
Continuous Integration for

Staged Build (for Java)
Productivity Innovation Lab,

NHN Corp

2011.12

QE-BOK Quality Engineering-Body Of Knowledge For external
Education

ⓒ 2011 NHN CORPORATION

1. Course Introduction

3 / Staged Build for Java

Objective

 Understand NHN Quality Criteria

 Understand CI / Staged Build

 Learn how to set up Hudon(Jenkins) and mandatory plugins

1.1

4 / Staged Build for Java

WHO AM I

 JunHo Yoon

 Work Experience

 2008~ Productivity Innovation Lab, NHN

 2004~2008 SW Laboratory, Samsung Electronics

 Areas of expertise

 Software Engineering in SW Development Wide

 Enterprise Web Application Development

 Open Source Project

1.2

2. Staged Build

6 / Staged Build for Java

Broken Window Theory

2.1

7 / Staged Build for Java

Continuous Integration(CI)

2.2

Developer 1

SVN
Repository

Developer 2

Developer 3

CI Server Test Web
Server

commit polling

Build
Test
Analysis
Reporting
…

Deploy

8 / Staged Build for Java

Staged Build

2.3

Build Integration procedure which is repeatedly performed
to release working and tested SW at the end of each iteration

until the development finishes
 Advanced CI Usage

① Src Checkout

④ Commit
 (Write commit logs)

③ Developer
 Build

⑥ Commit
 Build

⑧ Integration
 Build

② Write code
 / Unit Test

⑩ Release
 Build

⑦ Scheduling
 / Checkout

⑤ Poll the src repo
 Checkout the changes

⑨ [When features complete] Create Release Branch &
 Request Build / Checkout

Feedback

Monitoring

Build & Deployment System

CI Server

Src Repo

Repeat until features complete

Continuous Integration Iteration

Small Release

9 / Staged Build for Java

Staged Build
Commit Build

2.3

When • Schedule : Whenever developer commit changes info source repo.

• Be able to change pooling timing(10min?)

• Duration : within 10 min for build and test.

What • Detect collision b/w changes from several developers.

• Execute all unit tests developed by several developers

 - Tests which is independent from DB, Platform, Network,

 - DAO CRUD tests (if necessary)

• Perform code reviews on major changes

Post-

Condition

• Build success

• All passed unit test

Builds which is performed in the separated build server
whenever code repository changes occur to detect changes

collisions from several developers.

10 / Staged Build for Java

Staged Build
Integration Build

2.3

When • Schedule : Daily(Nightly). Change the interval if necessary.
• Duration : with 2 hours

What • Configure build env and compile

• Run unit and integration tests with real server like test environments.
 - Tests dependent on middleware.
 - DAO CRUD tests / Automated UI Test
 - long time taking regression test

• Run code analysis
- Coding Convention, Code Coverage, Static Analysis,
 Duplicate Analysis, Cyclomatic Complexity

• (When finishing dev scope) Perform dev team own sanity test

Post-

Condition

• Build success

• Satisfy Quality Practice Criteria
 - Coding standard conformance rate, code coverage, static analysis defect rate

• (When finishing dev scope) More than 90% pass rate of sanity test

Builds which is performed in the separated build server periodically
with more advanced integration test and code analysis

11 / Staged Build for Java

Staged Build
Why separate commit build and integration build

 Commit build is performed to detect collisions of committed code from
several developers. Therefore fast feedback is necessary.

 Minimum build activity

 Needs to be real-time.

 Integration build is performed with full analysis and test to detect more
defect behind. It takes time.

 Maximize build activity

 Not needs to be real-time.

 By separating them,
Minimize CI server load and Give fast feedback to developers.

2.3

Maximize CI Server operation efficiency

12 / Staged Build for Java

Quality Practices
Mandatory Practices and Optional Practices

 Quality Practices

 The minimum quality activities performed by NHN developers

to guarantee the defect less SW

 Enforced from 2009

2.4

Mandatory Practice

Code

Coverage

Static

Analysis

Coding

Convention

Optional Practice

Code

Review

Cyclomatic

Complexity

Code

Duplication

Analysis

13 / Staged Build for Java

Quality Practices
Mandatory Practice - Code Coverage

 Should perform developer’s automated tests and check the code

coverage to improve code quality

 Test should be measurable and repeatable.

 Test coverages from not only Unit Test but also Integration test

can be accumulated.

2.4

Metrics Measures Red Yellow Green Gold

Statement
Code Coverage(%)

A/B*100

A. Tested Statements
B. Statements

COV<30% 30%≤COV<50% 50%≤COV<70% 70%≤COV

Branch
Code Coverage(%)

A/B*100

A. Tested Branches
B. Branches

COV<20% 20%≤COV<40% 40%≤COV<60% 60%≤COV

14 / Staged Build for Java

Quality Practices
Mandatory Practice - Static Analysis

 Should remove Static analysis defects found by Static

 Run static analysis tools and review the defect found.

 Run static analysis tools again when finishing development and

Find out the status of defects remained.

2.4

Metrics1 Measures Red Yellow Green Gold

Static Analysis
Defect Density
(Count/KLOC)

A/B*100

A. Weighted count of
remained static analysis
defect

B. Total LOC

6≤Density 4≤Density<6 2≤Density<4 Density<2

15 / Staged Build for Java

Quality Practices
Mandatory Practice - Coding Convention

 Should confirm NHN Coding Standard to keep the same style

 in newly created and modified code.

 Using the Custom NHN checkstyle extensions(Java)

 Using the N’SIQ CppStyle (C/C++)

2.4

Metrics Measures Red Yellow Green Gold

Coding Standard
Conformance Rate

(CSCR / %)
A/B*100

A. Count of files
in which no violation
found

B. Count of total checked
files

CSCR<30% 30%≤CSCR<70% 70%≤CSCR<90% 90%≤CSCR

16 / Staged Build for Java

Quality Practices
Optional Practice - Code Review

 Review the newly created and modified code

 How : Choose one of offline or online review

 What : Define criteria which code will be reviewed

 Review code as much as possible. However not mandatory.

2.4

Metrics Measures Red Yellow Green Gold

Code Review
Rate (%)
A/B*100

A. Total LOC of files
 reviewed
B. Total LOC of
 modified or created files

CR<30% 30%≤CR<60% 60%≤CR<80% 80%≤CR

17 / Staged Build for Java

Quality Practices
Optional Practice - Cyclomatic Complexity

 Identify the complexity code and Reduce complexity

 Find out complex methods which need to be refactored using tools

 Check the test coverage of complex methods

 Reduce complex methods. However not mandatory.

 Cyclomatic Complexity : Simply the count of if / while / for

statements per method

2.4

Metrics Measures Red Yellow Green Gold

CC≥30 rate (%)
= A/B

A. The count of
CC≥30 method

B. The count of total
methods

Not measured
or

Not meet org
goal

Meet org goal < 0.5% = 0%

18 / Staged Build for Java

Quality Practices
Optional Practice - Code Duplication Reduction

 Reduce and Refactor duplicated code.

 Identify and prioritize highly duplicated code and refactor them with

generalization/reuse/abstractions.

 Each project can perform Code Duplication Reduction based on their own

decision,

Code Duplication Reduction is not the mandatory subject to be collected.

 Recommendation

 Reduce High Prioritized Duplicated code

 Reduce Normal, Low Prioritized Duplicated code by each own decision

2.4

High Normal Low

50>Duplicated Line 25<Duplicated Line≤50 Duplicated Line≤25

19 / Staged Build for Java

Quality Practices
Overall Rating Criteria

 Code Quality(CQ)?

 Indicator to determine the result of Quality Practice performance

efficiency

 Varies from development area.

 Code Quality Rating Criteria (e.g : Portal service)

2.4

Target Quality Metric Weight Red Yellow Green Gold

Code Coverage

Coding Standard Conformance Rate

Static Analysis Defect Density

30

20

20

CQ<20 20≤CQ<40 40≤CQ<50 50≤CQ≤70

3. Hudson/Jenkins

21 / Staged Build for Java

Quality Practice on CI

3.1

Coding

Convention

Static

Analysis

Code

Coverage

Cyclomatic

Complexity

Code

Duplication

Analysis

22 / Staged Build for Java

Quality Practice on CI
Tool support

3.2

Coding

Convention

Static

Analysis

Code

Coverage

Cyclomatic

Complexity

Code

Duplication

Analysis

Checkstyle

N’SIQCppStyle

Klocwork

Clover

Bullseye/Gcov

N’SIQ

Collector

CPD

23 / Staged Build for Java

Quality Practice on CI
With Hudson

3.2

Checkstyle

N’SIQCppStyle

Klocwork

Clover

Bullseye/Gcov

N’SIQ

Collector

CPD

Hudson / Jenkins
Extensible continuous integration server

All tools are executed or collected by Jenkins

24 / Staged Build for Java

Hudson Introduction
About

 Jenkins monitors executions of repeated jobs, such as building a software

project or jobs run by cron. Among those things, current Jenkins

focuses on the following two jobs:

 Current Jenkins focuses on the following two jobs:

 Building/testing software projects continuously

 Monitoring executions of externally-run jobs

3.3

25 / Staged Build for Java

Hudson Introduction
Hudson vs Jenkins

3.3

26 / Staged Build for Java

Hudson Introduction
Jenkins Creator

3.3

Kyosuke
Kawaguchi

27 / Staged Build for Java

Hudson Introduction
Hudson History

 From Summer, 2004

3.3

28 / Staged Build for Java

Hudson Introduction
Hudson History

 2006

3.3

29 / Staged Build for Java

Hudson Introduction
Jenkins History

 Jan. 2011. Divorce from Oracle

 Oracle: “you do it our way or highway”

 Community chose highway: 214 to 14

 That’s when we became Jenkins

3.3

0

10000

20000

30000

40000
Estimated Oracle Jenkins Old Hudson

30 / Staged Build for Java

Hudson Introduction
Usage All Around the World

3.3

31 / Staged Build for Java

Hudson Features

 Easy installation

 Easy configuration

 Change set support

 Permanent links

 RSS/E-mail/IM Integration

 After-the-fact tagging

 JUnit/TestNG test reporting

 Distributed builds

 File fingerprinting

 Plugin Support

 Easy plugin development environment support

3.4

32 / Staged Build for Java

Hudson Features
Layout - Overall

3.4

33 / Staged Build for Java

Hudson Features
Layout – Project

3.4

34 / Staged Build for Java

Hudson Features
Structural Architecture

 Conceptual == Physical layer

 Each concept is mapped to Object.

 Each object keeps its persistency with XML

3.4

Hudson JobA

JobB

JobC

Build1

Build3

Build2

Hudson hudson = Hudson.getInstance();
((AbstractProject)hudson.getJob("jobA")).getBuildByNumber(3);

35 / Staged Build for Java

Build

Hudson Features
Runtime Architecture

3.4

CheckOut/Update

Build

PostBuild

Builder:batch

Builder:shell

Recorder:checkstyle

Recorder:clover

Workspace

Notifier:Email

Scheduler Project

SCM:SVN

SCM:GIT

36 / Staged Build for Java

Hudson plugins

 Source code management

 Build triggers

 Build tools

 Build wrappers

 Build notifiers

 Slave launchers and controllers

 Build reports

 Artifact uploaders

 Other post-build actions

 External site/tool integrations…

3.5

ClearCase Plugin
File System SCM Plugin
Mercurial Plugin
Perforce Plugin
Harvest Plugin
Team Foundation Server Plugin
Template Project Plugin
Accurev Plugin
CVS Plugin
…

* For more details refer
 http://wiki.hudson-ci.org/display/HUDSON/Plugins

More than 400 plugins

http://wiki.hudson-ci.org/display/HUDSON/Plugins
http://wiki.hudson-ci.org/display/HUDSON/Plugins
http://wiki.hudson-ci.org/display/HUDSON/Plugins

37 / Staged Build for Java

Hudson plugin
Hudson plugin developed By NHN

 Hudson QD Plugin : Sync collected metric with Quality Dashboard

 Hudson N’SIQ Collector Plugin : Show LOC, Complexity collected by N’SIQCollector

 Hudson Klocwork Plugin : Show static analysis result analyzed by Klocwork

 Hudson NHN Auth Plugin : Make hudson authenticated using MyNEXT ID

 Hudson CovComplPlot Plugin : Show Coverage/Complexity relation graph

 Hudson SimpleUpdateSite Plugin : NHN Custom Hudson Plugin updatesite

3.5

38 / Staged Build for Java

Hudson and QualityDashboard
Manager Needs

3.6

I’m Steve Jobs.

I’d like to see all apple

projects status in a big

picture.

39 / Staged Build for Java

Hudson and QualityDashboard
Quality Governance

3.6

Quality Dashboard

40 / Staged Build for Java

Hudson and QualityDashboard
Quality Governance

 Qualty Dashboard (http://nsiq.nhncorp.com/)

 Each Hudson Project report its metrics to QD by QD plugin

3.6

http://nsiq.nhncorp.com/

4. CI Lab

42 / Staged Build for Java

Install Hudson
Download

 All Instructions are available in

 http://dev.naver.com/projects/hudsonedu/wiki/Java실습스크립트

 Hudson Download

 http://hudson-ci.org/downloads/war/

 Download 1.395.1 version

 Tomcat Download

 http://tomcat.apache.org/ Tomcat 6.0

Binary Distributions Core zip link

 Download and unzip

4.1

http://dev.naver.com/projects/hudsonedu/wiki/Java
http://dev.naver.com/projects/hudsonedu/wiki/Java
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://tomcat.apache.org/

43 / Staged Build for Java

Install Hudson
Startup Hudson

 Put the downloaded hudson.war into {TOMCAT_HOME}/webapps

 Run ${TOMCAT_HOME}/bin/startup.bat(win) or startup.sh (linux)

 Open http://localhost:8080/hudson and see the following page

4.1

http://localhost:8080/hudson

44 / Staged Build for Java

Install Hudson
Configure System menu

 “Manage Hudson” ”Configure System” : Hudson Global Configuration

 Setup general Hudson

env configuration

 Setup Build Tool option

(Maven, JDK, Ant, Shell) and

Configure the plugins’ global behavior

 Automatically installable

(Ant, Maven, JDK only)

4.1

45 / Staged Build for Java

Install Hudson
Setup JDK

 Click Add JDK

 If JDK is already installed

1. Uncheck Install automatically

2. Put your own JDK label(e.g : jdk 1.6.0_25) in the “name” field

3. Put JDK path in JAVA_HOME(e.g : C:\Program Files\Java\jdk1.6.0_25)

 If JDK is not installed

1. Put your own JDK label(e.g : jdk 1.6.0_25) in the “name” field

2. Choose JDK version being installed

 Click “Save” button in the bottom

4.1

46 / Staged Build for Java

Install Hudson
Setup Maven

 Click Add Maven

 If Maven is already installed

1. Uncheck Install automatically

2. Put your own Maven label (e.g. Maven 2.2.1) in the “name” field

3. Put Maven path in MAVEN_HOME(e.g. C:\dev\apache-maven-2.2.1)

 If Maven is not installed

1. Put your own Maven label(e.g. Maven 2.2.1) in the “name” field

2. Put Maven path in MAVEN_HOME(e.g. C:\dev\apache-maven-2.2.1)

 Click “Save” button in the bottom

 You can setup Ant same way as Maven

4.1

47 / Staged Build for Java

Install Hudson
SimpleUpdateSite Plugin

 Enable each Hudson to connect Custom Plugin UpdateSite

 If you’re using Jenkins, you can download it from Jenking update site.

4.1

48 / Staged Build for Java

Install Hudson
SimpleUpdateSite Plugin

 If you have Admin permission,
show following.

1. Select plugins to be installed

 N : New plugin

 U : Updatable plugin

 I : Already installed plugin

2. Click Install button

4.1

49 / Staged Build for Java

Lab Introduction
Step

 Create Hudson Project

 Setup Sample Project Checkout

 Setup Unit Test

 Setup QP Tools

4.2

50 / Staged Build for Java

Lab Introduction
Sample Project

 Sample project in dev.naver.com

 https://dev.naver.com/svn/hudsonedu/trunk

4.2

51 / Staged Build for Java

Configure Hudson Project
Register new Hudson Project (Job)

 Click “New Job” to register

new Hudson Project

 Job Name

 Should be [a-zA-Z][a-zA-Z0-9_]*

 Why??

 It will be used as the folder name
in which code are checked out and built.

 Select “Build a free-style software project”

4.3

Create Hudson Project with “edu_XX”

52 / Staged Build for Java

Configure Hudson Project
NHNProject Plugin

 NHNProject Plugin :

 Provide and display properties which represent project characteristics

4.3

53 / Staged Build for Java

Configure Hudson Project
NHNProject Plugin

 Installable from SimpleUpdateSite

 How to configure NHNProject plugin

4.3

Assign your project name / project type / build type

54 / Staged Build for Java

Configure Hudson Project
Src Repo

 Specify source code repository

4.3

Specify your SVN repo

55 / Staged Build for Java

Configure Hudson Project
Build Trigger

 Build Triggers : Set up the Hudson build start event

 Build after other projects are build

 Build periodically

 Poll SCM : Execute build when detecting source code changes(commit)

 Cron expression

4.3

Min Hour Date Month Week

E.g)

 Every minute * * * * *

 Every 5 min */5 * * * *

56 / Staged Build for Java

Configure Hudson Project
Add Builders

 Build : Execute build command for various executor

 Execute shell(Linux)

 Invoke top-level Maven targets

 Put maven goals necessary to build maven project

 E.g)

 Execute Windows batch command (Windows)

 Invoke Ant : Execute ant target on ant build script

 Post-build Actions : Define tasks after build

 Mostly import generated doc(e.g: xml) to Hudson for display

 1

4.3

Specify maven goals (clean compile)

clean compile

57 / Staged Build for Java

Configure Hudson Project
Build Now

 Not only scheduled build But also Direct build

 Click “Build Now” on left panel

 Show up new build with sequence in build history

 Can check build status in Build History

 Success Build

 Unstable Build

 Failed Build

 Canceled Build

4.3

Click Build Now

58 / Staged Build for Java

Configure Hudson Project
Build Log

 Hudson shows build log almost realtime.

 Click Build in Build panel and Click Console Output

4.3

See console output

59 / Staged Build for Java

Enable Unit Test
Setup Unit Test Execution

 supports JUnit in nature for test result display

 Click configure button in left panel

 Add test goal in ”Invoke top-level Maven targets”

 Click “Publish JUnit test result report” in Post-build Actions

 Input result result xml file location)

 저장 후 Build Now를 수행 한다.

4.4

clean compile test

**/target/surefire-reports/*.xml

60 / Staged Build for Java

Enable Unit Test
Unit Test Result

4.4

Specify maven goals and enable “publish JUnit test result”

61 / Staged Build for Java

Code Coverage with Clover
How Code Coverage works

4.5

Target Source
Code

Instrumented
Source Code

File Database

Reporting

Reporting

Instrument

Test

62 / Staged Build for Java

Code Coverage with Clover
Various Code Coverage

 Function(method) coverage

 Statement(line) coverage

 Decision(branch) coverage

 Condition coverage – coverage for boolean sub expression

 Condition / decision coverage – Decision + Condition Coverage

 Mandatory to measure Statement or Branch(Decision) coverage in NHN

 Method > Branch > Statement >= Condition(?) > Condition / decision

4.5

http://en.wikipedia.org/wiki/Code_coverage

63 / Staged Build for Java

Code Coverage with Clover
Question

 Branch coverage?

 Conditional coverage?

 Statement coverage?

4.5

public int foo(int x, int y) {

int z = y;

if ((x > 5) && (y > 0)) {

 z = x;

}

return x * z;

}

assertEquals(49, foo.foo(7, 1));

64 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add clover plugin maven repo in pom.xml

 Caution!!

 Clover 3.0.2 is not compatible with Maven 3.X

 Clover 3.0.4 has lots of bugs

 Do not install project instrumented by clover into .m2 folder

4.5

<pluginRepository>

 <id>atlassian-m2-repository</id>

 <name>Atlassian Maven 2.x Repository</name>

 <url>http://repository.atlassian.com/maven2</url>

</pluginRepository>

65 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add Clover build plugin in pom.xml

 Put following lines into pom.xml

4.5

<build>

 <plugins>

 <plugin>

 <groupId>com.atlassian.maven.plugins</groupId>

 <artifactId>maven-clover2-plugin</artifactId>

 <version>3.0.2</version>

 <configuration>

 <licenseLocation>../../clover.license</licenseLocation>

 <generateHtml>true</generateHtml>

 <generateXml>true</generateXml>

 <generatePdf>false</generatePdf>

 </configuration>

 </plugin>

 </plugins>

</build>

66 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add Clover reporting plugin in pom.xml

4.5

<reporting>

 <plugins>

 <plugin>

 <groupId>com.atlassian.maven.plugins</groupId>

 <artifactId>maven-clover2-plugin</artifactId>

 <version>3.0.2</version>

 <configuration>

 <includesTestSourceRoots>true</includesTestSourceRoots>

 <licenseLocation>../../clover.license</licenseLocation>

 <encoding>UTF-8</encoding>

 <jdk>1.5</jdk>

 </configuration>

 </plugin>

 </plugins>

</reporting>

Modify your pom.xml

67 / Staged Build for Java

Code Coverage with Clover
Maven goals

 Clover2-Maven-Plugin Goal

4.5

Goal Description

clover2:clean Initialize Clover Database

clover2:setup Initialize clover instrumentation feature

test Run JUnit Test

clover2:clover Make coverage report under ./target/site/clover folder

68 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 Install Hudson Clover Plugin

1. Manage Hudson Manage Plugins Available Tab

2. Select Clover Plugin and Click install button

3. Restart Tomcat

4.5

69 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 Setup Hudson Clover Plugin per Project

 Add Clover Goal into maven project

 Enable “Publish Clover Coverage Report” and setup like following

4.5

clean clover2:clean clover2:setup test clover2:clover

Add clover goal and enable clover reports

70 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 After configuration, run “Build Now”

 More than 2 builds with Clover, you’ll see following

4.5

Configure Description

Clover report directory
Specify Clover Report(xml) location
/target/site/clover in default

Clover report file name
Specify XML report file name
clover.xml in default

71 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Overview

 Hudson plugin which shows Coverage / Complexity relation graph which

help the developer to choose the test necessary code.

 more complexity, more test!!

4.6

72 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Install and setup Hudson CovComplPlot Plugin

 Installable from Official Jenkins Update Site

 How to setup CovComplPlot Plugin

 Enable “Publish Coverage / complexity Scatter Plot” and choose coverage

report type

 Click “Build Now”

4.6

73 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Result

 Graph

 Click each grid to see what methods are located in the each grid.

4.6

Enable CovComplPlot plugin

74 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
N’SIQ Collector

 General tool to measure code size and complexity

 What should Measure?

 LOC : Code without comments and blanks

 Complexity : Depends on each team decision

 Measures excludes followings

 Patch or Code developed by other teams, open source, outsourcing…

 Auto generated code from Lex or Yacc.

 Windows message loop which have higher complexity in nature

4.7

75 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
Install and setup N’SIQ Collector

 Install N’SIQ Collector

 Download N’SIQCollector binary

(http://dev.naver.com/projects/nsiqcollector)

 Unzip the downloaded binary

 Install Hudson N’SIQ Collector Plugin

 Installable from Official Jenkins Update Site

 Manage Hudson Configure System Configure N’SIQ Collector

 Input N’SIQ Collector executable location

4.7

http://dev.naver.com/projects/nsiqcollector

76 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
Install and setup N’SIQ Collector

 Setup N’SIQ Collector per Hudson plugin

 Configure Add build step Execute N’SIQ Collector

 Put relative path to be analyzed in Source Directory field

 Click “Publish N’SIQ Collector“ in Post-build Actions

 Enable all checkbox in sub menu

 Save

 Result

 Click “Build Now”

4.7

Add N’SIQ Collector LOC and Complexity

77 / Staged Build for Java

Static Analysis with Klocwork
Static Analysis

 Test vs Static Analysis

 Test = Test Case Execution Time + Defect Cause Analysis Time

 Static Analysis = Only Analysis Time

 Static analysis detects

possible defects

in build time like following

 Static analysis reports

the step how the defect is reproduced.

4.8
Only Demo

78 / Staged Build for Java

Static Analysis with Klocwork
Klocwork Rules

4.8

01(Critical) 19

Cross-site Scripting (XSS) 2

Data Injection 2

Denial of Service 1

Information Leaks 1

Possible Runtime Failures 6

Process and Path Injection 4

Suspicious Code Practices 1

Unvalidated User Input 2

02(Severe) 40

Android Issues 4

Denial of Service 3

Process and Path Injection 2

Redundant Code 5

Suspicious Code Practices 9

Threads and Synchronization Issues 2

Unvalidated User Input 1

Use After Free 11

Weak Encryption 3

03(Error) 29

Android Issues 4

Data Injection 2

Denial of Service 1

Ignored Return Values 3

Information Leaks 1

Possible Runtime Failures 1

Resource Leaks 15

Unsafe Code Practies 1

Unvalidated User Input 1

04(Unexpected) 13

Data Injection 1

Poor Error Handing 1

Possible Runtime Failures 1

Redundant Code 2

Suspicious Code Practices 3

Threads and Synchronization Issues 4

Weak Encapsulation 1

L1~L4 : 101

Only Demo

79 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 NPE.COND Defect

 Guess if static analysis assumes
 that all method parameter
 can be given as null value

 Excessive false alarm

 What if there is a condition
 in which check the parameter is null
 or not…

 Is it safe to say null value can
 be given as parameter?

4.8
Only Demo

80 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Value Tracing

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a Not NULL

b Not NULL

buf Not NULL

No problem

Only Demo

81 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Impossible path

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a NULL

b Unknown

buf Not NULL

This path is not possible

!a && (a && b)

Only Demo

82 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Error Case

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a NULL

b Unknown

buf Not NULL

This pass a == NULL

NPE.COND error

Only Demo

83 / Staged Build for Java

Static Analysis with Klocwork
Limitation

 Limitation on Static Analysis

 If there is no Source Code

 Lib / Dll / Jar

 If the value is given from external env

 socket / scanf

 If no one know which class will be wired in the other class in compile time

 E.g) Spring

 How to overcome.

 Remove unnecessary interfaces.

 Provide Knowledge base
(a user defined info about the methods with no source code)

4.8
Only Demo

84 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Add “Klocwork Builder”

 Configure Add build step Click “Execute Klocwork”

 Input “Execute Klocwork” configuration.

 Build Spec

 “maven”

 Config Filename

 “pom.xml”

 Build Parameter

 “kw:run –P klocwork”

 Knowledge Base

 Additional Info

for library

 “Java_general”

4.8
Only Demo

85 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Enable Klocwork Publisher

 Click “Publish Klocwork” in
Post-build Action

 Show only over L4 on graph :
Click If you want to see only
L1~L4 errors

 Click Build Now

4.8
Only Demo

86 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Click the shown graph.

 Dig into the defect details

4.8

Add “Execute Klocwork” build step
Enable “Publish Klocowork”

Click “Build Now” and see defects found

Only Demo

87 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Checkstyle

 Most famous Java coding style checker

 NHN defined our own coding style rules by customizing checkstyle rules.

4.9

88 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Install Hudson Checkstyle Plugin

 Configure Hudson Manage plugins Available Tab Click

Checkstyle Plugin Install restart

4.9

89 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Configure Hudson Checkstyle Plugin per project

 Add checkstyle goal in maven goal list

 Add checkstyle:checkstyle goal in front of other goals

 Add checkstyle publisher

 Check “Publish Checkstyle

analysis results”

and specify the Checkstyle

 xml results path

 Run “Build Now”

 Dig into graph

 Run “Build Now”

4.9

Confiugure Checkstyle in Hudson project
Click “Build Now” and see found violations

90 / Staged Build for Java

Calculate QP metrics with QD plugin
Quality Dashboard Plugin

 Hudson QD PlugIn

 Send collected metric from Hudson

to Quality Dashboard

 Show Code Quality Value

calculated by Quality Dashboard

 Summarize multiple Hudson project

metrics

 Measures

 Code Coverage (Statement / Branch)

 Coding Standard Conformance Rate

 Static Analysis Defect Density

 Complexity / LOC

4.9

Code Quality
Value calculated

by QD

Summarized
Measures

91 / Staged Build for Java

Calculate QP metrics with QD plugin
Configure Quality Dashboard Plugin

 Configure QD Plugin in a project

 Configure Project Enable “Publish to Quality Dashboard”

 Select the Hudson Plugins used.

4.9

92 / Staged Build for Java

Calculate QP metrics with QD plugin
Project Type

 values

 Collect/Send : When you want to send the metrics if the metrics are
collected.

 OnlyCollect : When you want to only collect metrics.

 OnlySend : When you want to send metrics collected by the other projects

 NoCollect/NoSend : When you disable this project

 How to use

 When you like to summarize A, B, C project and You want to send the collected
metrics only when C is built.

 A : OnlyCollect, B : OnlyCollect, C: Collect/Send

 A, B, C’s API Key should be same

 When you like to summarize A, B, C project whenever each project is built,
However you want to send the metrics to QualityDashboard one a week.

 A : OnlyCollect, B : OnlyCollect, C: OnlyCollect,
Create Separate Dummy D Project and set it OnlySend

 A, B, C, D’s API Key should be same

4.9

Enable the collection of Coverage / Coding Style / Cyclomatic
Complexity / LOC / Static Analysis Defect Density

Thanks

