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INTRODUCTION

� Definition of AI:

AI is a study which makes the computers to 
do things which are, at the moment, at the 
hands of human beings.hands of human beings.

� Four different approaches:
� Thinking Humanly(The Cognitive approach)

� Acting Humanly(The Turing Test approach)

� Thinking Rationally(The Laws of Thought 
approach)

� Acting Rationally(The Rational Agent approach)



� Foundations of AI:

� Philosophy (428 BC – Present)

� Mathematics (c.800 – Present)

� Economics (1776 – Present)

� Neuroscience (1861 – Present)

� Psychology (1879 – Present)� Psychology (1879 – Present)

� Computer engineering (1940 – Present)

� Control theory and Cybernetics (1948 – Present)

� Linguistics (1957 – Present)



� History of AI:

� The gestation of AI (1943 – 1955)

� The birth of AI (1956)

� Early enthusiasm, great expectations (1952 – 1969)

� A dose of reality (1966 – 1973)

� Knowledge based systems (1969 – 1979)� Knowledge based systems (1969 – 1979)

� AI becomes an industry (1980 – Present)

� The return of neural networks (1986 – Present)

� AI becomes a science (1987 – Present)

� The emergence of intelligent agents (1995 – Present)



� The state of the art:

� Autonomous planning

� Game playing

� Autonomous control

� Diagnosis

� Logistics planning

� Robotics

� Language understanding and problem solving



AGENTS
� Agents and Environments:

� An agent is anything that can be viewed as perceiving its 
environment through sensors and acting upon that environment 
through actuators.

� The term percept refers to the agent’s perceptual inputs at any given 
instant.

� An agent’s percept sequence is the complete history of everything 
the agent has ever perceived.the agent has ever perceived.

� An agent’s choice of action at any given instant can depend on the 
entire percept sequence observed to date.

� Agent function maps any given percept sequence to an function. It is 
an abstract mathematical description: the agent program is a 
concrete implementation, running on the agent architecture.



Example: A vacuum cleaner agent with just two 

locations

A B



Partial tabulation of a simple agent function for the vacuum-cleaner 

world:
Percept sequence Action

[A, Clean]

[A, Dirty]

[B, Clean]

[B, Dirty]

[A, Clean], [A, Clean]

[A, Clean], [A, Dirty]

:

:

Right

Suck

Left

Suck

Right

Suck

:

::

[A, Clean], [A, Clean], [A, Clean]

[A, Clean], [A, Clean], [A, Dirty]

:

:

:

Right

Suck

:

:



� Good Behavior: 
Rational Agent 

A rational agent is one that does the right thing-
conceptually speaking, every entry in the table for the agent 
function is filled out correctly. Obviously, doing the right thing 
is better than doing the wrong thing. The right action is the one 
that will cause the agent to be most successful. 

Performance measures 

A performance measure embodies the criterion for success A performance measure embodies the criterion for success 
of an agent's behavior. When an agent is plunked down in an 
environment, it generates a sequence of actions according to 
the percepts it receives. This sequence of actions causes the 
environment to go through a sequence of states. If the 
sequence is desirable, then the agent has performed well. 



Rationality 

What is rational at any given time depends on four things: 

o The performance measure that defines the criterion of 

success. 

o The agent's prior knowledge of the environment. 

o The actions that the agent can perform. 

o The agent's percept sequence to date. o The agent's percept sequence to date. 

This leads to a definition of a rational agent: 

For each possible percept sequence, a rational agent 

should select an action that is expected to maximize its 

performance measure, given the evidence provided by the 

percept sequence and whatever built-in knowledge the agent 

has. 



Omniscience, learning, and autonomy 

An omniscient agent knows the actual outcome of its actions 
and can act accordingly; but omniscience is impossible in 
reality.

Doing actions in order to modify future percepts-sometimes 
called information gathering-is an important part of 
rationality.

Our definition requires a rational agent not only to gather Our definition requires a rational agent not only to gather 
information, but also to learn as much as possible from what it 
perceives. 

To the extent that an agent relies on the prior knowledge of its 
designer rather than on its own percepts, we say that the agent 
lacks autonomy. A rational agent should be autonomous-it 
should learn what it can to compensate for partial or 
incorrect prior knowledge. 



� The Nature of Environments
� Task environments 

We must think about task environments, which are essentially 
the "problems" to which rational agents are the "solutions." 
� Specifying the task environment 

The rationality of the simple vacuum-cleaner agent, needs 
specification of 

o the performance measure 

o the environment o the environment 

o the agent's actuators and sensors. 
� PEAS 

All these are grouped together under the heading of the task 
environment. We call this the PEAS (Performance, Environment, 
Actuators, Sensors) description. In designing an agent, the first step 
must always be to specify the task environment as fully as possible. 





Properties of task environments 

o Fully observable vs. partially observable 

o Deterministic vs. stochastic 

o Episodic vs. sequential 

o Static vs. dynamic 

o Discrete vs. continuous 

o Single agent vs. multiagent 

Fully observable vs. partially observable. 

If an agent's sensors give it access to the complete state of the If an agent's sensors give it access to the complete state of the 
environment at each point in time, then we say that the task environment is 
fully observable. A task environment is effectively fully observable if the 
sensors detect all aspects that are relevant to the choice of action; An 
environment might be partially observable because of noisy and inaccurate 
sensors or because parts of the state are simply missing from the sensor 
data. 

Deterministic vs. stochastic. 

If the next state of the environment is completely determined by the 
current state and the action executed by the agent, then we say the 
environment is deterministic; otherwise, it is stochastic. 



Episodic vs. sequential 

In an episodic task environment, the agent's experience is divided 
into atomic episodes. Each episode consists of the agent perceiving and 
then performing a single action. Crucially, the next episode does not depend 
on the actions taken in previous episodes. For example, an agent that has to 
spot defective parts on an assembly line bases each decision on the current 
part, regardless of previous decisions; In sequential environments, on the 
other hand, the current decision could affect all future decisions. Chess and 
taxi driving are sequential: 

Discrete vs. continuous. 

The discrete/continuous distinction can be applied to the state of the 
environment, to the way time is handled, and to the percepts and actions of the 

The discrete/continuous distinction can be applied to the state of the 
environment, to the way time is handled, and to the percepts and actions of the 
agent. For example, a discrete-state environment such as a chess game has a 
finite number of distinct states. Chess also has a discrete set of percepts and 
actions. Taxi driving is a continuous- state and continuous-time problem: the 
speed and location of the taxi and of the other vehicles sweep through a 
range of continuous values and do so smoothly over time. Taxi-driving 
actions are also continuous (steering angles, etc.). 

Single agent vs. multiagent. 

An agent solving a crossword puzzle by itself is clearly in a single-agent 
environment, whereas an agent playing chess is in a two-agent environment. 
As one might expect, the hardest case is partially observable, stochastic, 
sequential, dynamic, continuous, and multiagent. 





� The Structure of Agents:

Agent = Architecture + Program 

� Table Driven Agent

� Simple Reflex Agents

� Model Based Reflex Agents

Goal Based Reflex Agents� Goal Based Reflex Agents

� Utility Based Reflex Agents 



� Table-Driven Agent

Function TABLE-DRIVEN_AGENT(percept) returns an action 

static: percepts, a sequence initially empty 

table, a table of actions, indexed by percept sequence

append percept to the end of percepts 

action LOOKUP(percepts, table) 

return action 

Drawbacks: 

• Table lookup of percept-action pairs defining all possible condition-action rules 
necessary to interact in an environment necessary to interact in an environment 

• Problems 

– Too big to generate and to store (Chess has about 10^120 states, for example) 

– No knowledge of non-perceptual parts of the current state 

– Not adaptive to changes in the environment; requires entire table to be 
updated if changes occur 

– Looping: Can't make actions conditional 

• Take a long time to build the table 

• No autonomy 

• Even with learning, need a long time to learn the table entries 



Some Agent Types 

• Table-driven agents 

– use a percept sequence/action table in memory to find the next 
action. They are implemented by a (large) lookup table. 

• Simple reflex agents 

– are based on condition-action rules, implemented with an 
appropriate production system. They are stateless devices which 
do not have memory of past world states. 

• Agents with memory • Agents with memory 

– have internal state, which is used to keep track of past states 
of the world. 

• Agents with goals 

– are agents that, in addition to state information, have goal 
information that describes desirable situations. Agents of this kind 
take future events into consideration. 

• Utility-based agents 

– base their decisions on classic axiomatic utility theory in 
order to act rationally. 



SIMPLE-REFLEX AGENT:

What the world is 

like now

Sensors
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function SIMPLE-REFLEX-AGENT(percept) returns an action 

static: rules, a set of condition-action rules

state ← INTERPRET-INPUT(percept) 

rule ← RULE-MATCH(state, rule) 

action ← RULE-ACTION[rule] 

return action 

function REFLEX-VACUUM-AGENT ([location, status]) return 
an action 

if status == Dirty then return Suck 

else if location == A then return Right 

else if location == B then return Left 



MODEL-BASED REFLEX AGENT:
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function REFLEX-AGENT-WITH-STATE(percept) 

returns an action 

static: rules, a set of condition-action rules

state, a description of the current world state 

action, the most recent action. 

state ←UPDATE-STATE(state, action, percept) state ←UPDATE-STATE(state, action, percept) 

rule ← RULE-MATCH(state, rule) 

action ← RULE-ACTION[rule] 

return action 



GOAL-BASED AGENT:
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UTILITY-BASED AGENT:
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if I do action A

How happy I will 

be in such a state



LEARNING AGENT
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PROBLEM FORMULATION

� Problem solving agent is one kind of goal-
based agent.

� A well defined problem can be classified by:

� Initial state� Initial state

� Operator or Successor function

� State space

� Path

� Path cost

� Goal test



� What is search?

Search is the systematic examination of states to find 
path from the start/root state to the goal state.

The set of possible states, together with operators 
defining their connectivity constitute the search space.

The output of a search algorithm is a solution, ie., a path 
from the initial state to a state that satisfies the goal from the initial state to a state that satisfies the goal 
test.

� Goal formulation is based on current situation and the 
agent’s performance measures, and it is the first step in 
problem solving.

� Problem formulation is a process of deciding what 
actions and states to consider, given a goal.



� Search
An agent with several immediate options of 
unknown value can decide what to do by examining 
different possible sequences of actions that leads to 
the states of known value, and then choosing the 
best sequence. The process of looking for sequences best sequence. The process of looking for sequences 
actions from the current state to reach the goal 
state is called search. 

The search algorithm takes a problem as input and 
returns a solution in the form of action sequence. 
Once a solution is found, the execution phase 
consists of carrying out the recommended action. 



function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an 
action 

inputs : percept, a percept

static: seq, an action sequence, initially empty

state, some description of the current world state 

goal, a goal, initially null 

problem, a problem formulation 

state ←UPDATE-STATE(state, percept) state ←UPDATE-STATE(state, percept) 

if seq is empty then do 

goal ← FORMULATE-GOAL(state) 

problem ← FORMULATE-PROBLEM(state, goal) 

seq ←SEARCH( problem) 

action ← FIRST(seq); 

seq ← REST(seq) 

return action 



� Well – defined problems and solutions:

A problem can be formally defined by four components: 
� The initial state that the agent starts in . The initial state for our agent of example 

problem is described by In(Arad)
� A Successor Function returns the possible actions available to the agent. Given a state 

x,SUCCESSOR-FN(x) returns a set of {action, successor} ordered pairs where each 
action is one of the legal actions in state x,and each successor is a state that can be 
reached from x by applying the action. 
For example, from the state In(Arad),the successor function for the Romania problem 
would return  { 
[Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] } 
State Space : The set of all states reachable from the initial state. The state space State Space : The set of all states reachable from the initial state. The state space 
forms a graph in which the nodes are states and the arcs between nodes are actions.
A path in the state space is a sequence of states connected by a sequence of actions.

� The goal test determines whether the given state is a goal state.
� A path cost function assigns numeric cost to each action. For the Romania problem 

the cost of path might be its length in kilometers.
The step cost of taking action a to go from state x to state y is denoted by c(x,a,y).

� A solution to the problem is a path from the initial state to a goal state. 

� An optimal solution has the lowest path cost among all solutions. 



A Simple road map of Romania



� Example Problems:
� A toy problem can be easily used by different researches to 

compare the performance of algorithms.
� Vacuum world

� 8-puzzle

� 8-queens

� Sliding block puzzles

� A real world problem is one whose solutions people actually 
care about.care about.
� Route finding problem

� Touring problem

� TSP problem

� VLSI layout

� Robot navigation

� Automatic assembly sequencing

� Internet searching



� Searching for solutions:

� A search tree is generated by the initial state and the 

successor function that together define the state 

space.

� In general, we may have search graph rather than a 

search tree when the same state can be reached 

from multiple paths.from multiple paths.

� Search strategy determines the choice of which state 

to expand.



function Tree-Search( problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state 

then return the corresponding solutionthen return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end



Arad

Sibiu Timisoara Zerind
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Arad
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� A state is a (representation of) a physical 

configuration.

� A node is a data structure constituting part of a 

search tree includes parent, children, depth, path cost 

g(x).

� States do not have parents, children, depth, or path 

cost. cost. 
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function Tree-Search( problem, fringe) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds then return 
SOLUTION(node)

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodesfunction EXPAND( node, problem) returns a set of nodes

successors ← the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do

s ← a new Node

STATE[s] ← result

PARENT-NODE[s] ← node

ACTION[s] ← action

PATH-COST[s] ← PATH-COST[node]+STEP-COST(node, action, s)

DEPTH[s] ← DEPTH[node] + 1

add s to successors

return successors



� A strategy is defined by picking the order of node 

expansion

� Strategies are evaluated along the following dimensions:

� Completeness – does it always find a solution if one exists?

� Optimality – does it always find a least-cost solution?

� Time complexity – number of nodes generated/expanded

� Space complexity – maximum number of nodes in memory

Time and space complexity are measured in terms of:Time and space complexity are measured in terms of:

� b – maximum branching factor of the search tree

� d – depth of the least-cost solution

� C* - path cost of the least-cost solution

� m – maximum depth of the state space (may be ∞)



UNINFORMED SEARCH STRATEGIES

� It is otherwise known as blind search.

� It uses only the information available in the problem 
definition.

� They just generate successors and distinguish a goal 
state from a non-goal state, ie., all search strategies are 
distinguished by the order in which nodes are expanded.distinguished by the order in which nodes are expanded.
� Breadth-First Search

� Uniform-Cost Search

� Depth-First Search

� Depth-Limited Search

� Iterative Deepening Depth-First Search

� Bi-directional Search



Breadth First Search

� Expands shallowest unexpanded node.

� It can be implemented by calling TREE-
SEARCH with an empty fringe, ie., FIFO 

queue (i.e., new successors go at end)queue (i.e., new successors go at end)
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Properties of breadth first search:

� Completeness? Yes (if b is finite)

� Optimality? No, unless step costs are constant

� Time complexity? 1+b+b2+b3+…+bd+b(bd-1) = 
O(bd+1)

� Space complexity? O(bd+1) (keeps every node in � Space complexity? O(bd+1) (keeps every node in 

memory)



Uniform Cost Search
� Expands least cost unexpanded node.

� It is equivalent to breadth first search if all step costs 
are equal.

� Implementation: fringe = queue ordered by path cost, 
lower first.
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Properties of uniform cost search:

� Completeness? Yes (if step cost ≥ `)

� Optimality? No, unless step costs are constant

� Time complexity? 1+b+b2+b3+…+bd+b(bd-1) = 
O(bd+1)

� Space complexity? O(bd+1) (keeps every node in � Space complexity? O(bd+1) (keeps every node in 

memory)



Depth First Search

� Expands the deepest node in the current 

fringe.

� Implementation: fringe = LIFO queue, i.e., 

put successors at front.put successors at front.
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� Properties of Depth-First Search:

� Complete? No: fails in infinite-depth spaces, 

spaces with loops.

Modify to avoid repeated states along path => 

complete in infinite spaces

� Time? O(bm): terrible if m is much larger than d but � Time? O(bm): terrible if m is much larger than d but 

if solutions are dense, may be much faster than 

breadth-first.

� Space? O(bm), i.e., linear space.

� Optimal? No



Depth-Limited Search

� Depth-first search with depth limit l, returns 
cutoff if any path is cut off by depth limit.



function DEPTH-LIMITED-SEARCH(problem, limit) returns soln

/fail /cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), 

problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail 

/cutoff

cutoff-occurred? ← falsecutoff-occurred? ← false
if GOAL-TEST(problem,STATE[node]) then return node

else if DEPTH[node] = limit then return cutoff

else for each successor in EXPAND(node, problem) do

result ← RECURSIVE-DLS(successor, problem, limit)

if result = cutoff then cutoff-occurred? ← true
else if result ≠ failure then return result

if cutoff-occurred? then return cutoff else return failure



� Properties of Depth-First Search:

� Complete? No

� Time? O(bl)

� Space? O(bl)� Space? O(bl)

� Optimal? No



Iterative Deepening Depth-

First Search
� Otherwise called Iterative deepening search 

is a general strategy often used in 
combination with depth-first search, that 

finds the better depth limit.finds the better depth limit.

� It is done by gradually increasing the limit –
first 0, then 1, then 2 and so on – until goal is 

found.

� It combines the benefits of depth-first search 
and breadth-first search.







� Properties of Iterative deepening search:

� Complete? Yes

� Time? (d + 1)b0 + db1 +(d-1)b2 + … + bd = O(bd)

� Space? O(bd)

� Optimal? No, unless step costs are constant

Can be modified to explore uniform-cost tree.

Numerical comparison for b = 10 and d = 5, solution at far Numerical comparison for b = 10 and d = 5, solution at far 

right leaf:

N(IDS) = 50 + 100 + 3,000 + 20,000 + 100,000 = 123,450

N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 

1,111,100

IDS does better because other nodes at depth d are not 

expanded

BFS can be modified to apply goal test when a node is 

generated.



Bidirectional Search

� Runs two simultaneous searches – one 
forward from the initial state and the other 

backward from the goal.



Comparing Uninformed Search 

Strategies



Avoiding Repeated States

� In searching, time is wasted by expanding states 
that have already been encountered and expanded 
before. 

� For some problems repeated states are 
unavoidable.

� The search trees for these problems are infinite. 

� If we prune some of the repeated states, we can cut 
the search tree down to finite size. 

� Considering search tree upto a fixed depth, 
eliminating repeated states yields an exponential 
reduction in search cost.  



� Repeated states ,can cause a solvable 

problem to become unsolvable if the 

algorithm does not detect them.

� Repeated states can be the source of 

great inefficiency: identical sub trees great inefficiency: identical sub trees 

will be explored many times.





(a) A state space in which there are two possible 
actions leading from A to B, two from B to C, 
and so on. The state space contains d + 1 

states, where d is the maximum depth.

(b) The corresponding search tree, which has 2d 

branches corresponding to the 2d paths branches corresponding to the 2d paths 
through the space.

(c) A rectangular grid space. States within 2 

steps of the initial state (A) are shown in 
white.



The General Graph search algorithm. The set closed

can be implemented with a hash table to allow 

efficient checking of repeated states.



Searching with Partial 

Solutions
� Different types of incompleteness lead to 

three distinct problem types: 

� Sensorless problems (conformant): If the agent 

has no sensors at all has no sensors at all 

� Contingency problem: if the environment if 

partially observable or if action are uncertain 

(adversarial) 

� Exploration problems: When the states and 

actions of the environment are unknown. 



INFORMED (HEURISTICS) SEARCH 

STRATEGIES

� Informed search is one that uses problem-
specific knowledge beyond the definition of the 
problem itself.

� It can find solutions more efficiently than 
uninformed strategy.uninformed strategy.

� Best-First Search
� Greedy Best-First Search

� A* Search

� Memory bounded Heuristic Search
� Recursive Best-First Search

� SMA*



Best – First Search

� Use an evaluation function f(n) for each 
node.

� Estimate of “desirability”

� Expand most desirable unexpanded node.� Expand most desirable unexpanded node.

� Implementation: fringe is a queue sorted in 
increasing order of desirability.

� Special cases:

� Greedy best-First Search

� A* Search



Heuristic Function

� A heuristic function or simply heuristic is a 
function that ranks alternatives in various search 
algorithms at each branching step basing on an 
available information in order to make a decision 
which branch is to be followed during a search. which branch is to be followed during a search. 

� The key component of Best-first search 
algorithm is a heuristic function, denoted by 
h(n): 

� h(n) = estimated cost of the cheapest path from 
node n to a goal node. 

� Straight line distance heuristic (h
SLD

) is 
calculated based on some certain experience.



Greedy Best-First Search

� Evaluation function h(n) (heuristic) = estimate 
of cost from n to the closest goal.











� Properties of greedy search 

� o Complete?? No–can get stuck in loops, e.g., 

� Iasi ! Neamt ! Iasi ! Neamt ! 

� Complete in finite space with repeated-state checking � Complete in finite space with repeated-state checking 

� o Time?? O(bm), but a good heuristic can give dramatic 
improvement 

� o Space?? O(bm)—keeps all nodes in memory 

� o Optimal?? No 

� Greedy best-first search is not optimal,and it is incomplete. 

� The worst-case time and space complexity is O(bm),where 
m is the maximum depth of the search space. 



A* Search

� Idea: avoid expanding paths that are already expensive

� Evaluation function f(n) = g(n) + h(n)

� g(n) = cost so far to reach n

� h(n) = estimated cost to goal from n

� f(n) = estimated total cost of path through n to goal� f(n) = estimated total cost of path through n to goal

� A* search uses an admissible heuristic

� i.e., h(n)  ≤ h*(n) where h*(n) is the true cost from n.

� (Also require h(n)  ≥ 0, so h(G) = 0 for any goal G.)

� E.g., h
SLD

(n) never overestimates the actual road distance

� Theorem: A* search is optimal



Learning to Search 

Better

� Meta-level state space

� Object –level state space� Object –level state space



HEURISTIC FUNCTIONS

� A heuristic function or simply a heuristic is a 
function that ranks alternatives in various 
search algorithms at each branching step 

basing on an available information in order basing on an available information in order 
to make a decision which branch is to be 

followed during a search.



� 8 – puzzle problem



� Object – sliding the tiles horizontally or vertically 
into the empty space until the configuration 
matches the goal configuration.

� Avg. soln. cost for a randomly generated  instance is 
about 22 steps.

� Branching factor is about 3.

� An exhaustive search to depth 22 would look at 
about 322 approximately 3.1 × 1010 states.about 322 approximately 3.1 × 1010 states.

� By keeping track of repeated states, the above 
states can be reduced by a factor of about 170,000 
because there are only 9!/2 = 181,440 distinct states 
that are reachable.

� For 15-puzzle problem, two candidates are used:
� h1 – number of misplaced tiles.

� h2 – sum of the distance of tiles from their goal positions.



� The effective branching factor, b*.



� Learning heuristics from experience

� Inductive learning algorithm

� Inventing admissible heuristic functions:

� Relaxed problems

� Pattern databases

Disjoint  databases� Disjoint  databases



LOCAL SEARCH ALGORITHMS AND 

OPTIMIZATION PROBLEMS
� Local search algorithms operate using a single 

current state rather than multiple paths and 
generally move only to neighbors  of that state.

� Local search algorithms are useful for solving 
pure optimization problems, in which the aim  pure optimization problems, in which the aim  
is to find the best state according to an objective 
function.

� Advantages:
� They use very  little memory.

� They can often find reasonable solutions in large or 
infinite state spaces for which systematic algorithms 
are unsuitable.





Hill- Climbing Search

function HILL-CLIMBING( problem) return a state 
that is a local maximum 

input: problem, a problem 

local variables: current, a node. 

neighbor, a node. 

current ← MAKE-NODE(INITIAL-STATE[problem]) current ← MAKE-NODE(INITIAL-STATE[problem]) 

loop do 

neighbor ← a highest valued successor of current 

if VALUE [neighbor] ≤ VALUE[current] then 
return STATE[current] 

current ← neighbor 



� Problems  with hill-climbing:

� Local maxima / Foot hills

� Ridges

� Plateaux / Shoulder

� Variants of hill-climbing:

Stochastic hill climbing� Stochastic hill climbing

� First choice hill climbing

� Random – restart hill climbing



Simulated Annealing Search



Local Beam Search

� Idea: keep k states instead of 1; choose top k of 

all their successors

� Not the same as k searches run in parallel!

� Searches that nd good states recruit other 

searches to join themsearches to join them

� Problem: quite often, all k states end up on same 

local hill

� Idea: choose k successors randomly, biased 

towards good ones

� Observe the close analogy to natural selection!



Genetic Algorithm

� A Genetic  algorithm is a variant of stochastic 
beam search in which successor states are 

generated by combining two parent states, rather 
than by modifying a single state.



function GENETIC_ALGORITHM( population, FITNESS-FN) return 
an individual 

input: population, a set of individuals 

FITNESS-FN, a function which determines the quality of        

the individual 

repeat 

new_population ← empty set 

loop for i from 1 to SIZE(population) do 

x ← RANDOM_SELECTION(population, FITNESS_FN) x ← RANDOM_SELECTION(population, FITNESS_FN) 

y ← RANDOM_SELECTION(population, FITNESS_FN) 

child ← REPRODUCE(x,y) 

if (small random probability) then child � MUTATE(child ) 

add child to new_population

population ← new_population

until some individual is fit enough, or enough time has elapsed 

return the best individual  in population, according to FITNESS-FN



LOCAL SEARCH IN CONTINUOUS 

SPACE

� Suppose we want to site three airports in 

Romania:

� 6-D state space defined by (x1, y2),  (x2, y2),      

(x3, y3)(x3, y3)

� objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to    

nearest airport



� Discretization methods

� Gradient methods

� Steepest-ascent hill climbing

� Empirical gradient� Empirical gradient

� Line search

� Newton-Raphson method



ONLINE SEARCH AGENTS AND 

UNKNOWN ENVIRONMENTS
� Offline search (all algorithms so far)

� Compute complete solution, ignoring environment 

carry out action sequence.

� Online search

� Interleave computation and action

� Act – Observe - Compute

� Online search agents suits well for the following 

domains:

� For dynamic, semi-dynamic, stochastic domains

� Whenever offline search would yield exponentially 

many contigencies



� Online search necessary for exploration  

problem:

� States and actions unknown to agent

� Agent uses actions as experiments to determine what 

to do

Eg: Robot exploring unknown building

A new born babyA new born baby

� The following terms are known by the agent to 

solve the problem in the given environment:

� ACTIONS (s)

� C(s, a, s’)

� GOAL-TEST(s)



� Competitive ratio compares actual cost 

with cost agent would follow if it knew the 

search space 

� No agent can avoid dead ends in all state 

spaces spaces 

� Robotics examples: Staircase, ramp, cliff, 

terrain 

� Assume state space is safely explorable -

some goal state is always reachable 



Online Search Agents

� Interleaving planning and acting hamstrings 
offline search 

� A* expands arbitrary nodes without waiting for 

outcome of action Online algorithm can expand only 

the node it physically occupies Best to explore nodes the node it physically occupies Best to explore nodes 

in physically local order 

� Suggests using depth-first search 

� Next node always a child of the current 

� When all actions have been tried, can‘t just drop 
state Agent must physically backtrack 



� Online Depth-First Search 

� May have arbitrarily bad competitive 

ratio (wandering past goal) Okay for 

exploration; bad for minimizing path 

cost cost 

� Online Iterative-Deepening Search 

� Competitive ratio stays small for state 

space a uniform tree 



Online Local Search
� Hill Climbing Search 

� Also has physical locality in node 
expansions Is, in fact, already an online 
search algorithm 

� Local maxima problematic: can‘t randomly 
transport agent to new state in effort to escape transport agent to new state in effort to escape 
local maximum.

� Random Walk as alternative 
� Select action at random from current state 

� Will eventually find a goal node in a finite space 

� Can be very slow, esp. if “backward” steps as 
common as  “forward”



� Hill Climbing with Memory instead of 
randomness 

� Store “current best estimate” of cost to 
goal at each visited state Starting estimate 
is just h(s ) 

� Augment estimate based on experience in 
the state space Tends to “flatten out” local 

� Augment estimate based on experience in 
the state space Tends to “flatten out” local 
minima, allowing progress Employ 
optimism under uncertainty 

� Untried actions assumed to have least-
possible cost Encourage exploration of 
untried paths 



Learning in Online Search
� Rampant ignorance a ripe opportunity for learning 

Agent learns a ―map‖ of the environment 

� Outcome of each action in each state 

� Local search agents improve evaluation function 
accuracy 

� Update estimate of value at each visited state 

� Would like to infer higher-level domain model � Would like to infer higher-level domain model 

� Example: ―Up‖ in maze search increases y -
coordinate Requires 

� Formal way to represent and manipulate such 
general rules (so far, have hidden rules within the 
successor function) 

� Algorithms that can construct general rules based 
on observations of the effect of actions 



CONSTRAINT SATISFACTION 

PROBLEMS (CSP)
� Formal Definition:

A Constraint Satisfaction Problem(or CSP) is defined by a set of 
variables ,X1,X2,….Xn, and a set of constraints C1,C2,…,Cm. 
Each variable Xi has a nonempty domain D, of possible values. 
Each constraint Ci involves some subset of variables and 
specifies the allowable combinations of values for that subset.  specifies the allowable combinations of values for that subset.  

A State of the problem is defined by an assignment of values to 
some or all of the variables,{Xi = vi,Xj = vj,…}. An assignment 
that does not violate any constraints is called a consistent or 
legal assignment. A complete assignment is one in which every 
variable is mentioned,and a solution to a CSP is a complete 
assignment that satisfies all the constraints. 

Some CSPs also require a solution that maximizes an objective 
function.



� Example for Constraint Satisfaction Problem : 

� The map of Australia showing each of its states and 
territories is given below. We are given the task of coloring 
each region either red, green, or blue in such a way that the 
neighboring regions have the same color. To formulate this 
as CSP ,we define the variable to be the regions 
:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is 
the set {red, green, blue}.The constraints require 
neighboring regions to have distinct colors; for example, 
the allowable combinations for WA and NT are the pairs the allowable combinations for WA and NT are the pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(
blue,green)}. 

� The constraint can also be represented more succinctly as 
the inequality WA not = NT,provided the constraint 
satisfaction algorithm has some way to evaluate such 
expressions.) There are many possible solutions such as 

{ WA = red, NT = green, Q = red, NSW = green, V = red , SA = 
blue, T = red}





� It is helpful to visualize a CSP as a constraint 
graph. The nodes of the graph corresponds to 
variables of the problem and the arcs 

correspond to constraints. 



� CSP can be viewed as a standard search problem 
as follows :
� Initial state : the empty assignment {},in which all 

variables are unassigned. 

� Successor function : a value can be assigned to any 
unassigned variable, provided that it does not 
conflict with previously assigned variables. 

� Goal test : the current assignment is complete. � Goal test : the current assignment is complete. 

� Path cost : a constant cost(E.g.,1) for every step. 

� Every solution must be a complete assignment 
and therefore appears at depth n if there are n 
variables. 

� Depth first search algorithms are popular for 
CSPs 



� Varieties of CSPs 

(i) Discrete variables 
� Finite domains 

The simplest kind of CSP involves variables that are discrete 
and have finite domains. Map coloring problems are of this kind. 
The 8-queens problem can also be viewed as finite-domain 
CSP,where the variables Q1,Q2,…..Q8 are the positions each 
queen in columns 1,….8 and each variable has the domain 
{1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a 
CSP is d,then the number of possible complete assignments is 
O(dn) – that is,exponential in the number of variables. Finite O(dn) – that is,exponential in the number of variables. Finite 
domain CSPs include Boolean CSPs,whose variables can be either 
true or false.
� Infinite domains 

Discrete variables can also have infinite domains – for 
example,the set of integers or the set of strings. With infinite 
domains,it is no longer possible to describe constraints by 
enumerating all allowed combination of values. Instead a 
constraint language of algebric inequalities such as 

Startjob1 + 5 <= Startjob3. 



(ii) CSPs with continuous domains 

CSPs with continuous domains are very 
common in real world. For example ,in operation 
research field,the scheduling of experiments on 
the Hubble Telescope requires very precise 
timing of observations; the start and finish of 
each observation and maneuver are continuous-
valued variables that must obey a variety of valued variables that must obey a variety of 
astronomical,precedence and power constraints. 
The best known category of continuous-domain 
CSPs is that of linear programming 
problems,where the constraints must be linear 
inequalities forming a convex region. Linear 
programming problems can be solved in time 
polynomial in the number of variables. 



� Varieties of constraints : 

(i) unary constraints involve a single variable. 

Example : SA # green 

(ii) Binary constraints involve paris of variables. 

Example : SA # WA Example : SA # WA 

(iii) Higher order constraints involve 3 or more 

variables. 

Example : cryptarithmetic puzzles. 





Backtracking Search for CSPs

� The term backtracking search is used for 

depth-first search that chooses values 

for one variable at a time and backtracks 

when a variable has no legal values left when a variable has no legal values left 

to assign.







� Variable and Value ordering

� Propagation information through constraints

� Forward checking



� Constraint propagation

� Arc consistency 

� Node consistency 

� Path consistency� Path consistency



� Arc consistency:



� K-consistency:



�Handling special constraints

� Intelligent backtracking



Local Search for CSPs

� Local search algorithms good for many CSPs.

� Use complete-state formulation

� Value assigned to every variable

� Successor function changes one value at a � Successor function changes one value at a 

time

� Choose values using min-conflicts heuristic

� Value that results in the minimum number of 

conflicts with other variables.



The Structure of Problems

� Problem Structure

� Consider ways in which the structure of 

the problem’s constraint graph can help 

find solutions.find solutions.

� Real-world problems require 

decomposition into subproblems.



� Independent Subproblems:



� Tree – Structured CSPs:

•Removing nodes – Cutset conditioning

•Collapsing nodes together – Tree decomposition


