
UNIT - I

INTRODUCTION

INTRODUCTION

� Definition of AI:

AI is a study which makes the computers to
do things which are, at the moment, at the
hands of human beings.hands of human beings.

� Four different approaches:
� Thinking Humanly(The Cognitive approach)

� Acting Humanly(The Turing Test approach)

� Thinking Rationally(The Laws of Thought
approach)

� Acting Rationally(The Rational Agent approach)

� Foundations of AI:

� Philosophy (428 BC – Present)

� Mathematics (c.800 – Present)

� Economics (1776 – Present)

� Neuroscience (1861 – Present)

� Psychology (1879 – Present)� Psychology (1879 – Present)

� Computer engineering (1940 – Present)

� Control theory and Cybernetics (1948 – Present)

� Linguistics (1957 – Present)

� History of AI:

� The gestation of AI (1943 – 1955)

� The birth of AI (1956)

� Early enthusiasm, great expectations (1952 – 1969)

� A dose of reality (1966 – 1973)

� Knowledge based systems (1969 – 1979)� Knowledge based systems (1969 – 1979)

� AI becomes an industry (1980 – Present)

� The return of neural networks (1986 – Present)

� AI becomes a science (1987 – Present)

� The emergence of intelligent agents (1995 – Present)

� The state of the art:

� Autonomous planning

� Game playing

� Autonomous control

� Diagnosis

� Logistics planning

� Robotics

� Language understanding and problem solving

AGENTS
� Agents and Environments:

� An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through actuators.

� The term percept refers to the agent’s perceptual inputs at any given
instant.

� An agent’s percept sequence is the complete history of everything
the agent has ever perceived.the agent has ever perceived.

� An agent’s choice of action at any given instant can depend on the
entire percept sequence observed to date.

� Agent function maps any given percept sequence to an function. It is
an abstract mathematical description: the agent program is a
concrete implementation, running on the agent architecture.

Example: A vacuum cleaner agent with just two

locations

A B

Partial tabulation of a simple agent function for the vacuum-cleaner

world:
Percept sequence Action

[A, Clean]

[A, Dirty]

[B, Clean]

[B, Dirty]

[A, Clean], [A, Clean]

[A, Clean], [A, Dirty]

:

:

Right

Suck

Left

Suck

Right

Suck

:

::

[A, Clean], [A, Clean], [A, Clean]

[A, Clean], [A, Clean], [A, Dirty]

:

:

:

Right

Suck

:

:

� Good Behavior:
Rational Agent

A rational agent is one that does the right thing-
conceptually speaking, every entry in the table for the agent
function is filled out correctly. Obviously, doing the right thing
is better than doing the wrong thing. The right action is the one
that will cause the agent to be most successful.

Performance measures

A performance measure embodies the criterion for success A performance measure embodies the criterion for success
of an agent's behavior. When an agent is plunked down in an
environment, it generates a sequence of actions according to
the percepts it receives. This sequence of actions causes the
environment to go through a sequence of states. If the
sequence is desirable, then the agent has performed well.

Rationality

What is rational at any given time depends on four things:

o The performance measure that defines the criterion of

success.

o The agent's prior knowledge of the environment.

o The actions that the agent can perform.

o The agent's percept sequence to date. o The agent's percept sequence to date.

This leads to a definition of a rational agent:

For each possible percept sequence, a rational agent

should select an action that is expected to maximize its

performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent

has.

Omniscience, learning, and autonomy

An omniscient agent knows the actual outcome of its actions
and can act accordingly; but omniscience is impossible in
reality.

Doing actions in order to modify future percepts-sometimes
called information gathering-is an important part of
rationality.

Our definition requires a rational agent not only to gather Our definition requires a rational agent not only to gather
information, but also to learn as much as possible from what it
perceives.

To the extent that an agent relies on the prior knowledge of its
designer rather than on its own percepts, we say that the agent
lacks autonomy. A rational agent should be autonomous-it
should learn what it can to compensate for partial or
incorrect prior knowledge.

� The Nature of Environments
� Task environments

We must think about task environments, which are essentially
the "problems" to which rational agents are the "solutions."
� Specifying the task environment

The rationality of the simple vacuum-cleaner agent, needs
specification of

o the performance measure

o the environment o the environment

o the agent's actuators and sensors.
� PEAS

All these are grouped together under the heading of the task
environment. We call this the PEAS (Performance, Environment,
Actuators, Sensors) description. In designing an agent, the first step
must always be to specify the task environment as fully as possible.

Properties of task environments

o Fully observable vs. partially observable

o Deterministic vs. stochastic

o Episodic vs. sequential

o Static vs. dynamic

o Discrete vs. continuous

o Single agent vs. multiagent

Fully observable vs. partially observable.

If an agent's sensors give it access to the complete state of the If an agent's sensors give it access to the complete state of the
environment at each point in time, then we say that the task environment is
fully observable. A task environment is effectively fully observable if the
sensors detect all aspects that are relevant to the choice of action; An
environment might be partially observable because of noisy and inaccurate
sensors or because parts of the state are simply missing from the sensor
data.

Deterministic vs. stochastic.

If the next state of the environment is completely determined by the
current state and the action executed by the agent, then we say the
environment is deterministic; otherwise, it is stochastic.

Episodic vs. sequential

In an episodic task environment, the agent's experience is divided
into atomic episodes. Each episode consists of the agent perceiving and
then performing a single action. Crucially, the next episode does not depend
on the actions taken in previous episodes. For example, an agent that has to
spot defective parts on an assembly line bases each decision on the current
part, regardless of previous decisions; In sequential environments, on the
other hand, the current decision could affect all future decisions. Chess and
taxi driving are sequential:

Discrete vs. continuous.

The discrete/continuous distinction can be applied to the state of the
environment, to the way time is handled, and to the percepts and actions of the

The discrete/continuous distinction can be applied to the state of the
environment, to the way time is handled, and to the percepts and actions of the
agent. For example, a discrete-state environment such as a chess game has a
finite number of distinct states. Chess also has a discrete set of percepts and
actions. Taxi driving is a continuous- state and continuous-time problem: the
speed and location of the taxi and of the other vehicles sweep through a
range of continuous values and do so smoothly over time. Taxi-driving
actions are also continuous (steering angles, etc.).

Single agent vs. multiagent.

An agent solving a crossword puzzle by itself is clearly in a single-agent
environment, whereas an agent playing chess is in a two-agent environment.
As one might expect, the hardest case is partially observable, stochastic,
sequential, dynamic, continuous, and multiagent.

� The Structure of Agents:

Agent = Architecture + Program

� Table Driven Agent

� Simple Reflex Agents

� Model Based Reflex Agents

Goal Based Reflex Agents� Goal Based Reflex Agents

� Utility Based Reflex Agents

� Table-Driven Agent

Function TABLE-DRIVEN_AGENT(percept) returns an action

static: percepts, a sequence initially empty

table, a table of actions, indexed by percept sequence

append percept to the end of percepts

action LOOKUP(percepts, table)

return action

Drawbacks:

• Table lookup of percept-action pairs defining all possible condition-action rules
necessary to interact in an environment necessary to interact in an environment

• Problems

– Too big to generate and to store (Chess has about 10^120 states, for example)

– No knowledge of non-perceptual parts of the current state

– Not adaptive to changes in the environment; requires entire table to be
updated if changes occur

– Looping: Can't make actions conditional

• Take a long time to build the table

• No autonomy

• Even with learning, need a long time to learn the table entries

Some Agent Types

• Table-driven agents

– use a percept sequence/action table in memory to find the next
action. They are implemented by a (large) lookup table.

• Simple reflex agents

– are based on condition-action rules, implemented with an
appropriate production system. They are stateless devices which
do not have memory of past world states.

• Agents with memory • Agents with memory

– have internal state, which is used to keep track of past states
of the world.

• Agents with goals

– are agents that, in addition to state information, have goal
information that describes desirable situations. Agents of this kind
take future events into consideration.

• Utility-based agents

– base their decisions on classic axiomatic utility theory in
order to act rationally.

SIMPLE-REFLEX AGENT:

What the world is

like now

Sensors

E
n
v
ir
o
n
m
e
n
t

Agent

Condition-

Action Rule

What action I

should do now

Actuators

E
n
v
ir
o
n
m
e
n
t

function SIMPLE-REFLEX-AGENT(percept) returns an action

static: rules, a set of condition-action rules

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rule)

action ← RULE-ACTION[rule]

return action

function REFLEX-VACUUM-AGENT ([location, status]) return
an action

if status == Dirty then return Suck

else if location == A then return Right

else if location == B then return Left

MODEL-BASED REFLEX AGENT:

What the world is

like now

Sensors

E
n
v
ir
o
n
m
e
n
t

State

How the world

evolves

What my

actions do

Condition-

Action Rule

What action I

should do now

Actuators

E
n
v
ir
o
n
m
e
n
t

Agent

actions do

function REFLEX-AGENT-WITH-STATE(percept)

returns an action

static: rules, a set of condition-action rules

state, a description of the current world state

action, the most recent action.

state ←UPDATE-STATE(state, action, percept) state ←UPDATE-STATE(state, action, percept)

rule ← RULE-MATCH(state, rule)

action ← RULE-ACTION[rule]

return action

GOAL-BASED AGENT:

What the world is

like now

Sensors

E
n
v
ir
o
n
m
e
n
t

State

How the world

evolves

What my

actions do

Goals
What action I

should do now

Actuators

E
n
v
ir
o
n
m
e
n
t

Agent

actions do
What it will be like

if I do action A

UTILITY-BASED AGENT:

What the world is

like now

Sensors

E
n
v
ir
o
n
m
e
n
t

State

How the world

evolves

What my

actions do What it will be like

Utility

What action I

should do now

Actuators

E
n
v
ir
o
n
m
e
n
t

Agent

actions do What it will be like

if I do action A

How happy I will

be in such a state

LEARNING AGENT
E
n
v
ir
o
n
m
e
n
t

Critic Sensors

Performance standard

feedback

S

E
n
v
ir
o
n
m
e
n
t

Learning

Element

Problem

Generator

Performance

Element

Actuators

feedback

changes

knowledge
Learning goals

Agent

PROBLEM FORMULATION

� Problem solving agent is one kind of goal-
based agent.

� A well defined problem can be classified by:

� Initial state� Initial state

� Operator or Successor function

� State space

� Path

� Path cost

� Goal test

� What is search?

Search is the systematic examination of states to find
path from the start/root state to the goal state.

The set of possible states, together with operators
defining their connectivity constitute the search space.

The output of a search algorithm is a solution, ie., a path
from the initial state to a state that satisfies the goal from the initial state to a state that satisfies the goal
test.

� Goal formulation is based on current situation and the
agent’s performance measures, and it is the first step in
problem solving.

� Problem formulation is a process of deciding what
actions and states to consider, given a goal.

� Search
An agent with several immediate options of
unknown value can decide what to do by examining
different possible sequences of actions that leads to
the states of known value, and then choosing the
best sequence. The process of looking for sequences best sequence. The process of looking for sequences
actions from the current state to reach the goal
state is called search.

The search algorithm takes a problem as input and
returns a solution in the form of action sequence.
Once a solution is found, the execution phase
consists of carrying out the recommended action.

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an
action

inputs : percept, a percept

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ←UPDATE-STATE(state, percept) state ←UPDATE-STATE(state, percept)

if seq is empty then do

goal ← FORMULATE-GOAL(state)

problem ← FORMULATE-PROBLEM(state, goal)

seq ←SEARCH(problem)

action ← FIRST(seq);

seq ← REST(seq)

return action

� Well – defined problems and solutions:

A problem can be formally defined by four components:
� The initial state that the agent starts in . The initial state for our agent of example

problem is described by In(Arad)
� A Successor Function returns the possible actions available to the agent. Given a state

x,SUCCESSOR-FN(x) returns a set of {action, successor} ordered pairs where each
action is one of the legal actions in state x,and each successor is a state that can be
reached from x by applying the action.
For example, from the state In(Arad),the successor function for the Romania problem
would return {
[Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }
State Space : The set of all states reachable from the initial state. The state space State Space : The set of all states reachable from the initial state. The state space
forms a graph in which the nodes are states and the arcs between nodes are actions.
A path in the state space is a sequence of states connected by a sequence of actions.

� The goal test determines whether the given state is a goal state.
� A path cost function assigns numeric cost to each action. For the Romania problem

the cost of path might be its length in kilometers.
The step cost of taking action a to go from state x to state y is denoted by c(x,a,y).

� A solution to the problem is a path from the initial state to a goal state.

� An optimal solution has the lowest path cost among all solutions.

A Simple road map of Romania

� Example Problems:
� A toy problem can be easily used by different researches to

compare the performance of algorithms.
� Vacuum world

� 8-puzzle

� 8-queens

� Sliding block puzzles

� A real world problem is one whose solutions people actually
care about.care about.
� Route finding problem

� Touring problem

� TSP problem

� VLSI layout

� Robot navigation

� Automatic assembly sequencing

� Internet searching

� Searching for solutions:

� A search tree is generated by the initial state and the

successor function that together define the state

space.

� In general, we may have search graph rather than a

search tree when the same state can be reached

from multiple paths.from multiple paths.

� Search strategy determines the choice of which state

to expand.

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state

then return the corresponding solutionthen return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end

Arad

Sibiu Timisoara Zerind

Arad OradeaLugojAradFagaras Oradea
Rimnicu

Vilcea
Arad

Arad

Sibiu Timisoara Zerind

Arad OradeaLugojAradFagaras Oradea
Rimnicu

Vilcea
Arad

Arad

Sibiu Timisoara Zerind

Arad OradeaLugojAradFagaras Oradea
Rimnicu

Vilcea
Arad

� A state is a (representation of) a physical

configuration.

� A node is a data structure constituting part of a

search tree includes parent, children, depth, path cost

g(x).

� States do not have parents, children, depth, or path

cost. cost.

5

6

7 3

1

4

8

2

PARENT-NODE

Node

STATE

ACTION = right

DEPTH = 6

PATH-COST = 6

function Tree-Search(problem, fringe) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds then return
SOLUTION(node)

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodesfunction EXPAND(node, problem) returns a set of nodes

successors ← the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do

s ← a new Node

STATE[s] ← result

PARENT-NODE[s] ← node

ACTION[s] ← action

PATH-COST[s] ← PATH-COST[node]+STEP-COST(node, action, s)

DEPTH[s] ← DEPTH[node] + 1

add s to successors

return successors

� A strategy is defined by picking the order of node

expansion

� Strategies are evaluated along the following dimensions:

� Completeness – does it always find a solution if one exists?

� Optimality – does it always find a least-cost solution?

� Time complexity – number of nodes generated/expanded

� Space complexity – maximum number of nodes in memory

Time and space complexity are measured in terms of:Time and space complexity are measured in terms of:

� b – maximum branching factor of the search tree

� d – depth of the least-cost solution

� C* - path cost of the least-cost solution

� m – maximum depth of the state space (may be ∞)

UNINFORMED SEARCH STRATEGIES

� It is otherwise known as blind search.

� It uses only the information available in the problem
definition.

� They just generate successors and distinguish a goal
state from a non-goal state, ie., all search strategies are
distinguished by the order in which nodes are expanded.distinguished by the order in which nodes are expanded.
� Breadth-First Search

� Uniform-Cost Search

� Depth-First Search

� Depth-Limited Search

� Iterative Deepening Depth-First Search

� Bi-directional Search

Breadth First Search

� Expands shallowest unexpanded node.

� It can be implemented by calling TREE-
SEARCH with an empty fringe, ie., FIFO

queue (i.e., new successors go at end)queue (i.e., new successors go at end)

A

B C

GFED

A

B C

GFED

A

B C

GFED

A

B C

GFED

Properties of breadth first search:

� Completeness? Yes (if b is finite)

� Optimality? No, unless step costs are constant

� Time complexity? 1+b+b2+b3+…+bd+b(bd-1) =
O(bd+1)

� Space complexity? O(bd+1) (keeps every node in � Space complexity? O(bd+1) (keeps every node in

memory)

Uniform Cost Search
� Expands least cost unexpanded node.

� It is equivalent to breadth first search if all step costs
are equal.

� Implementation: fringe = queue ordered by path cost,
lower first.

S

B

G

CA

1 10
3

512 5

S

S

B CA

1 10

S

3

S

B CA

S

B CA

10
3

13

G
13

G

8

G

15

G

Properties of uniform cost search:

� Completeness? Yes (if step cost ≥ `)

� Optimality? No, unless step costs are constant

� Time complexity? 1+b+b2+b3+…+bd+b(bd-1) =
O(bd+1)

� Space complexity? O(bd+1) (keeps every node in � Space complexity? O(bd+1) (keeps every node in

memory)

Depth First Search

� Expands the deepest node in the current

fringe.

� Implementation: fringe = LIFO queue, i.e.,

put successors at front.put successors at front.

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

A

B C

GFED

H I J K L M N O

� Properties of Depth-First Search:

� Complete? No: fails in infinite-depth spaces,

spaces with loops.

Modify to avoid repeated states along path =>

complete in infinite spaces

� Time? O(bm): terrible if m is much larger than d but � Time? O(bm): terrible if m is much larger than d but

if solutions are dense, may be much faster than

breadth-first.

� Space? O(bm), i.e., linear space.

� Optimal? No

Depth-Limited Search

� Depth-first search with depth limit l, returns
cutoff if any path is cut off by depth limit.

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln

/fail /cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),

problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail

/cutoff

cutoff-occurred? ← falsecutoff-occurred? ← false
if GOAL-TEST(problem,STATE[node]) then return node

else if DEPTH[node] = limit then return cutoff

else for each successor in EXPAND(node, problem) do

result ← RECURSIVE-DLS(successor, problem, limit)

if result = cutoff then cutoff-occurred? ← true
else if result ≠ failure then return result

if cutoff-occurred? then return cutoff else return failure

� Properties of Depth-First Search:

� Complete? No

� Time? O(bl)

� Space? O(bl)� Space? O(bl)

� Optimal? No

Iterative Deepening Depth-

First Search
� Otherwise called Iterative deepening search

is a general strategy often used in
combination with depth-first search, that

finds the better depth limit.finds the better depth limit.

� It is done by gradually increasing the limit –
first 0, then 1, then 2 and so on – until goal is

found.

� It combines the benefits of depth-first search
and breadth-first search.

� Properties of Iterative deepening search:

� Complete? Yes

� Time? (d + 1)b0 + db1 +(d-1)b2 + … + bd = O(bd)

� Space? O(bd)

� Optimal? No, unless step costs are constant

Can be modified to explore uniform-cost tree.

Numerical comparison for b = 10 and d = 5, solution at far Numerical comparison for b = 10 and d = 5, solution at far

right leaf:

N(IDS) = 50 + 100 + 3,000 + 20,000 + 100,000 = 123,450

N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =

1,111,100

IDS does better because other nodes at depth d are not

expanded

BFS can be modified to apply goal test when a node is

generated.

Bidirectional Search

� Runs two simultaneous searches – one
forward from the initial state and the other

backward from the goal.

Comparing Uninformed Search

Strategies

Avoiding Repeated States

� In searching, time is wasted by expanding states
that have already been encountered and expanded
before.

� For some problems repeated states are
unavoidable.

� The search trees for these problems are infinite.

� If we prune some of the repeated states, we can cut
the search tree down to finite size.

� Considering search tree upto a fixed depth,
eliminating repeated states yields an exponential
reduction in search cost.

� Repeated states ,can cause a solvable

problem to become unsolvable if the

algorithm does not detect them.

� Repeated states can be the source of

great inefficiency: identical sub trees great inefficiency: identical sub trees

will be explored many times.

(a) A state space in which there are two possible
actions leading from A to B, two from B to C,
and so on. The state space contains d + 1

states, where d is the maximum depth.

(b) The corresponding search tree, which has 2d

branches corresponding to the 2d paths branches corresponding to the 2d paths
through the space.

(c) A rectangular grid space. States within 2

steps of the initial state (A) are shown in
white.

The General Graph search algorithm. The set closed

can be implemented with a hash table to allow

efficient checking of repeated states.

Searching with Partial

Solutions
� Different types of incompleteness lead to

three distinct problem types:

� Sensorless problems (conformant): If the agent

has no sensors at all has no sensors at all

� Contingency problem: if the environment if

partially observable or if action are uncertain

(adversarial)

� Exploration problems: When the states and

actions of the environment are unknown.

INFORMED (HEURISTICS) SEARCH

STRATEGIES

� Informed search is one that uses problem-
specific knowledge beyond the definition of the
problem itself.

� It can find solutions more efficiently than
uninformed strategy.uninformed strategy.

� Best-First Search
� Greedy Best-First Search

� A* Search

� Memory bounded Heuristic Search
� Recursive Best-First Search

� SMA*

Best – First Search

� Use an evaluation function f(n) for each
node.

� Estimate of “desirability”

� Expand most desirable unexpanded node.� Expand most desirable unexpanded node.

� Implementation: fringe is a queue sorted in
increasing order of desirability.

� Special cases:

� Greedy best-First Search

� A* Search

Heuristic Function

� A heuristic function or simply heuristic is a
function that ranks alternatives in various search
algorithms at each branching step basing on an
available information in order to make a decision
which branch is to be followed during a search. which branch is to be followed during a search.

� The key component of Best-first search
algorithm is a heuristic function, denoted by
h(n):

� h(n) = estimated cost of the cheapest path from
node n to a goal node.

� Straight line distance heuristic (h
SLD

) is
calculated based on some certain experience.

Greedy Best-First Search

� Evaluation function h(n) (heuristic) = estimate
of cost from n to the closest goal.

� Properties of greedy search

� o Complete?? No–can get stuck in loops, e.g.,

� Iasi ! Neamt ! Iasi ! Neamt !

� Complete in finite space with repeated-state checking � Complete in finite space with repeated-state checking

� o Time?? O(bm), but a good heuristic can give dramatic
improvement

� o Space?? O(bm)—keeps all nodes in memory

� o Optimal?? No

� Greedy best-first search is not optimal,and it is incomplete.

� The worst-case time and space complexity is O(bm),where
m is the maximum depth of the search space.

A* Search

� Idea: avoid expanding paths that are already expensive

� Evaluation function f(n) = g(n) + h(n)

� g(n) = cost so far to reach n

� h(n) = estimated cost to goal from n

� f(n) = estimated total cost of path through n to goal� f(n) = estimated total cost of path through n to goal

� A* search uses an admissible heuristic

� i.e., h(n) ≤ h*(n) where h*(n) is the true cost from n.

� (Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

� E.g., h
SLD

(n) never overestimates the actual road distance

� Theorem: A* search is optimal

Learning to Search

Better

� Meta-level state space

� Object –level state space� Object –level state space

HEURISTIC FUNCTIONS

� A heuristic function or simply a heuristic is a
function that ranks alternatives in various
search algorithms at each branching step

basing on an available information in order basing on an available information in order
to make a decision which branch is to be

followed during a search.

� 8 – puzzle problem

� Object – sliding the tiles horizontally or vertically
into the empty space until the configuration
matches the goal configuration.

� Avg. soln. cost for a randomly generated instance is
about 22 steps.

� Branching factor is about 3.

� An exhaustive search to depth 22 would look at
about 322 approximately 3.1 × 1010 states.about 322 approximately 3.1 × 1010 states.

� By keeping track of repeated states, the above
states can be reduced by a factor of about 170,000
because there are only 9!/2 = 181,440 distinct states
that are reachable.

� For 15-puzzle problem, two candidates are used:
� h1 – number of misplaced tiles.

� h2 – sum of the distance of tiles from their goal positions.

� The effective branching factor, b*.

� Learning heuristics from experience

� Inductive learning algorithm

� Inventing admissible heuristic functions:

� Relaxed problems

� Pattern databases

Disjoint databases� Disjoint databases

LOCAL SEARCH ALGORITHMS AND

OPTIMIZATION PROBLEMS
� Local search algorithms operate using a single

current state rather than multiple paths and
generally move only to neighbors of that state.

� Local search algorithms are useful for solving
pure optimization problems, in which the aim pure optimization problems, in which the aim
is to find the best state according to an objective
function.

� Advantages:
� They use very little memory.

� They can often find reasonable solutions in large or
infinite state spaces for which systematic algorithms
are unsuitable.

Hill- Climbing Search

function HILL-CLIMBING(problem) return a state
that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[problem]) current ← MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor ← a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then
return STATE[current]

current ← neighbor

� Problems with hill-climbing:

� Local maxima / Foot hills

� Ridges

� Plateaux / Shoulder

� Variants of hill-climbing:

Stochastic hill climbing� Stochastic hill climbing

� First choice hill climbing

� Random – restart hill climbing

Simulated Annealing Search

Local Beam Search

� Idea: keep k states instead of 1; choose top k of

all their successors

� Not the same as k searches run in parallel!

� Searches that nd good states recruit other

searches to join themsearches to join them

� Problem: quite often, all k states end up on same

local hill

� Idea: choose k successors randomly, biased

towards good ones

� Observe the close analogy to natural selection!

Genetic Algorithm

� A Genetic algorithm is a variant of stochastic
beam search in which successor states are

generated by combining two parent states, rather
than by modifying a single state.

function GENETIC_ALGORITHM(population, FITNESS-FN) return
an individual

input: population, a set of individuals

FITNESS-FN, a function which determines the quality of

the individual

repeat

new_population ← empty set

loop for i from 1 to SIZE(population) do

x ← RANDOM_SELECTION(population, FITNESS_FN) x ← RANDOM_SELECTION(population, FITNESS_FN)

y ← RANDOM_SELECTION(population, FITNESS_FN)

child ← REPRODUCE(x,y)

if (small random probability) then child � MUTATE(child)

add child to new_population

population ← new_population

until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN

LOCAL SEARCH IN CONTINUOUS

SPACE

� Suppose we want to site three airports in

Romania:

� 6-D state space defined by (x1, y2), (x2, y2),

(x3, y3)(x3, y3)

� objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to

nearest airport

� Discretization methods

� Gradient methods

� Steepest-ascent hill climbing

� Empirical gradient� Empirical gradient

� Line search

� Newton-Raphson method

ONLINE SEARCH AGENTS AND

UNKNOWN ENVIRONMENTS
� Offline search (all algorithms so far)

� Compute complete solution, ignoring environment

carry out action sequence.

� Online search

� Interleave computation and action

� Act – Observe - Compute

� Online search agents suits well for the following

domains:

� For dynamic, semi-dynamic, stochastic domains

� Whenever offline search would yield exponentially

many contigencies

� Online search necessary for exploration

problem:

� States and actions unknown to agent

� Agent uses actions as experiments to determine what

to do

Eg: Robot exploring unknown building

A new born babyA new born baby

� The following terms are known by the agent to

solve the problem in the given environment:

� ACTIONS (s)

� C(s, a, s’)

� GOAL-TEST(s)

� Competitive ratio compares actual cost

with cost agent would follow if it knew the

search space

� No agent can avoid dead ends in all state

spaces spaces

� Robotics examples: Staircase, ramp, cliff,

terrain

� Assume state space is safely explorable -

some goal state is always reachable

Online Search Agents

� Interleaving planning and acting hamstrings
offline search

� A* expands arbitrary nodes without waiting for

outcome of action Online algorithm can expand only

the node it physically occupies Best to explore nodes the node it physically occupies Best to explore nodes

in physically local order

� Suggests using depth-first search

� Next node always a child of the current

� When all actions have been tried, can‘t just drop
state Agent must physically backtrack

� Online Depth-First Search

� May have arbitrarily bad competitive

ratio (wandering past goal) Okay for

exploration; bad for minimizing path

cost cost

� Online Iterative-Deepening Search

� Competitive ratio stays small for state

space a uniform tree

Online Local Search
� Hill Climbing Search

� Also has physical locality in node
expansions Is, in fact, already an online
search algorithm

� Local maxima problematic: can‘t randomly
transport agent to new state in effort to escape transport agent to new state in effort to escape
local maximum.

� Random Walk as alternative
� Select action at random from current state

� Will eventually find a goal node in a finite space

� Can be very slow, esp. if “backward” steps as
common as “forward”

� Hill Climbing with Memory instead of
randomness

� Store “current best estimate” of cost to
goal at each visited state Starting estimate
is just h(s)

� Augment estimate based on experience in
the state space Tends to “flatten out” local

� Augment estimate based on experience in
the state space Tends to “flatten out” local
minima, allowing progress Employ
optimism under uncertainty

� Untried actions assumed to have least-
possible cost Encourage exploration of
untried paths

Learning in Online Search
� Rampant ignorance a ripe opportunity for learning

Agent learns a ―map‖ of the environment

� Outcome of each action in each state

� Local search agents improve evaluation function
accuracy

� Update estimate of value at each visited state

� Would like to infer higher-level domain model � Would like to infer higher-level domain model

� Example: ―Up‖ in maze search increases y -
coordinate Requires

� Formal way to represent and manipulate such
general rules (so far, have hidden rules within the
successor function)

� Algorithms that can construct general rules based
on observations of the effect of actions

CONSTRAINT SATISFACTION

PROBLEMS (CSP)
� Formal Definition:

A Constraint Satisfaction Problem(or CSP) is defined by a set of
variables ,X1,X2,….Xn, and a set of constraints C1,C2,…,Cm.
Each variable Xi has a nonempty domain D, of possible values.
Each constraint Ci involves some subset of variables and
specifies the allowable combinations of values for that subset. specifies the allowable combinations of values for that subset.

A State of the problem is defined by an assignment of values to
some or all of the variables,{Xi = vi,Xj = vj,…}. An assignment
that does not violate any constraints is called a consistent or
legal assignment. A complete assignment is one in which every
variable is mentioned,and a solution to a CSP is a complete
assignment that satisfies all the constraints.

Some CSPs also require a solution that maximizes an objective
function.

� Example for Constraint Satisfaction Problem :

� The map of Australia showing each of its states and
territories is given below. We are given the task of coloring
each region either red, green, or blue in such a way that the
neighboring regions have the same color. To formulate this
as CSP ,we define the variable to be the regions
:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is
the set {red, green, blue}.The constraints require
neighboring regions to have distinct colors; for example,
the allowable combinations for WA and NT are the pairs the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(
blue,green)}.

� The constraint can also be represented more succinctly as
the inequality WA not = NT,provided the constraint
satisfaction algorithm has some way to evaluate such
expressions.) There are many possible solutions such as

{ WA = red, NT = green, Q = red, NSW = green, V = red , SA =
blue, T = red}

� It is helpful to visualize a CSP as a constraint
graph. The nodes of the graph corresponds to
variables of the problem and the arcs

correspond to constraints.

� CSP can be viewed as a standard search problem
as follows :
� Initial state : the empty assignment {},in which all

variables are unassigned.

� Successor function : a value can be assigned to any
unassigned variable, provided that it does not
conflict with previously assigned variables.

� Goal test : the current assignment is complete. � Goal test : the current assignment is complete.

� Path cost : a constant cost(E.g.,1) for every step.

� Every solution must be a complete assignment
and therefore appears at depth n if there are n
variables.

� Depth first search algorithms are popular for
CSPs

� Varieties of CSPs

(i) Discrete variables
� Finite domains

The simplest kind of CSP involves variables that are discrete
and have finite domains. Map coloring problems are of this kind.
The 8-queens problem can also be viewed as finite-domain
CSP,where the variables Q1,Q2,…..Q8 are the positions each
queen in columns 1,….8 and each variable has the domain
{1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a
CSP is d,then the number of possible complete assignments is
O(dn) – that is,exponential in the number of variables. Finite O(dn) – that is,exponential in the number of variables. Finite
domain CSPs include Boolean CSPs,whose variables can be either
true or false.
� Infinite domains

Discrete variables can also have infinite domains – for
example,the set of integers or the set of strings. With infinite
domains,it is no longer possible to describe constraints by
enumerating all allowed combination of values. Instead a
constraint language of algebric inequalities such as

Startjob1 + 5 <= Startjob3.

(ii) CSPs with continuous domains

CSPs with continuous domains are very
common in real world. For example ,in operation
research field,the scheduling of experiments on
the Hubble Telescope requires very precise
timing of observations; the start and finish of
each observation and maneuver are continuous-
valued variables that must obey a variety of valued variables that must obey a variety of
astronomical,precedence and power constraints.
The best known category of continuous-domain
CSPs is that of linear programming
problems,where the constraints must be linear
inequalities forming a convex region. Linear
programming problems can be solved in time
polynomial in the number of variables.

� Varieties of constraints :

(i) unary constraints involve a single variable.

Example : SA # green

(ii) Binary constraints involve paris of variables.

Example : SA # WA Example : SA # WA

(iii) Higher order constraints involve 3 or more

variables.

Example : cryptarithmetic puzzles.

Backtracking Search for CSPs

� The term backtracking search is used for

depth-first search that chooses values

for one variable at a time and backtracks

when a variable has no legal values left when a variable has no legal values left

to assign.

� Variable and Value ordering

� Propagation information through constraints

� Forward checking

� Constraint propagation

� Arc consistency

� Node consistency

� Path consistency� Path consistency

� Arc consistency:

� K-consistency:

�Handling special constraints

� Intelligent backtracking

Local Search for CSPs

� Local search algorithms good for many CSPs.

� Use complete-state formulation

� Value assigned to every variable

� Successor function changes one value at a � Successor function changes one value at a

time

� Choose values using min-conflicts heuristic

� Value that results in the minimum number of

conflicts with other variables.

The Structure of Problems

� Problem Structure

� Consider ways in which the structure of

the problem’s constraint graph can help

find solutions.find solutions.

� Real-world problems require

decomposition into subproblems.

� Independent Subproblems:

� Tree – Structured CSPs:

•Removing nodes – Cutset conditioning

•Collapsing nodes together – Tree decomposition

