
Continuous Integration for

Staged Build (for Java)
Productivity Innovation Lab,

NHN Corp

2011.12

QE-BOK Quality Engineering-Body Of Knowledge For external
Education

ⓒ 2011 NHN CORPORATION

1. Course Introduction

3 / Staged Build for Java

Objective

 Understand NHN Quality Criteria

 Understand CI / Staged Build

 Learn how to set up Hudon(Jenkins) and mandatory plugins

1.1

4 / Staged Build for Java

WHO AM I

 JunHo Yoon

 Work Experience

 2008~ Productivity Innovation Lab, NHN

 2004~2008 SW Laboratory, Samsung Electronics

 Areas of expertise

 Software Engineering in SW Development Wide

 Enterprise Web Application Development

 Open Source Project

1.2

2. Staged Build

6 / Staged Build for Java

Broken Window Theory

2.1

7 / Staged Build for Java

Continuous Integration(CI)

2.2

Developer 1

SVN
Repository

Developer 2

Developer 3

CI Server Test Web
Server

commit polling

Build
Test
Analysis
Reporting
…

Deploy

8 / Staged Build for Java

Staged Build

2.3

Build Integration procedure which is repeatedly performed
to release working and tested SW at the end of each iteration

until the development finishes
 Advanced CI Usage

① Src Checkout

④ Commit
 (Write commit logs)

③ Developer
 Build

⑥ Commit
 Build

⑧ Integration
 Build

② Write code
 / Unit Test

⑩ Release
 Build

⑦ Scheduling
 / Checkout

⑤ Poll the src repo
 Checkout the changes

⑨ [When features complete] Create Release Branch &
 Request Build / Checkout

Feedback

Monitoring

Build & Deployment System

CI Server

Src Repo

Repeat until features complete

Continuous Integration Iteration

Small Release

9 / Staged Build for Java

Staged Build
Commit Build

2.3

When • Schedule : Whenever developer commit changes info source repo.

• Be able to change pooling timing(10min?)

• Duration : within 10 min for build and test.

What • Detect collision b/w changes from several developers.

• Execute all unit tests developed by several developers

 - Tests which is independent from DB, Platform, Network,

 - DAO CRUD tests (if necessary)

• Perform code reviews on major changes

Post-

Condition

• Build success

• All passed unit test

Builds which is performed in the separated build server
whenever code repository changes occur to detect changes

collisions from several developers.

10 / Staged Build for Java

Staged Build
Integration Build

2.3

When • Schedule : Daily(Nightly). Change the interval if necessary.
• Duration : with 2 hours

What • Configure build env and compile

• Run unit and integration tests with real server like test environments.
 - Tests dependent on middleware.
 - DAO CRUD tests / Automated UI Test
 - long time taking regression test

• Run code analysis
- Coding Convention, Code Coverage, Static Analysis,
 Duplicate Analysis, Cyclomatic Complexity

• (When finishing dev scope) Perform dev team own sanity test

Post-

Condition

• Build success

• Satisfy Quality Practice Criteria
 - Coding standard conformance rate, code coverage, static analysis defect rate

• (When finishing dev scope) More than 90% pass rate of sanity test

Builds which is performed in the separated build server periodically
with more advanced integration test and code analysis

11 / Staged Build for Java

Staged Build
Why separate commit build and integration build

 Commit build is performed to detect collisions of committed code from
several developers. Therefore fast feedback is necessary.

 Minimum build activity

 Needs to be real-time.

 Integration build is performed with full analysis and test to detect more
defect behind. It takes time.

 Maximize build activity

 Not needs to be real-time.

 By separating them,
Minimize CI server load and Give fast feedback to developers.

2.3

Maximize CI Server operation efficiency

12 / Staged Build for Java

Quality Practices
Mandatory Practices and Optional Practices

 Quality Practices

 The minimum quality activities performed by NHN developers

to guarantee the defect less SW

 Enforced from 2009

2.4

Mandatory Practice

Code

Coverage

Static

Analysis

Coding

Convention

Optional Practice

Code

Review

Cyclomatic

Complexity

Code

Duplication

Analysis

13 / Staged Build for Java

Quality Practices
Mandatory Practice - Code Coverage

 Should perform developer’s automated tests and check the code

coverage to improve code quality

 Test should be measurable and repeatable.

 Test coverages from not only Unit Test but also Integration test

can be accumulated.

2.4

Metrics Measures Red Yellow Green Gold

Statement
Code Coverage(%)

A/B*100

A. Tested Statements
B. Statements

COV<30% 30%≤COV<50% 50%≤COV<70% 70%≤COV

Branch
Code Coverage(%)

A/B*100

A. Tested Branches
B. Branches

COV<20% 20%≤COV<40% 40%≤COV<60% 60%≤COV

14 / Staged Build for Java

Quality Practices
Mandatory Practice - Static Analysis

 Should remove Static analysis defects found by Static

 Run static analysis tools and review the defect found.

 Run static analysis tools again when finishing development and

Find out the status of defects remained.

2.4

Metrics1 Measures Red Yellow Green Gold

Static Analysis
Defect Density
(Count/KLOC)

A/B*100

A. Weighted count of
remained static analysis
defect

B. Total LOC

6≤Density 4≤Density<6 2≤Density<4 Density<2

15 / Staged Build for Java

Quality Practices
Mandatory Practice - Coding Convention

 Should confirm NHN Coding Standard to keep the same style

 in newly created and modified code.

 Using the Custom NHN checkstyle extensions(Java)

 Using the N’SIQ CppStyle (C/C++)

2.4

Metrics Measures Red Yellow Green Gold

Coding Standard
Conformance Rate

(CSCR / %)
A/B*100

A. Count of files
in which no violation
found

B. Count of total checked
files

CSCR<30% 30%≤CSCR<70% 70%≤CSCR<90% 90%≤CSCR

16 / Staged Build for Java

Quality Practices
Optional Practice - Code Review

 Review the newly created and modified code

 How : Choose one of offline or online review

 What : Define criteria which code will be reviewed

 Review code as much as possible. However not mandatory.

2.4

Metrics Measures Red Yellow Green Gold

Code Review
Rate (%)
A/B*100

A. Total LOC of files
 reviewed
B. Total LOC of
 modified or created files

CR<30% 30%≤CR<60% 60%≤CR<80% 80%≤CR

17 / Staged Build for Java

Quality Practices
Optional Practice - Cyclomatic Complexity

 Identify the complexity code and Reduce complexity

 Find out complex methods which need to be refactored using tools

 Check the test coverage of complex methods

 Reduce complex methods. However not mandatory.

 Cyclomatic Complexity : Simply the count of if / while / for

statements per method

2.4

Metrics Measures Red Yellow Green Gold

CC≥30 rate (%)
= A/B

A. The count of
CC≥30 method

B. The count of total
methods

Not measured
or

Not meet org
goal

Meet org goal < 0.5% = 0%

18 / Staged Build for Java

Quality Practices
Optional Practice - Code Duplication Reduction

 Reduce and Refactor duplicated code.

 Identify and prioritize highly duplicated code and refactor them with

generalization/reuse/abstractions.

 Each project can perform Code Duplication Reduction based on their own

decision,

Code Duplication Reduction is not the mandatory subject to be collected.

 Recommendation

 Reduce High Prioritized Duplicated code

 Reduce Normal, Low Prioritized Duplicated code by each own decision

2.4

High Normal Low

50>Duplicated Line 25<Duplicated Line≤50 Duplicated Line≤25

19 / Staged Build for Java

Quality Practices
Overall Rating Criteria

 Code Quality(CQ)?

 Indicator to determine the result of Quality Practice performance

efficiency

 Varies from development area.

 Code Quality Rating Criteria (e.g : Portal service)

2.4

Target Quality Metric Weight Red Yellow Green Gold

Code Coverage

Coding Standard Conformance Rate

Static Analysis Defect Density

30

20

20

CQ<20 20≤CQ<40 40≤CQ<50 50≤CQ≤70

3. Hudson/Jenkins

21 / Staged Build for Java

Quality Practice on CI

3.1

Coding

Convention

Static

Analysis

Code

Coverage

Cyclomatic

Complexity

Code

Duplication

Analysis

22 / Staged Build for Java

Quality Practice on CI
Tool support

3.2

Coding

Convention

Static

Analysis

Code

Coverage

Cyclomatic

Complexity

Code

Duplication

Analysis

Checkstyle

N’SIQCppStyle

Klocwork

Clover

Bullseye/Gcov

N’SIQ

Collector

CPD

23 / Staged Build for Java

Quality Practice on CI
With Hudson

3.2

Checkstyle

N’SIQCppStyle

Klocwork

Clover

Bullseye/Gcov

N’SIQ

Collector

CPD

Hudson / Jenkins
Extensible continuous integration server

All tools are executed or collected by Jenkins

24 / Staged Build for Java

Hudson Introduction
About

 Jenkins monitors executions of repeated jobs, such as building a software

project or jobs run by cron. Among those things, current Jenkins

focuses on the following two jobs:

 Current Jenkins focuses on the following two jobs:

 Building/testing software projects continuously

 Monitoring executions of externally-run jobs

3.3

25 / Staged Build for Java

Hudson Introduction
Hudson vs Jenkins

3.3

26 / Staged Build for Java

Hudson Introduction
Jenkins Creator

3.3

Kyosuke
Kawaguchi

27 / Staged Build for Java

Hudson Introduction
Hudson History

 From Summer, 2004

3.3

28 / Staged Build for Java

Hudson Introduction
Hudson History

 2006

3.3

29 / Staged Build for Java

Hudson Introduction
Jenkins History

 Jan. 2011. Divorce from Oracle

 Oracle: “you do it our way or highway”

 Community chose highway: 214 to 14

 That’s when we became Jenkins

3.3

0

10000

20000

30000

40000
Estimated Oracle Jenkins Old Hudson

30 / Staged Build for Java

Hudson Introduction
Usage All Around the World

3.3

31 / Staged Build for Java

Hudson Features

 Easy installation

 Easy configuration

 Change set support

 Permanent links

 RSS/E-mail/IM Integration

 After-the-fact tagging

 JUnit/TestNG test reporting

 Distributed builds

 File fingerprinting

 Plugin Support

 Easy plugin development environment support

3.4

32 / Staged Build for Java

Hudson Features
Layout - Overall

3.4

33 / Staged Build for Java

Hudson Features
Layout – Project

3.4

34 / Staged Build for Java

Hudson Features
Structural Architecture

 Conceptual == Physical layer

 Each concept is mapped to Object.

 Each object keeps its persistency with XML

3.4

Hudson JobA

JobB

JobC

Build1

Build3

Build2

Hudson hudson = Hudson.getInstance();
((AbstractProject)hudson.getJob("jobA")).getBuildByNumber(3);

35 / Staged Build for Java

Build

Hudson Features
Runtime Architecture

3.4

CheckOut/Update

Build

PostBuild

Builder:batch

Builder:shell

Recorder:checkstyle

Recorder:clover

Workspace

Notifier:Email

Scheduler Project

SCM:SVN

SCM:GIT

36 / Staged Build for Java

Hudson plugins

 Source code management

 Build triggers

 Build tools

 Build wrappers

 Build notifiers

 Slave launchers and controllers

 Build reports

 Artifact uploaders

 Other post-build actions

 External site/tool integrations…

3.5

ClearCase Plugin
File System SCM Plugin
Mercurial Plugin
Perforce Plugin
Harvest Plugin
Team Foundation Server Plugin
Template Project Plugin
Accurev Plugin
CVS Plugin
…

* For more details refer
 http://wiki.hudson-ci.org/display/HUDSON/Plugins

More than 400 plugins

http://wiki.hudson-ci.org/display/HUDSON/Plugins
http://wiki.hudson-ci.org/display/HUDSON/Plugins
http://wiki.hudson-ci.org/display/HUDSON/Plugins

37 / Staged Build for Java

Hudson plugin
Hudson plugin developed By NHN

 Hudson QD Plugin : Sync collected metric with Quality Dashboard

 Hudson N’SIQ Collector Plugin : Show LOC, Complexity collected by N’SIQCollector

 Hudson Klocwork Plugin : Show static analysis result analyzed by Klocwork

 Hudson NHN Auth Plugin : Make hudson authenticated using MyNEXT ID

 Hudson CovComplPlot Plugin : Show Coverage/Complexity relation graph

 Hudson SimpleUpdateSite Plugin : NHN Custom Hudson Plugin updatesite

3.5

38 / Staged Build for Java

Hudson and QualityDashboard
Manager Needs

3.6

I’m Steve Jobs.

I’d like to see all apple

projects status in a big

picture.

39 / Staged Build for Java

Hudson and QualityDashboard
Quality Governance

3.6

Quality Dashboard

40 / Staged Build for Java

Hudson and QualityDashboard
Quality Governance

 Qualty Dashboard (http://nsiq.nhncorp.com/)

 Each Hudson Project report its metrics to QD by QD plugin

3.6

http://nsiq.nhncorp.com/

4. CI Lab

42 / Staged Build for Java

Install Hudson
Download

 All Instructions are available in

 http://dev.naver.com/projects/hudsonedu/wiki/Java실습스크립트

 Hudson Download

 http://hudson-ci.org/downloads/war/

 Download 1.395.1 version

 Tomcat Download

 http://tomcat.apache.org/  Tomcat 6.0 

Binary Distributions  Core zip link

 Download and unzip

4.1

http://dev.naver.com/projects/hudsonedu/wiki/Java
http://dev.naver.com/projects/hudsonedu/wiki/Java
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://hudson-ci.org/downloads/war/
http://tomcat.apache.org/

43 / Staged Build for Java

Install Hudson
Startup Hudson

 Put the downloaded hudson.war into {TOMCAT_HOME}/webapps

 Run ${TOMCAT_HOME}/bin/startup.bat(win) or startup.sh (linux)

 Open http://localhost:8080/hudson and see the following page

4.1

http://localhost:8080/hudson

44 / Staged Build for Java

Install Hudson
Configure System menu

 “Manage Hudson”  ”Configure System” : Hudson Global Configuration

 Setup general Hudson

env configuration

 Setup Build Tool option

(Maven, JDK, Ant, Shell) and

Configure the plugins’ global behavior

 Automatically installable

(Ant, Maven, JDK only)

4.1

45 / Staged Build for Java

Install Hudson
Setup JDK

 Click Add JDK

 If JDK is already installed

1. Uncheck Install automatically

2. Put your own JDK label(e.g : jdk 1.6.0_25) in the “name” field

3. Put JDK path in JAVA_HOME(e.g : C:\Program Files\Java\jdk1.6.0_25)

 If JDK is not installed

1. Put your own JDK label(e.g : jdk 1.6.0_25) in the “name” field

2. Choose JDK version being installed

 Click “Save” button in the bottom

4.1

46 / Staged Build for Java

Install Hudson
Setup Maven

 Click Add Maven

 If Maven is already installed

1. Uncheck Install automatically

2. Put your own Maven label (e.g. Maven 2.2.1) in the “name” field

3. Put Maven path in MAVEN_HOME(e.g. C:\dev\apache-maven-2.2.1)

 If Maven is not installed

1. Put your own Maven label(e.g. Maven 2.2.1) in the “name” field

2. Put Maven path in MAVEN_HOME(e.g. C:\dev\apache-maven-2.2.1)

 Click “Save” button in the bottom

 You can setup Ant same way as Maven

4.1

47 / Staged Build for Java

Install Hudson
SimpleUpdateSite Plugin

 Enable each Hudson to connect Custom Plugin UpdateSite

 If you’re using Jenkins, you can download it from Jenking update site.

4.1

48 / Staged Build for Java

Install Hudson
SimpleUpdateSite Plugin

 If you have Admin permission,
show following.

1. Select plugins to be installed

 N : New plugin

 U : Updatable plugin

 I : Already installed plugin

2. Click Install button

4.1

49 / Staged Build for Java

Lab Introduction
Step

 Create Hudson Project

 Setup Sample Project Checkout

 Setup Unit Test

 Setup QP Tools

4.2

50 / Staged Build for Java

Lab Introduction
Sample Project

 Sample project in dev.naver.com

 https://dev.naver.com/svn/hudsonedu/trunk

4.2

51 / Staged Build for Java

Configure Hudson Project
Register new Hudson Project (Job)

 Click “New Job” to register

new Hudson Project

 Job Name

 Should be [a-zA-Z][a-zA-Z0-9_]*

 Why??

 It will be used as the folder name
in which code are checked out and built.

 Select “Build a free-style software project”

4.3

Create Hudson Project with “edu_XX”

52 / Staged Build for Java

Configure Hudson Project
NHNProject Plugin

 NHNProject Plugin :

 Provide and display properties which represent project characteristics

4.3

53 / Staged Build for Java

Configure Hudson Project
NHNProject Plugin

 Installable from SimpleUpdateSite

 How to configure NHNProject plugin

4.3

Assign your project name / project type / build type

54 / Staged Build for Java

Configure Hudson Project
Src Repo

 Specify source code repository

4.3

Specify your SVN repo

55 / Staged Build for Java

Configure Hudson Project
Build Trigger

 Build Triggers : Set up the Hudson build start event

 Build after other projects are build

 Build periodically

 Poll SCM : Execute build when detecting source code changes(commit)

 Cron expression

4.3

Min Hour Date Month Week

E.g)

 Every minute  * * * * *

 Every 5 min  */5 * * * *

56 / Staged Build for Java

Configure Hudson Project
Add Builders

 Build : Execute build command for various executor

 Execute shell(Linux)

 Invoke top-level Maven targets

 Put maven goals necessary to build maven project

 E.g)

 Execute Windows batch command (Windows)

 Invoke Ant : Execute ant target on ant build script

 Post-build Actions : Define tasks after build

 Mostly import generated doc(e.g: xml) to Hudson for display

 1

4.3

Specify maven goals (clean compile)

clean compile

57 / Staged Build for Java

Configure Hudson Project
Build Now

 Not only scheduled build But also Direct build

 Click “Build Now” on left panel

 Show up new build with sequence in build history

 Can check build status in Build History

 Success Build

 Unstable Build

 Failed Build

 Canceled Build

4.3

Click Build Now

58 / Staged Build for Java

Configure Hudson Project
Build Log

 Hudson shows build log almost realtime.

 Click Build in Build panel and Click Console Output

4.3

See console output

59 / Staged Build for Java

Enable Unit Test
Setup Unit Test Execution

 supports JUnit in nature for test result display

 Click configure button in left panel

 Add test goal in ”Invoke top-level Maven targets”

 Click “Publish JUnit test result report” in Post-build Actions

 Input result result xml file location)

 저장 후 Build Now를 수행 한다.

4.4

clean compile test

**/target/surefire-reports/*.xml

60 / Staged Build for Java

Enable Unit Test
Unit Test Result

4.4

Specify maven goals and enable “publish JUnit test result”

61 / Staged Build for Java

Code Coverage with Clover
How Code Coverage works

4.5

Target Source
Code

Instrumented
Source Code

File Database

Reporting

Reporting

Instrument

Test

62 / Staged Build for Java

Code Coverage with Clover
Various Code Coverage

 Function(method) coverage

 Statement(line) coverage

 Decision(branch) coverage

 Condition coverage – coverage for boolean sub expression

 Condition / decision coverage – Decision + Condition Coverage

 Mandatory to measure Statement or Branch(Decision) coverage in NHN

 Method > Branch > Statement >= Condition(?) > Condition / decision

4.5

http://en.wikipedia.org/wiki/Code_coverage

63 / Staged Build for Java

Code Coverage with Clover
Question

 Branch coverage?

 Conditional coverage?

 Statement coverage?

4.5

public int foo(int x, int y) {

int z = y;

if ((x > 5) && (y > 0)) {

 z = x;

}

return x * z;

}

assertEquals(49, foo.foo(7, 1));

64 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add clover plugin maven repo in pom.xml

 Caution!!

 Clover 3.0.2 is not compatible with Maven 3.X

 Clover 3.0.4 has lots of bugs

 Do not install project instrumented by clover into .m2 folder

4.5

<pluginRepository>

 <id>atlassian-m2-repository</id>

 <name>Atlassian Maven 2.x Repository</name>

 <url>http://repository.atlassian.com/maven2</url>

</pluginRepository>

65 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add Clover build plugin in pom.xml

 Put following lines into pom.xml

4.5

<build>

 <plugins>

 <plugin>

 <groupId>com.atlassian.maven.plugins</groupId>

 <artifactId>maven-clover2-plugin</artifactId>

 <version>3.0.2</version>

 <configuration>

 <licenseLocation>../../clover.license</licenseLocation>

 <generateHtml>true</generateHtml>

 <generateXml>true</generateXml>

 <generatePdf>false</generatePdf>

 </configuration>

 </plugin>

 </plugins>

</build>

66 / Staged Build for Java

Code Coverage with Clover
Modify maven build script

 Add Clover reporting plugin in pom.xml

4.5

<reporting>

 <plugins>

 <plugin>

 <groupId>com.atlassian.maven.plugins</groupId>

 <artifactId>maven-clover2-plugin</artifactId>

 <version>3.0.2</version>

 <configuration>

 <includesTestSourceRoots>true</includesTestSourceRoots>

 <licenseLocation>../../clover.license</licenseLocation>

 <encoding>UTF-8</encoding>

 <jdk>1.5</jdk>

 </configuration>

 </plugin>

 </plugins>

</reporting>

Modify your pom.xml

67 / Staged Build for Java

Code Coverage with Clover
Maven goals

 Clover2-Maven-Plugin Goal

4.5

Goal Description

clover2:clean Initialize Clover Database

clover2:setup Initialize clover instrumentation feature

test Run JUnit Test

clover2:clover Make coverage report under ./target/site/clover folder

68 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 Install Hudson Clover Plugin

1. Manage Hudson  Manage Plugins  Available Tab

2. Select Clover Plugin and Click install button

3. Restart Tomcat

4.5

69 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 Setup Hudson Clover Plugin per Project

 Add Clover Goal into maven project

 Enable “Publish Clover Coverage Report” and setup like following

4.5

clean clover2:clean clover2:setup test clover2:clover

Add clover goal and enable clover reports

70 / Staged Build for Java

Code Coverage with Clover
Hudson Clover Plugin

 After configuration, run “Build Now”

 More than 2 builds with Clover, you’ll see following

4.5

Configure Description

Clover report directory
Specify Clover Report(xml) location
/target/site/clover in default

Clover report file name
Specify XML report file name
clover.xml in default

71 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Overview

 Hudson plugin which shows Coverage / Complexity relation graph which

help the developer to choose the test necessary code.

 more complexity, more test!!

4.6

72 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Install and setup Hudson CovComplPlot Plugin

 Installable from Official Jenkins Update Site

 How to setup CovComplPlot Plugin

 Enable “Publish Coverage / complexity Scatter Plot” and choose coverage

report type

 Click “Build Now”

4.6

73 / Staged Build for Java

Coverage / Complexity Graph with CovComplPlot
Result

 Graph

 Click each grid to see what methods are located in the each grid.

4.6

Enable CovComplPlot plugin

74 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
N’SIQ Collector

 General tool to measure code size and complexity

 What should Measure?

 LOC : Code without comments and blanks

 Complexity : Depends on each team decision

 Measures excludes followings

 Patch or Code developed by other teams, open source, outsourcing…

 Auto generated code from Lex or Yacc.

 Windows message loop which have higher complexity in nature

4.7

75 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
Install and setup N’SIQ Collector

 Install N’SIQ Collector

 Download N’SIQCollector binary

(http://dev.naver.com/projects/nsiqcollector)

 Unzip the downloaded binary

 Install Hudson N’SIQ Collector Plugin

 Installable from Official Jenkins Update Site

 Manage Hudson  Configure System  Configure N’SIQ Collector

 Input N’SIQ Collector executable location

4.7

http://dev.naver.com/projects/nsiqcollector

76 / Staged Build for Java

LOC & Complexity with N’SIQ Collector
Install and setup N’SIQ Collector

 Setup N’SIQ Collector per Hudson plugin

 Configure  Add build step  Execute N’SIQ Collector

 Put relative path to be analyzed in Source Directory field

 Click “Publish N’SIQ Collector“ in Post-build Actions

 Enable all checkbox in sub menu

 Save

 Result

 Click “Build Now”

4.7

Add N’SIQ Collector LOC and Complexity

77 / Staged Build for Java

Static Analysis with Klocwork
Static Analysis

 Test vs Static Analysis

 Test = Test Case Execution Time + Defect Cause Analysis Time

 Static Analysis = Only Analysis Time

 Static analysis detects

possible defects

in build time like following

 Static analysis reports

the step how the defect is reproduced.

4.8
Only Demo

78 / Staged Build for Java

Static Analysis with Klocwork
Klocwork Rules

4.8

01(Critical) 19

Cross-site Scripting (XSS) 2

Data Injection 2

Denial of Service 1

Information Leaks 1

Possible Runtime Failures 6

Process and Path Injection 4

Suspicious Code Practices 1

Unvalidated User Input 2

02(Severe) 40

Android Issues 4

Denial of Service 3

Process and Path Injection 2

Redundant Code 5

Suspicious Code Practices 9

Threads and Synchronization Issues 2

Unvalidated User Input 1

Use After Free 11

Weak Encryption 3

03(Error) 29

Android Issues 4

Data Injection 2

Denial of Service 1

Ignored Return Values 3

Information Leaks 1

Possible Runtime Failures 1

Resource Leaks 15

Unsafe Code Practies 1

Unvalidated User Input 1

04(Unexpected) 13

Data Injection 1

Poor Error Handing 1

Possible Runtime Failures 1

Redundant Code 2

Suspicious Code Practices 3

Threads and Synchronization Issues 4

Weak Encapsulation 1

L1~L4 : 101

Only Demo

79 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 NPE.COND Defect

 Guess if static analysis assumes
 that all method parameter
 can be given as null value

  Excessive false alarm

 What if there is a condition
 in which check the parameter is null
 or not…

  Is it safe to say null value can
 be given as parameter?

4.8
Only Demo

80 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Value Tracing

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a Not NULL

b Not NULL

buf Not NULL

No problem

Only Demo

81 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Impossible path

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a NULL

b Unknown

buf Not NULL

This path is not possible

!a && (a && b)

Only Demo

82 / Staged Build for Java

Static Analysis with Klocwork
How static analysis works

 Error Case

4.8

char *buf[8];

if (a)

b = new char[5]; if (a&&b)

buf[8] = a; delete[] b;

*b = ‘x’

*a = *b

END

a !a

!(a && b) (a && b)

Var State

a NULL

b Unknown

buf Not NULL

This pass a == NULL

NPE.COND error

Only Demo

83 / Staged Build for Java

Static Analysis with Klocwork
Limitation

 Limitation on Static Analysis

 If there is no Source Code

 Lib / Dll / Jar

 If the value is given from external env

 socket / scanf

 If no one know which class will be wired in the other class in compile time

 E.g) Spring

 How to overcome.

 Remove unnecessary interfaces.

 Provide Knowledge base
(a user defined info about the methods with no source code)

4.8
Only Demo

84 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Add “Klocwork Builder”

 Configure  Add build step  Click “Execute Klocwork”

 Input “Execute Klocwork” configuration.

 Build Spec

 “maven”

 Config Filename

 “pom.xml”

 Build Parameter

 “kw:run –P klocwork”

 Knowledge Base

 Additional Info

for library

 “Java_general”

4.8
Only Demo

85 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Enable Klocwork Publisher

 Click “Publish Klocwork” in
Post-build Action

 Show only over L4 on graph :
Click If you want to see only
L1~L4 errors

 Click Build Now

4.8
Only Demo

86 / Staged Build for Java

Static Analysis with Klocwork
Configure Klocwork Plugin per project

 Click the shown graph.

 Dig into the defect details

4.8

Add “Execute Klocwork” build step
Enable “Publish Klocowork”

Click “Build Now” and see defects found

Only Demo

87 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Checkstyle

 Most famous Java coding style checker

 NHN defined our own coding style rules by customizing checkstyle rules.

4.9

88 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Install Hudson Checkstyle Plugin

 Configure Hudson  Manage plugins  Available Tab  Click

Checkstyle Plugin  Install  restart

4.9

89 / Staged Build for Java

Coding Standard Conformance with Checkstyle
Configure Hudson Checkstyle Plugin per project

 Add checkstyle goal in maven goal list

 Add checkstyle:checkstyle goal in front of other goals

 Add checkstyle publisher

 Check “Publish Checkstyle

analysis results”

and specify the Checkstyle

 xml results path

 Run “Build Now”

 Dig into graph

 Run “Build Now”

4.9

Confiugure Checkstyle in Hudson project
Click “Build Now” and see found violations

90 / Staged Build for Java

Calculate QP metrics with QD plugin
Quality Dashboard Plugin

 Hudson QD PlugIn

 Send collected metric from Hudson

to Quality Dashboard

 Show Code Quality Value

calculated by Quality Dashboard

 Summarize multiple Hudson project

metrics

 Measures

 Code Coverage (Statement / Branch)

 Coding Standard Conformance Rate

 Static Analysis Defect Density

 Complexity / LOC

4.9

Code Quality
Value calculated

by QD

Summarized
Measures

91 / Staged Build for Java

Calculate QP metrics with QD plugin
Configure Quality Dashboard Plugin

 Configure QD Plugin in a project

 Configure Project  Enable “Publish to Quality Dashboard”

 Select the Hudson Plugins used.

4.9

92 / Staged Build for Java

Calculate QP metrics with QD plugin
Project Type

 values

 Collect/Send : When you want to send the metrics if the metrics are
collected.

 OnlyCollect : When you want to only collect metrics.

 OnlySend : When you want to send metrics collected by the other projects

 NoCollect/NoSend : When you disable this project

 How to use

 When you like to summarize A, B, C project and You want to send the collected
metrics only when C is built.

 A : OnlyCollect, B : OnlyCollect, C: Collect/Send

 A, B, C’s API Key should be same

 When you like to summarize A, B, C project whenever each project is built,
However you want to send the metrics to QualityDashboard one a week.

 A : OnlyCollect, B : OnlyCollect, C: OnlyCollect,
Create Separate Dummy D Project and set it OnlySend

 A, B, C, D’s API Key should be same

4.9

Enable the collection of Coverage / Coding Style / Cyclomatic
Complexity / LOC / Static Analysis Defect Density

Thanks

