
The Model-View-Controller Packages
Introduction
Version 12.1 of the platform introduced a new format for model-view-controller paradigm.
Principly, the classes JModel, JView and JController are now interfaces and the base abstract
classes are now JModelBase, JViewBase and JControllerBase respectively. In additional,
all classes have been simplified removing a lot of coupling with the Joomla CMS that is
unnecessary for standalone Joomla Platform applications.
All the API for controllers, models and views has moved from the Application package into
separate Controller, Model and View packages respectively. Much of the API previously
devoted to adding include paths for each of the classes has been removed because of
improvements in the auto-loader or by registering or discovering classes explicitly using
JLoader.
Controllers only support one executable task per class via the execute method. This differs
from the legacy JController class which mapped tasks to methods in a single class. Messages
and redirection are not always required so have been dropped in this base class. They can
be provided in a downstream class to suit individual applications. Likewise, methods to create
models and views have been dropped in favor of using application or package factory classes.
Models have been greatly simplified in comparison to their legacy counterpart. The base model
is nothing more than a class to hold state. All database support methods have been dropped
except for database object support in JModelDatabase. Extended model classes such as
JModelAdmin, JModelForm, JModelItemand JModelList are part of the legacy platform. Most of
their function has been replaced by API availble in the Content package also new in 12.1.
Views have also been greatly simplified. Views are now injected with a single model and a
controller. Magic get methods have been dropped in favor of using the model directly. Similarly,
assignment methods have also been dropped in favor of setting class properties explicitly. The
JViewHtml class still implements layout support albeit in a simplified manner.

JController
JController is an interface that requires a class to be implemented with an execute, a
getApplication and a getInput method.

JControllerBase

Construction
The constructor for JControllerBase takes an optional JInput object and an optional
JApplciationBase object. If either is omitted, the constructor defers to the protected loadInput
and loadApplication methods respectively. These methods can be overriden in derived classes
if the default application and request input is not appropriate.

Usage
The JControllerBase class is abstract so cannot be used directly. The derived class must
implement the execute method to satisfy the interface requirements. Note that the execute
method no longer takes a "task" argument as each controller class. Multi-task controllers are still
possible but not recommended. Each controller class should do just one sort of 'thing', just as
saving, deleting, checking in, checking out and so on. However, controllers, or even models and
views, have the liberty of invoking other controllers to allow for HMVC architectures.

Example 2.22. Example controller
/**
 * My custom controller.
 *
 * @package Examples
 *
 * @since 12.1
 */

class MyController extends JControllerBase
{

/**
 * Method to execute the controller.
 *
 * @return void
 *
 * @since 12.1
 * @throws RuntimeException
 */
public function execute()
{

echo time();
}

}

// Instantiate the controller.
$controller = new MyController;

// Print the time.
$controller->execute();

Serialization
The JControllerBase class implements Serializable. When serializing, only the input property
is serialized. When unserializing, the input variable is unserialized and the internal application
property is loaded at runtime.

JModel
JModel is an interface that requires a class to be implemented with a getState and a setState
method.

JModelBase

Construction
The contructor for JModelBase takes an optional JRegistry object that defines the state of the
model. If omitted, the contructor defers to the protectedloadState method. This method can be
overriden in a derived class and takes the place of the populateState method used in the legacy
model class.

Usage

The JModelBase class is abstract so cannot be used directly. All requirements of the interface
are already satisfied by the base class.
Example 2.23. Example model

/**
 * My custom model.
 *
 * @pacakge Examples
 *
 * @since 12.1
 */

class MyModel extends JModelBase
{

/**
 * Get the time.
 *
 * @return integer
 *
 * @since 12.1
 */
public function getTime()
{

return time();
}

}

JModelDatabase

Construction
JModelDatabase is extended from JModelBase and the contructor takes an optional
JDatabaseDriver object and an optional JRegistry object (the same one that JModelBase uses).
If the database object is omitted, the contructor defers to the protected loadDb method which
loads the database object from the platform factory.

Usage
The JModelDatabase class is abstract so cannot be used directly. It forms a base for any model
that needs to interact with a database.
Example 2.24. Example database model

/**
 * My custom database model.
 *
 * @package Examples
 *
 * @since 12.1
 */

class MyDatabaseModel extends JModelDatabase
{

/**
 * Get the content count.
 *

 * @return integer
 *
 * @since 12.1
 * @throws RuntimeException on database error.
 */
public function getCount()
{

// Get the query builder from the internal database object.
$q = $this->db->getQuery(true);

// Prepare the query to count the number of content records.
$q->select('COUNT(*)')

->from($q->qn('#__content'));

$this->db->setQuery($q);

// Execute and return the result.
return $this->db->loadResult();

}
}

try
{

$model = new MyDatabaseModel;
$count = $model->getCount();

}
catch (RuntimeException $e)
{

// Handle database error.
}

JView
JView is an interface that requires a class to be implemented with an escape and a render
method.

JViewBase

Construction
The contructor for JViewBase takes a JModel object and a JController object. Both are
mandatory.
Note that these are interfaces so the objects do no necessarily have to extend from JModelBase
or JControllerBase classes. Given that, the view should only rely on the API that is exposed by
the interface and not concrete classes unless the contructor is changed in a derived class to
take more explicit classes or interaces as required by the developer.

Usage
The JViewBase class is abstract so cannot be used directly. It forms a simple base for rendering
any kind of data. The class already implements the escapemethod so only a render method

need to be added. Views derived from this class would be used to support very simple cases,
well suited to supporting web services returning JSON, XML or possibly binary data types. This
class does not support layouts.
Example 2.25. Example view

/**
 * My custom view.
 *
 * @package Examples
 *
 * @since 12.1
 */

class MyView extends JViewBase
{

/**
 * Render some data
 *
 * @return string The rendered view.
 *
 * @since 12.1
 * @throws RuntimeException on database error.
 */
public function render()
{

// Prepare some data from the model.
$data = array(

'count' => $this->model->getCount()
);

// Convert the data to JSON format.
return json_encode($data);

}
}

try
{

$view = new MyView(new MyDatabaseModel, new MyController);
echo $view->render();

}
catch (RuntimeException $e)
{

// Handle database error.
}

JViewHtml

Construction
JViewHtml is extended from JViewBase. The constructor, in addition to the model and controller
arguments, take an optional SplPriorityQueue object that serves as a lookup for layouts. If
omitted, the view defers to the protected loadPaths method.

Usage
The JViewHtml class is abstract so cannot be used directly. This view class implements render.
It will try to find the layout, include it using output buffering and return the result. The following
examples show a layout file that is assumed to be stored in a generic layout folder not stored
under the web-server root.
Example 2.26. Example HTML layout
<?php
/**
 * Example layout "layouts/count.php".
 *
 * @package Examples
 * @since 12.1
 */

// Declare variables to support type hinting.

/** @var $this MyHtmlView */
?>

<dl>

<dt>Count</dt>
<dd><?php echo $this->model->getCount(); ?></dd>

</dl>

Example 2.27. Example HTML view

/**
 * My custom HTML view.
 *
 * @package Examples
 * @since 12.1
 */

class MyHtmlView extends JViewHtml
{

/**
 * Redefine the model so the correct type hinting is available in the layout.
 *
 * @var MyDatabaseModel
 * @since 12.1
 */
protected $model;

}

try
{

$paths = new SplPriorityQueue;
$paths->insert(__DIR__ . '/layouts');

$view = new MyView(new MyDatabaseModel, new MyController, $paths);
$view->setLayout('count');
echo $view->render();

}
catch (RuntimeException $e)
{

// Handle database error.
}

