS has many advantages over the standard mail system. In the following
we highlight the advantages of the proposed solution compared to the current mail system.

1. Security and Privacy:

The architecture of AEMS guaranties more control over potential security and privacy issues such as leakage of
intellectual property or loss of confidential content and makes this system compatible with enterprise security
policies.

2. Usability:

At the core of proposed solution is an attempt to improve the usability of email – not only as an interpersonal
communication tool, but also as the default choice to send and store files. With the ability to store, locate, send and
receive any content including documents, images, audios and videos the proposed solution can be considered a
promising platform for Content Services.

3. Integrations:

AEMS provides a standardized Restful API interface to ease the integrations with external marketing, sales, Enterprise
Content Management (ECM) or Customer Relationship Management (CRM) systems.

WARNING: Here be dragons Living draft-00
 last edited on September 15 2020

Conclusion
AEMS can play an important role in communication across various industries in the public and private sectors. The
consolidation of repository, communication and identity represents a central point for information storage and
exchange within any organization.

Overall Summary

The email system technology in combination with the UMA framework creates a composite architecture that meets
the needs of the modern communication tool. This architecture increases robustness and performance of the existing
mail system. The proposed solution can be used as a Content Services platform to provide the storage repository
protected by the standardized authorization framework utilized by users via the Webmail application.

A consolidated access control and a new data exchange mechanism leverages email security and enhances the mail
system utilization. The question arises as to whether the standard implementation of UMA 2.0 will fit into current
mail systems and how difficult it will be to build the UMA Webmail extension.

Future Work

The UMA framework brings into the email ecosystem a new data storage and exchange technology that predestine
the mail system to become more than a bare messaging tool.

The following are potential future R&D areas:

• Explore the upcoming standardized UMA Relationship Manager (aka Wallet) Policy API vs. the proprietary
Policy API.

• Consider a Consent mechanism extension design.
• Explore linked content using a clickable hyperlinks – linking content across the business.
• Design an extension for exchanging tagged messages and attachments – grouping content across the

business.
• Design an attachment versioning extension – the attachments with the same content are versioned.
• Explore health information exchange between healthcare professionals and inspect use of email

communication between patients and healthcare professionals.
• Employ regular mail clients and applications using JMAP protocol to support a standardized email API.

A prototype implementation of the proposed solution, working as a proof of concept, would be interesting to build.

About the Author

Igor Zboran is a mechanical engineer by education with professional experience as a software engineer and solutions
architect. He'd like to transform his knowledge into a useful system or service that people would love to use.

Igor received Ing. degree in Mechanical Engineering from the University of Žilina, Slovakia in 1988. After graduating,
he worked in several small private companies as a software developer. From 2008 to 2009, he provided expert advice
to Prague City Hall IT department as an external consultant. He invented a new decentralized Identity-Based Privacy
(IBP) trusted model built around OAuth2 and OpenID Connect standards. Igor is a strong proponent of open source
software and open standards.

