Ex. No:
Date:
STUDY OF UML

AlIM:
General study of UML

DESCRIPTION:

The heart of object-oriented problem swws the construction of a model. The model
abstracts the essential details of the underlynodplpm from its usually complicated real world.
Several modeling tools are wrapped under the hgaofitheUML, which stands for Unified
Modeling Language. The purpose of this course mégent important highlights of the UML.

At the center of the UML are its nine kinds of nebdg diagrams, which we describe
here.

Use case diagrams

Classdiagrams

Object diagrams

Sequence diagrams

Collaboration diagrams

State chart diagrams

Activity diagrams

Component diagrams

Deployment diagrams

Some of the sections of this course contain liolkggages with more detailed information.
And every section has short questions. Use thaesto/our understanding of the section topic.

VVVVVYVYYVYVYYY

Why isUML important?

Let's look at this question from the point of vi@ivthe construction trade. Architects
design buildings. Builders use the designs to erdatildings. The more complicated the
building, the more critical the communication betwearchitect and builder. Blueprints are the
standard graphical language that both architeasaiiders must learn as part of their trade.

Writing software is not unlike constructing a binlg. The more complicated the
underlying system, the more critical the commumacatamong everyone involved in creating
and deploying the software. In the past decadeUtie has emerged as the software blueprint
language for analysts, designers, and programrlikes l is now part of the software trade. The
UML gives everyone from business analyst to desigmg@rogrammer a common vocabulary to
talk about software design.

The UML is applicable to object-oriented problenivety. Anyone interested in learning
UML must be familiar with the underlying tenet object-oriented problem solving -- it all
begins with the construction of a model. A modeamsabstraction of the underlying problem.
The domain is the actual world from which

l1|Page

the problem comes. Models consist of objects thagract by sending each other messages.
Think of an object as "alive." Objects have thitigsy know (attributes)

and things they can do (behaviors or operationsg Values of an object's attributes determine
its state.

Classes are the "blueprints" for objects. A classps attributes (data) and behaviors (methods or
functions) into a single distinct entity. Objecte snstances of classes.

Use case diagrams.

Use case diagrams describe what a system does tirenstandpoint of an external
observer. The emphasis iswhat a system does rather thiaow.

Use case diagrams are closely connected to scenérgxenario is an example of what happens
when someone interacts with the system. Here teaasio for a medical clinic."A patient calls
the clinic to make an appointment for a yearly &ougc The receptionist finds the nearest empty
time slot in the appointment book and schedulesfipwintment for that time slot. "

A use case is a summary of scenarios for a siagle @r goal. An actor is who or what
initiates the events involved in that task. Actare simply roles that people or objects play. The
picture below is a Make Appointment use case ferrtfedical clinic. The actor is a Patient. The
connection between actor and use case is a comatmassociation (or communication for
short).

cmmnunication
actor % Mo ke Appumtment

Patient
- use case

Actors are stick figures. Use cases are ovals. Qamigations are lines that link actors to use
cases.

A use case diagram is a collection of actors, @s®s; and their communications. We've put
Make Appointment as part of a diagram with four actors and fourceses. Notice that a single
use case can have multiple actors.

Cancel Appointrment %
Scheduler
Fatient Make Appointment

Reqgquest Medication

Doctor

Fay Bill

Clerk
Use case diagrams are helpful in three areas.

* Determining features (requirements)- New use cases often generate new requirements
as the system is analyzed and the design takes.shap

2|Page

» Communicating with clients- Their notational simplicity makes use case diagraa
good way for developers to communicate with clients

* Generating test cases- The collection of scenarios for a use case mggest a suite of
test cases for those scenarios.

Class diagrams:

A Class diagram gives an overview of a system bgwahg its classes and the
relationships among them. Class diagrams are statiey display what interacts but not what
happens when they do interact.The class diagraowbelodels a customer order from a retalil
catalog. The central class is the Order. Associai#it it are the Customer making the purchase
and the Payment. A Payment is one of three kindsh(CCheck, or Credit. The order contains
OrderDetails (line items), each with its associdtenh.

Customer Order

narmne 1 0.* | date
address status

association ~ caleTax

) calcTotal
—{» Payment *
i 1. ¥ 1| calcTotalweight

amount 1

abstract class—

role m:lme—\
neralization __ P
” } Z‘X lne tern | 1. < multiplicity
[| | OrderDetail A ftemn < class name
Credit Cash Check i \i\ —)
tt:|uaSrt1 |tty' -] shlpp!nngght attributes
number cashTendered name anatatus description
type bankiDh
expDate calcSubTotal / getPriceForQuantity
authorized calcieight | | getweignt < operations
authorized '\‘\
navigability

UML class notation is a rectangle divided into thigarts: class name, attributes, and
operations. Names of abstract classes, sudhagsent, are in italics. Relationships between
classes are the connecting links.

Our class diagram has three kinds of relationships.

Association -- a relationship between instances of the twesga. There is an association
between two classes if an instance of one class kmasv about the other in order to perform its
work. In a diagram, an association is a link cotingdwo classes.

Aggregation -- an association in which one class belongsdollection. An aggregation
has a diamond end pointing to the part containimg whole. In our diagram, Order has a
collection of Order Details.

3|Page

Generalization -- an inheritance link indicating one class isupesclass of the other. A
generalization has a triangle pointing to the stlpes.Payment is a superclass of Cash, Check,
and Credit.

An association has two ends. An end may have anatee to clarify the nature of the
association. For example, an OrderDetail is aitera of each Order.

A navigability arrow on an association shows whdilection the association can be
traversed or queried. An OrderDetail can be queataslit its Item, but not the other way around.
The arrow also lets you know who "owns" the assmmss implementation; in this case,
OrderDetail has an Item. Associations with no nalitity arrows are bi-directional.

The multiplicity of an association end is the numbg possible instances of the class
associated with a single instance of the other Bhdtiplicities are single numbers or ranges of
numbers. In our example, there can be only onedthest for each Order, but a Customer can
have any number @rders.

This table gives the most common multiplicities.

Multiplicities M eaning

0.1 zero or one instance. The notation. m indicatesn to m instances.
0.* or * no limit on the number of instances (including @pn

1 exactly one instance

1.* at least one instance

Every class diagram has classes, associationsmaitgplicities. Navigability and roles
are optional items placed in a diagram to providety.

Packages and object diagrams

To simplify complex class diagrams, you can grol@gsses into packages. A package is a
collection of logically related UML elements. Thegram below is a business model in which
the classes are grouped into packages.

e e N =
xdependency
R —x)
|l |
|

Lo I
package S ’
CustomerbDB StockDB

4|Page

Packages appear as rectangles with small tabg #bpph The package name is on the tab
or inside the rectangle. The dotted arrows are ri#gecies. One package depends on another if
changes in the other could possibly force changdss first.

Object diagrams show instances instead of cla3$es; are useful for explaining small

pieces with complicated relationships, especiabursive relationships.

This small class diagram shows that a universitypddenent can contain lots of other
Departments.

Department

-degree:String[J="graduate" "undergraduate” "hoth"} .=
subdepartment
'

The object diagram below instantiates the clasgrdia, replacing it by a concrete example.

instance name H\. h/_f—- class name
mathStat:Department
math:Department
statistics:Department
appliedMath:Department mathEd:Department

Each rectangle in the object diagram corresponda ®ngle instance. Instance names are
underlined in UML diagrams. Class or instance nhamag be omitted from object diagrams as
long as the diagram meaning is still clear.

Sequence diagrams.

Class and object diagrams are static model viemterdction diagrams are dynamic.
They describe how objects collaborate.

5|Page

A sequence diagram is an interaction diagram tetild how operations are carried out -
- what messages are sent and when. Sequence dsagranorganized according to time. The
time progresses as you go down the page. The shjeatlved in the operation are listed from
left to right according to when they take parthe tnessage sequence.

Below is a sequence diagram for making a hotelrvasien. The object initiating the
sequence of messages is a Reservation window.

. aChain aHotel
object ® HotelChain Hotel

window
Usetinterface

[[
I I
[[
[[
makeReserationvoid | makeReservation)void I
== L o |

t& Wftﬂuﬁnn
message
*Tfar each day] isRoom=availahled-hoalean

condition
[i=Raam]
—h.

\ A aMotice
— Confirrmatian
,,\1/ EEEE——

Lo creation Z__ i
activation bar T

note x\H L_|

If a room is available for |
each day of the stay, make |
areservation and send a |
I
I

aReservation
Resenation

x-l! deletion [

T lifeline ——»
confirmation.

The Reservation window sends a makeReservationfsage to a HotelChain. The
HotelChain then sends a makeReservation() messagklotel. If the Hotel has available rooms,
then it makes a Reservation and a Confirmation.

Each vertical dotted line is a lifeline, represegtthe time that an object exists. Each arrow is a
message call. An arrow goes from the sender taaghef the activatiorbar of the message on
the receiver's lifeline. The activation bar represe¢he duration of execution of the message.

In our diagram, the Hotel issues a self call tedatne if a room is available. If so, then
the Hotel creates a Reservation and a Confirmalibe. asterisk on the self call means iteration
(to make sure there is available room for each afatyhe stay in the hotel). The expression in
square brackets, [], is a condition.

6|Page

Collaboration diagrams:

Collaboration diagrams are also interaction diagrahimey convey the same information
as sequence diagrams, but they focus on objec mdéead of the times that messages are sent.
In a sequence diagram, object roles are the veréind messages are the connecting links.

window:Userinterface

- message
L4
{31 1 makeReservation{vaid

aChain:HotelChain
«< object
%71 A1 makeReservationdvaid
[/~ sequence number

aHotel:Hotel

4 — - ice: i
114 2isRoom] —= |aReservation:Reservation | ; ; | ; ;. | aNotice:Confirmation

iteration < self link

1.1 1 for each day] isRoom=availabled boolean —T=

The object-role rectangles are labeled with eittlass or object names (or both). Class names
are preceded by colons (:).

Each message in a collaboration diagram hasgaence number. The top-level message is
numbered 1. Messages at the same level (sent dhergame call) have the same decimal prefix
but suffixes of 1, 2, etc. according to when theguo.

Statechart diagrams:

Objects have behaviors and state. The state ofbg@rtodepends on its current activity or
condition. Astatechart diagram shows the possible states of the object and #msitrons that
cause a change in state.

Our example diagram models the login part of amenbanking system. Logging in consists of
entering a valid social security number and persmhaumber, then submitting the information
for validation.

Logging in can be factored into four non-overlagpistates:Getting SSN, Getting PIN,
Validating, andReg ecting. From each state comes a complete sétavfsitions that determine
the subsequent state.

7|Page

initial state

JCuUrsorto S5M

@ Rejecting

CanceliQuit .

Getting S5

RetryiClear S8N, PIN ertries event guard activity

Fress hua\,r[keyf'= tab]IDispé\,r key

[notvalid)iDisplay error message

final state
:% Yalidating |
[validi/Start transaction dofvalidate SSN ajnd FIN submit
~— action

States are rounded rectangles. Transitions arevarfoom one state to another. Events or
conditions that trigger transitions are written idesthe arrows. Our diagram has two self-
transition, one on Getting SSN and another on Ge&iN.
The initial state (black circle) is a dummy to stidae action. Final states are also dummy states
that terminate the action.

The action that occurs as a result of an evenbodition is expressed in the form /action.
While in its Validating state, the object does watit for an outside event to trigger a transition.
Instead, it performs an activity. The result oftthetivity determines its subsequent state.

\ transition—""" Press shift-tab OR move cursorto
SSN fieldiCursor to SSM

Press tab OR move cursar to PIN
fieldfCursorto PIM

Getling PIN state

Press keylkey I= shift-tahlDisplaydot

Activity diagrams:

An activity diagram is essentially a fancy flowchahctivity diagrams and statechart
diagrams are related. While a statechart diagracnsks attention on an object undergoing a
process (or on a process as an object), an activdigram focuses on the flow of activities
involved in a single process. The activity diagrsimws the how those activities depend on one
another.

For our example, we used the following process.

"Withdraw money from a bank account through an ATM.

The three involved classes (people, etc.) of thevigcare Customer, ATM, and Bank. The
process begins at the black start circle at theatogh ends at the concentric white/black stop
circles at the bottom. The activities are roundssiangles.

8|Page

swimlane

E— /!

Ve ¥ T~
Custarner ATM Machine Bank
+—— start
e activity
Enter pin Authorize) -guard expression
branch -, \l/
ST fealid PIN] X _rwalid PIN]_
-
{_ Check account balance)
[balance == amount] % [balance = amaunt]
k
K for
—— {" Debit account)
[:_ Take maney fram slat 34— join
Show balance
merge Ty
Eject card
i end

Activity diagrams can be divided into object swimdg that determine which object is
responsible for which activity. A single transitioomes out of each activity, connecting it to the
next activity.

A transition may branch into two or more mutuallyckeisive transitions. Guard

expressions (inside []) label the transitions agmout of a branch. A branch and its subsequent
merge marking the end of the branch appear initdggamn as hollow diamonds.

A transition may fork into two or more parallel d@ies. The fork and the subsequent
join of the threads coming out of the fork appeathie diagram as solid bars.

9|Page

Component and deployment diagrams:

A component is a code module. Component diagraraspaysical analogs of class
diagram. Deploymerdiagrams show the physical configurations of sofeasnd hardware.

The following deployment diagram shows the relalups among software and
hardware components involved in real estate traiosec

Bank Server Real Estate Server
«=Databage== g Martgage Application Listing P .
CustomerDB | — = MultipleListings
T

i |
S - @ ‘\ component

-y
interface /’Irrmmgageﬁpplicatiun IListing

i / s
[node ”
| T
I /,/ —— dependency
i — connection
ke - «

TCRIP Buyerlnteriace TCPIP

The physical hardware is made up of nodes. Eaclponent belongs on a node. Components
are shown as rectangles with two tabs at the upfier

RESULT:
Thus the study of various UML diagram has beernyaed.

10|Page

