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Abstract 

Multilingual machine translation enables a sin- 

gle model to translate between different lan- 

guages. Most existing multilingual machine 

translation systems adopt a randomly initial- 

ized Transformer backbone. In this work, in- 

spired by the recent success of language model 

pre-training, we present XLM-T, which initial- 

izes the model with an off-the-shelf pretrained 

cross-lingual Transformer encoder and _ fine- 

tunes it with multilingual parallel data. This 

simple method achieves significant improve- 

ments on a WMT dataset with 10 language 

pairs and the OPUS-100 corpus with 94 pairs. 

Surprisingly, the method is also effective even 

upon the strong baseline with back-translation. 

Moreover, extensive analysis of XLM-T on un- 

supervised syntactic parsing, word alignment, 

and multilingual classification explains its ef- 

fectiveness for machine translation. ! 

1 Introduction 

Multilingual neural machine translation (NMT) en- 

ables a single model to translate between multiple 

language pairs, which has drawn increasing atten- 

tion in the community (Firat et al., 2016a; Ha et al., 

2016; Johnson et al., 2017; Aharoni et al., 2019; 

Fan et al., 2020). Recent work shows that multilin- 

gual machine translation achieves promising results 

especially for low-resource and zero-resource ma- 

chine translation (Firat et al., 2016b; Zoph et al., 

2016; Sen et al., 2019; Zhang et al., 2020). 

Pre-training-then-fine-tuning framework (Devlin 

et al., 2019; Liu et al., 2019; Dong et al., 2019; 

Song et al., 2019; Raffel et al., 2020) has shown 

substantial improvements on many natural lan- 

guage processing (NLP) tasks by pre-training a 

model on a large corpus and fine-tuning it on the 

downstream tasks. Pre-training multilingual lan- 

guage models (Conneau and Lample, 2019; Con- 

'The code will be at https: //aka.ms/xlm-t. 
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Figure 1: Framework of XLM-T. We use off-the-shelf 

pretrained cross-lingual encoders (such as XLM-R) to 

initialize both the encoder and decoder of the multilin- 

gual NMT model. Then we fine-tune the model on mul- 

tilingual parallel data. 
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neau et al., 2020; Chi et al., 2020a,b; Xue et al., 

2020) obtains significant performance gains on a 

wide range of cross-lingual tasks, which is natu- 

rally applicable to multilingual machine transla- 

tion where the representations are shared among 

different languages. Moreover, pre-training has 

great potential in efficiently scaling up multilin- 

gual NMT, while existing methods, such as back- 

translation (Sennrich et al., 2016), are expensive in 

the multilingual setting. 

Most existing work (Conneau and Lample, 2019; 

Song et al., 2019; Lewis et al., 2020) on leveraging 

pretrained models for machine translation mainly 

lies in the bilingual setting. How to effectively 

and efficiently use these existing pretrained mod- 

els for multilingual machine translation is not fully 

explored. Liu et al. (2020) introduce a sequence- 

to-sequence denoising auto-encoder (mBART) pre- 

trained on large-scale monolingual corpora in many 

languages. Lin et al. (2020) propose to pretrain 

the multilingual machine translation models with 

a code-switching objective function. However, 

this model requires a large-scale parallel data for 

pre-training, which hinders its application to low- 

resource and zero-resource languages. 

In this work, we present a simple and effective 

method XLM-T that initializes multilingual ma-



chine translation with a pretrained cross-lingual 

Transformer encoder and fine-tunes it using multi- 

lingual parallel data. The cross-lingual pretrained 

encoders are off-the-shelf for general cross-lingual 

NLP tasks so we do not need to specifically pre- 

train for machine translation. We adopt XLM- 

R (Conneau et al., 2020) as the pretrained encoder 

and conduct extensive experiments on multilingual 

machine translation with 10 language pairs from 

WMT datasets” and 94 language pairs from OPUS 

datasets’. This simple method achieves significant 

and consistent gains on both large-scale datasets. 

The improvement is still significant over the strong 

baseline with back-translation. 

To analyze how the pretrained encoders benefit 

multilingual machine translation, we perform some 

probing tasks for both XLM-T and a randomly 

initialized multilingual NMT baseline. Empirical 

studies show that XLM-T improves the abilities 

of syntactic parsing, word alignment, and multi- 

lingual classification. We believe that this work 

can shed light on further improvements of applying 

pretrained models to machine translation. 

2 XLM-T 

In this section, we introduce our proposed model: 

Cross-lingual Language Modeling Pre-training for 

Translation, which is denoted as XLM-T. 

2.1 Multilingual Machine Translation 

Suppose we have L languages to translate in a 

model. Among these languages, we have N bilin- 

gual corpora, each of which contains parallel sen- 

tences {(x7,, xr). (ah, xt, )} between L; 
and L;, where k is the number of training instances. 

Given the corpora, we are able to train a multilin- 

gual model Pg that enables the translation among 

different languages. With the parallel data of N 

language direction, the model is learnt with a com- 

bination of different objective: 

L=~—S log Po(a7,,27,) (1) 
i,j.k 

Typically, the multilingual NMT model uses a 

unified model that shares the encoders and decoders 

for all translation directions. In this work, we adopt 

the state-of-the-art Transformer as the backbone 

model Pg. Following the methods of Ha et al. 

(2016) and Johnson et al. (2017), we prepend a 

*http://www.statmt.org 

*http://opus.nipl.cu/opus-100.php 

target language token to each source sentence to 

indicate which language should be translated on 

the target side. 

2.2 Cross-lingual Pretrained Encoders 

In this work, we argue that multilingual NMT mod- 

els can be scaled up by pre-training the encoder 

with large-scale monolingual data. Multilingual 

NMT encourages a shared representation among 

different languages so that the data in one language 

helps to model the other language. Meanwhile, 

cross-lingual pretrained encoders prove to be effec- 

tive in transferring cross-lingual representations. 

In this work, we adopt XLM-R BASE (Conneau 

et al., 2020) as the pretrained encoder. It was 

trained in 100 languages, using more than two ter- 

abytes of filtered CommonCrawl data. XLM-R 

is based on the Transformer architecture, trained 

using the multilingual masked language model 

(MLM) objective (Conneau and Lample, 2019). 

It has a shared vocabulary of 250,000 tokens based 

on SentencePiece model (Kudo and Richardson, 

2018). 

2.3 Initialization Strategy 

Given the above pretrained encoder, we can use 

it to initialize the encoder and decoder of the 

Transformer-based multilingual NMT model. 

Initializing cross-lingual encoder There are dif- 

ferent Transformer variants in terms of the NMT 

encoder. To initialize our NMT encoder with pre- 

trained XLM-R, we make their architectures con- 

sistent. We add a layer normalization layer after 

the embedding layer and do not scale up the word 

embedding. We use post layer normalization for 

both the attention layers and feed-forward layers. 

The activation insides the feed-forward layers is 

GELU (Hendrycks and Gimpel, 2016). The posi- 

tional embedding is learned during training. 

Initializing cross-lingual decoder The pre- 

trained encoder can be also used to initialize the 

decoder. The architecture of the decoder is the 

same as that of the encoder, except that there is a 

cross-attention layer after the self-attention layer. 

Due to this difference, we explore several meth- 

ods to initialize the decoder, including sharing the 

weights of cross-attention layers and self-attention 

layers and randomly initializing the cross-attention.



2.4 Multilingual Fine-tuning 

We can now fine-tune our XLM-T model with the 

objective function (Eq. 1). A simple concatenation 

of all parallel data will lead to poor performance 

on low-resource translation because of the imbal- 

anced data. Following the previous work (Aha- 

roni et al., 2019; Wang et al., 2020), we adopt a 

temperature-based batch balance method by sam- 

pling the sentence pairs in different languages ac- 

cording to a multinomial distribution with proba- 

bilities {q1, 92,--- , qn}: 

1 

Di 
Gi = 71 (2) 

j=l P; 

|Z;| 
FST (3) 

OL |Z; 

where WN is the number of translation directions, 

|Z;| is the number of parallel data for 7-th direction, 
and J’ is a temperature. 

To reduce over-sampling of low-resource lan- 

guages in the early stage of training, we employ 

a dynamic temperate sampling mechanism (Wang 

et al., 2020). The temperature is low at the begin- 

ning of training and is gradually increased for the 

first several epochs. Formally, the temperature can 

be written as: 

T; = min(T, To + wT — To)) (4) 

where 70 is the initial temperature, 7’ is the peak 

temperature, and NV is the number of warming-up 

epochs. For a fair comparison, we set 7p = 1.0, 

T’ = 5.0, and N = 5 for all the experiments in our 

work. 

3 Experimental Setup 

3.1 Data 

WMT-10 Following (Wang et al., 2020), we use 

a collection of parallel data in different languages 

from the WMT datasets to evaluate the models. 

The parallel data is between English and other 10 

languages, including French (Fr), Czech (Cs), Ger- 

man (De), Finnish (Fi), Latvian (Lv), Estonian (Et), 

Romanian (Ro), Hindi (Hi), Turkish (Tr) and Gu- 

jarati (Gu). We choose the data from the latest 

available year of each language and exclude Wiki- 

Tiles. We also remove the duplicated samples and 

limit the number of parallel data in each language 

pair up to 10 million by randomly sampling from 

the whole corpus. We use the same test sets and 

validation set as in (Wang et al., 2020). The details 

can be found in Appendix. 

In the back-translation setting, we collect large- 

scale monolingual data for each language from 

NewsCrawl*. We remove the data with low quality, 

and randomly sample 5 million sentences in each 

language. For the languages without enough data 

(Fi, Lv, Et, Gu), we also sample additional data 

from CCNet (Wenzek et al., 2020) to combine with 

that from NewsCrawl. We use a target-to-source 

multilingual NMT model to back-translate these 

monolingual data as the augmented parallel data. 

OPUS-100 To evaluate our model in the mas- 

sively multilingual machine translation setting, we 

use the OPUS-100 corpus provided by Zhang et al. 

(2020). OPUS-100 is an English-centric multilin- 

gual corpus covering 100 languages, which is ran- 

domly sampled from the OPUS collection. 

The dataset is split into training, development, 

and test sets. The training set has up to 1 million 

sentence pairs per language pair, while the devel- 

opment and test sets contain up to 2000 parallel 

sentences. The whole dataset contains approxi- 

mately 55 million sentence pairs. We remove 5 

languages without any development set or test sets, 

which results in 95 languages including English. 

3.2. Pretrained Models and Baselines 

We use the state-of-the-art Transformer model for 

all our experiments with the fairseq> implementa- 

tion (Ott et al., 2019). For the baseline model of 

the WMT-10 dataset, we adopt a Transformer-big 

architecture with a 6-layer encoder and decoder. 

The hidden size, embedding size and the number 

of attention head is 1024, 1024, and 16 respec- 

tively, while the dimension of feedforward layer 

is 4096. We tokenize the data with SentencePiece 

model (Kudo and Richardson, 2018) with a vo- 

cabulary size of 64,000 tokens extracted from the 

training set. 

For XLM-T, we initialize with XLM-R base 

model, which has 12-layer encoder, 6-layer de- 

coder, 768 hidden size, 12 attention head, and 

3,072 dimensions of feedforward layers. We do 

not use a deeper decoder because our preliminary 

experiments show no improvement by increasing 

the number of decoder layers, which is consis- 

tent with the observations in (Kasai et al., 2020). 

*http://data.statmt.org/news-crawl 

*https://github.com/pytorch/fairseq



  

X — En | Fr Cs De Fi Ly Et Ro Hi Tr Gu | Avg 
  

Train on Original Parallel Data (Bitext) 
  

  

  

  

  

  

Bilingual NMT | 36.2 285 40.2 192 17.5 19.7 29.8 14.1 15.1 9.3 | 23.0 

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 | 27.2 

XLM-T 35.9 305 41.6 22.55 21.4 284 366 246 25.6 20.4 | 28.8 

Many-to-Many 35.9 29.2 40.0 21.1 20.4 26.3 35.5 23.6 24.3 20.6 | 27.7 

XLM-T 35.5 30.00 40.8 22.1 21.5 27.8 36.5 25.3 25.0 20.6 | 28.5 

Train on Original Parallel Data and Back-Translation Data (Bitext+BT) 

(Wang et al., 2020) | 35.3 31.9 45.4 23.8 22.4 30.5 39.1 28.7 27.6 23.5 | 30.8 

Many-to-One 35.9 326 44.1 249 23.1 31.5 39.7) 28.2 27.8 23.1 | 31.1 

XLM-T 36.0 33.1 44.8 25.4 23.9 32.7 39.8 30.1 28.8 23.6 | 31.8 

(Wang et al., 2020) | 35.3 31.2) 43.7) 23.1 21.5 29.5 38.1 27.5 26.2 23.4 | 30.0 

Many-to-Many 35.7 31.9 43.7) 24.2 23.2 30.4 39.1 28.3 27.4 23.8 | 30.8 

XLM-T 36.1 326 44.3 254 23.8 32.0 40.3 29.5 28.7 24.2 | 31.7     
  

Table 1: X — En test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are 

the models trained with original parallel data, while the bottom are combined with back-translation. The languages 

are ordered from high-resource (left) to low-resource (right). 

Different from WMT-10, massively multilingual 

NMT suffers from weak capacity (Zhang et al., 

2020). Therefore, for the baseline of the OPUS- 

100 dataset, we adopt the same architecture and 

vocabulary as XLM-T but randomly initializing the 

parameters so that the numbers of parameters are 

the same. We tie the weights of encoder embed- 

dings, decoder embeddings, and output layers in 

all experiments. 

3.3. Training and Evaluation 

We train all models with Adam Optimizer (Kingma 

and Ba, 2015) with 6; = 0.9 and 62 = 0.98. 

The learning rate is among {3e-4, 5e-4} with a 
warming-up step of 4,000. The models are trained 

with the label smoothing cross-entropy, and the 

smoothing ratio is 0.1. We set the dropout of atten- 

tion layers as 0.0, while the rest of the dropout rate 

is 0.1. We limit the source length and the target 

length to be 256. For the WMT-10 dataset, the 

batch size is 4,096 and we accumulate the gradi- 

ents by 16 batches. For the OPUS-100 dataset, we 

set the batch size as 2,048 and the gradients are 

updated every 32 batches. All experiments on the 

WMT-10 dataset are conducted on 8 V100 GPUs, 

while the experiments on OPUS-100 are on a DGX- 

2 machine with 16 V100 GPUs. 

During testing, we use the beam search algo- 

rithm with a beam size of 5. We set the length 

penalty as 1.0. The last 5 checkpoints are averaged 

for evaluation. We report the case-sensitive detok- 

enized BLEU using sacreBLEU?® (Post, 2018). 

4 Results 

4.1 WMT-10 

We study the performance of XLM-T in three mul- 

tilingual translation scenarios, including many-to- 

English (X — En), English-to-many (En — X), and 

many-to-many (X — Y). For many-to-many, we 

use a combination of English-to-many and many-to- 

English as the training data. We compare XLM-T 

with both the bilingual NMT and the multilingual 

NMT models to verify the effectiveness. 

Table | reports the results on the X — En test 

sets. Compared with the bilingual baseline, the mul- 

tilingual models achieve much better performance 

on the low-resource languages and are worse on 

the high-resource languages. In general, the mul- 

tilingual baseline outperforms the bilingual base- 

lines by an average of +4.2 points. In the many- 

to-English scenario, XLM-T achieves significant 

improvements over the multilingual baseline across 

all 10 languages. The average gain is +1.6 points. 

In the many-to-many scenario, the gain becomes 

narrow, but still reaches +0.8 points over the multi- 

lingual baseline. We further combine the parallel 

°BLEU-+case.mixed+lang.{src}- 
{tgt}+numrefs.1+smooth.exp+tok.13a+version. 1.4.14



  

En — X | Fr Cs De Fi Lv Et Ro Hi Tr Gu | Avg 
  

Train on Original Parallel Data (Bitext) 
  

  

  

  

  

  

Bilingual NMT | 36.3 22.33 40.2 15.22 165 15.0 23.0 12.2 13.3 7.9 | 20.2 

One-to-Many 34.2 209 40.0 15.0 18.1 20.9 26.0 145 17.3 13.2 | 22.0 

XLM-T 34.8 21.4 39.9 154 18.7 20.9 266 15.8 17.4 15.0 | 22.6 

Many-to-Many 34.2 210 39.4 15.2 186 204 26.1 15.1 17.2 13.1 | 22.0 

XLM-T 34.2 21.4 39.7 15.3 18.9 20.6 265 15.6 17.5 14.5 | 22.4 

Train on Original Parallel Data and Back-Translation Data (Bitext+BT) 

(Wang et al., 2020) | 36.1 23.6 42.0 17.7) 22.4 240 29.8 19.8 19.4 17.8 | 25.3 

One-to-Many 36.8 23.6 42.9 18.3 23.3 24.2 29.5 20.2 19.4 13.2 | 25.1 

XLM-T 37.3 242 43.6 18.1 23.7 24.2 29.7) 20.1 20.2 13.7 | 25.5 

(Wang et al., 2020) | 35.8) 22.4 41.2 16.9 21.7) 23.2 29.7 19.2 18.7 16.0 | 24.5 

Many-to-Many 35.9 22.9 42.2 17.5 22.5 23.4 289 19.8 19.1 14.5 | 24.7 

XLM-T 36.6 23.9 424 184 22.9 24.2 29.3 20.1 19.8 12.8 | 25.0     
  

Table 2: En + X test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are 

the models trained with original parallel data, while the bottom are combined with back-translation. The languages 

are ordered from high-resource (left) to low-resource (right). 

  

  

  

  

| X > En | En > X 
Models 

| High Med Low Avg WR | High Med Low Avg WR 

Best System from (Zhang et al., 2020) | 30.3. 32.6 31.9 31.4 | 23.7 25.6 22.2 24.0 

Many-to-Many 31.5 35.1 360 336 ref | 25.6 305 30.5 28.2 _ ref 

XLM-T 32.4 35.9 369 345 89.4 | 26.1 30.9 31.0 28.6 75.5 
  

Table 3: X — En and En — X test BLEU for high/medium/low resource language pairs in many-to-many setting 

on OPUS-100 test sets. The BLEU scores are average across all language pairs in the respective groups. “WR”: 

win ratio (%) compared to ref. 

data with back-translation. Back-translation results 

in a large gain of +3.9 BLEU score over the base- 

line. Therefore, back-translation is a strong base- 

line for multilingual NMT. In the back-translation 

setting, XLM-T can further improve this strong 

baseline by a significant gain of +0.7 points, show- 

ing the effectiveness of XLM-T. As for the many- 

to-many setting, the improvement is even larger, 

reaching a difference of +0.9 points. We compare 

XLM-T with Wang et al. (2020)’s method. Be- 

sides back-translation, they use the monolingual 

data (i.e. the target side of back-translation data) 

with two tasks of Mask Language Model (MLM) 

and Denoising AutoEncoder (DAE). It shows that 

XLM-T can outperform this method in both the 

many-to-one and many-to-many settings. 

Table 2 summarizes the results on the En > X 

test sets. Similar to the results of X — En, the 

multilingual NMT improves the average BLEU 

score of the bilingual baseline, while XLM-T beats 

the multilingual baseline by +0.6 points. As for 

the many-to-many and back-translation scenarios, 

XLM-T yields the increments of +0.4 points, +0.4 

points, and +0.3 points, respectively. Compared 

with Wang et al. (2020)’s method, XLM-T has sim- 

ilar performance in the one-to-many setting, and a 

slightly improvement of +0.5 BLEU in the many- 

to-many scenario. The performance of XLM-T in 

Gu is worse than that of Wang et al. (2020). We 

conjecture that this is related to the implementation 

details of data sampling. Generally, the improve- 

ments are smaller than X — En. We believe it is 

because the multilingual part of En — X is at the 

decoder side, which XLM-R is not an expert in. 

How to improve En — X with pretrained models 

is a promising direction to explore in the future. 

4.2 OPUS-100 

To further verify the effectiveness of XLM-T on 

massively multilingual machine translation, we



  

  
Models | #Layer #Hidden | BLEU 

Multilingual NMT 6/6 1024 27.2 
Multilingual NMT 12/6 768 26.9 

XLM-T 12/6 768 28.8     
  

Table 4: Ablation study of Transformer architectures 

on WMT-10 test sets. The BLEU scores are average 

across 10 languages on WMT-10 X — En test sets. 

#Layer denotes the number of encoder/decoder layers, 

while #Hidden means the hidden size. 

conduct experiments on OPUS-100, which consists 

of 100 languages including English. After remov- 

ing 5 languages without test sets, we have 94 lan- 

guage pairs from and to English. Following Zhang 

et al. (2020), we group the languages into three cate- 

gories, including high-resource languages (>0.9M, 

45 languages), low-resource languages (<0.1M, 21 

languages), and medium-resource languages (the 

rest, 28 languages). According to the previous 

work (Zhang et al., 2020), the performance of mas- 

sively multilingual machine translation is sensitive 

to the model size (i.e. the number of parameters), 

because the model capacity is usually the bottle- 

neck when the numbers of languages and data are 

massive. Therefore, we make the architectures of 

baseline and XLM-T consistent to ensure the pa- 

rameters are exactly equal. 

Both the multilingual baseline and XLM-T are 

trained in the many-to-many setting. Table 3 re- 

ports their results on OPUS-100 as well as the 

performance of the best system from Zhang et al. 

(2020). For the X — En test sets, XLM-T has con- 

sistent and significant gains over the multilingual 

baseline for all the high (+0.9 BLEU), medium 

(+0.8 BLEU), and low (+0.9 BLEU) resource lan- 

guages. The overall improvement is +0.9 points 

by averaging all 94 En — X language pairs. For 

the En — X test sets, XLM-T also benefits the 

high/medium/low resource languages. Generally, 

the performance improves by +0.4 points in terms 

of the average BLEU scores on En — X test sets. 

We also compute the win ratio (WR), which counts 

the proportion of languages where XLM-T outper- 

forms the baselines. It shows that XLM-T is better 

in 89.4% of the language pairs on the X — En test 

sets and 75.5% on the En — X test sets. 

4.3 Ablation Studies 

Effect of architectures For the WMT-10 experi- 

ments, the architecture of XLM-T is different from 

the multilingual baseline, including the number of 

  

  

Models | X—+En En>X 

Multilingual NMT 27.7 22.0 
XLM-T (enc.) 28.4 22.0 

XLM-T (enc.+dec.) 28.5 22.4 
  

Table 5: Ablation study on different initialization strate- 

gies in the many-to-many setting on WMT- 10 test sets. 

The BLEU scores are average on each test set. 

encoder layers, the hidden size, the layer normaliza- 

tion layer, and the activation function. To identify 

whether the architecture or the weights of XLM-T 

improves the performance, we perform an ablation 

study by initializing XLM-T with random weights. 

Table 4 shows that the architecture of XLM-T does 

not improve the performance of the multilingual 

baseline, leading to a slight drop of -0.3 points. 

With our initialization strategies, XLM-T improves 

by a significant gain of +1.9 points. This proves 

that the initialization of XLM-T is the main con- 

tribution of the improvement. For the OPUS-100 

experiments, the architecture of XLM-T is the same 

as the multilingual baseline, so we do not need any 

additional ablation on the architecture. 

Effect of initialization strategies To analyze the 

effect of the proposed initialization strategies, we 

conduct an ablation study by removing the encoder 

initialization and decoder initialization. Table 5 

summarizes the results. It shows that the encoder 

initialization mainly contributes to the improve- 

ments of X — En. It is because that the source 

sides of this scenario are multilingual, while that 

of E — X is English-only. Similarly, the decoder 

initialization mainly benefits E — X, whose tar- 

get side is multilingual. Moreover, it concludes 

that the encoder initialization contributes to more 

gains than the decoder initialization for multilin- 

gual NMT. The reason may be XLM-R is more 

consistent with the encoder, while lacks the model- 

ing of cross-attention layer for the decoder. 

5 Analysis 

To analyze how XLM-T improves multilingual ma- 

chine translation, we perform three probing tasks, 

including unsupervised dependency parsing, multi- 

lingual classification, and word alignment retrieval. 

5.1 Word Alignment 

Word alignment is an important metric to evalu- 

ate the ability to transfer between different lan- 

guages. We assume that XLM-T improves the inter-



  

  

  

Models | Cs De Fr Ro | Avg 

XLM-R | 30.78 26.46 26.24 31.74 | 28.81 

Multilingual NMT | 24.16 21.37 31.18 28.90 | 26.40 

XLM-T 20.97 21.47 30.89 24.91 | 24.56 
  

Table 6: Analysis of word alignment error on Sabet 

et al. (2020)’s alignment datasets. We report alignment 

error rate scores (the lower the better). 

nal translation transfer by improving the similarity 

of encoder representations between two translated 

words. Therefore, the ability to translate one lan- 

guage can easily benefit that of translating the other 

language. To evaluate the performance of word 

alignment, we use the same labeled alignment data 

as in (Sabet et al., 2020), which is original from 

Europarl and WPT datasets. The alignment data is 

between English and six other languages, including 

Czech, German, French, Hindi, Romanian, and Per- 

sian. We discard Persian and Hindi, which is either 

not in WMT-10 or only contains 90 test samples. 

Setup We compare the alignment error rate be- 

tween XLM-T and multilingual NMT baseline. 

Both models are trained with the WMT-10 dataset 

in the many-to-many scenario. Given a sentence 

pair, we prepend a language token to each sentence 

and compute the representations of each word by 

averaging the representations of its subwords. A 

similarity matrix can be obtained by calculating 

the cosine distance between words from two sen- 

tences. With the similarity matrices, we use the 

IterMax (Sabet et al., 2020) algorithm to extract 

the alignments. IterMax is iterative Argmax, which 

modifies the similarity matrix conditioned on the 

alignment edges found in a previous iteration. We 

compare the extracted alignments with the ground 

truth to measure the alignment error rate. 

Results Table 6 summarizes the performance of 

multilingual NMT and XLM-T. The scores are 

lower-the-better. We also report the score of XLM- 

R for the reference. Both multilingual NMT and 

XLM-T outperform XLM-R because MT data ben- 

efits the word alignment. Compared XLM-T with 

the baseline, it shows that there are significant 

gains in En-Cs, En-Fr, and En-Ro, indicating much 

higher similarities of XLM-T between two trans- 

lated words in these languages. In general, the aver- 

age alignment error rate across different languages 

for XLM-T achieves 24.56%, outperforming the 

multilingual baseline by 1.84%. This supports our 

assumption that XLM-T improves the similarities 

of the encoder representations between two lan- 

guages. 

5.2 Unsupervised Dependency Parsing 

Prior work (Raganato and Tiedemann, 2018) prove 

that the encoder of Transformer-based NMT learns 

some syntactic information. We investigate that 

whether XLM-T can induce better syntactic tree 

structures. The self-attention insides Transformer 

computes the weights between pairs of tokens, 

which can be formulated as a weighted graph. 

Therefore, we extract a tree structure from the 

graph. We compare the extracted tree with its an- 

notated dependency tree to see whether XLM-T 

improves the ability of unsupervised dependency 

parsing. 

Setup We compare the accuracy of dependency 

parsing between multilingual NMT baseline and 

XLM-T. Both models are trained with the WMT- 

10 dataset in the many-to-many setting. We use 

Universal Dependencies’ as the test set to probe 

the performance and evaluate in 10 languages (i.e., 

English, French, Czech, German, Finnish, Latvian, 

Estonian, Romanian, Hindi, and Turkish) that ap- 

pear in both WMT-10 and Universal Dependencies. 

To extract dependency trees, we average the at- 

tention scores overall heads in each layer as the 

weights and compute the maximum spanning trees 

with Chu-Liu/Edmonds’ Algorithm. Since the sen- 

tence 1s tokenized with SentencePiece, we average 

the weights of all tokens for each word. The gold 

root of each sentence is used as the starting node 

for the maximum spanning tree algorithm. We com- 

pute the Unlabeled Attachment Score (UAS) with 

CoNLL 2017’s evaluation script®. 

Results As shown in Table 7, we compare the 

UAS FI score of multilingual NMT and XLM-T. 

We evaluate the performance of each layer and 

summarize the results of the layer with the high- 

est average score over all languages. According 

to Table 7, of all 10 languages, the multilingual 

baseline outperforms XLM-T in 3 languages (De, 

Et, Ro), while XLM-T beats the baseline in the rest 

7 languages. For Cs, Fi, and Hi, XLM-T has a sig- 

nificant gain of more than 3 points compared with 

the baseline. Generally, XLM-T gets 32.81% UAS, 

improving the baseline by 1.43%. This proves that 

XLM-T induces a better syntactic tree structure 

Thttps://universaldependencies.org 

‘http://universaldependencies.org/conll17/evaluation.html



  

  

Models | En Cs De Fi lv Et Ro Hi Tr Fr | Avg 

Multilingual NMT | 31.64 27.61 40.72 31.88 31.61 25.92 24.25 32.82 31.72 35.58 | 31.38 
XLM-T 32.71 33.34 39.51 35.52 33.27 25.09 21.79 37.82 32.86 36.21 | 32.81 
  

Table 7: Analysis of unsupervised dependency parsing performance on Universal Dependencies. The evaluation 

metric is UAS F1 score (%). 

  

Models | En De Hi Tr Fr | Avg 
  

XLM-R | 85.8 79.3 72.8 76.2 79.4 | 78.7 
  

Multilingual NMT | 77.1 73.4 66.6 69.7 72.6 | 71.9 

XLM-T 80.4 75.2 66.7 74.0 75.3 | 74.3 
  

Table 8: Analysis of multilingual classification on 

XNLI. The evaluation metric is accuracy (%). 

across different languages, which potentially 1m- 

proves multilingual NMT. 

5.3. Multilingual Classification 

Since multilingual NMT uses a shared represen- 

tation for different languages, we assume XLM-T 

benefits multilingual NMT by improving the mul- 

tilingual representations. To verify this, we use 

the XNLI dataset, which is a widely used testbed 

for multilingual representation. We evaluate the 

performance of each language separately. 

Setup We compare the accuracy of XNLI be- 

tween multilingual NMT baseline and XLM-T. 

Both models are trained with the WMT-10 dataset. 

We retain the encoders and put a projection layer 

on the top of the first token. The premise and hy- 

pothesis are concatenated as the input and fed into 

the model to produce a label indicating whether 

there is an entailment, contradiction, or neutral re- 

lationship. We fine-tune with the training data of 

each language. We evaluate the performance in 5 

languages (1.e., English, German, Hindi, Turkish, 

French) that are shared by WMT-10 and XNLI. 

Results Table 8 reports the results on the XNLI 

dataset. XLM-R is the best, showing fine-tuning 

with MT data degrades the performance on XNLI. 

This is because the training objective biases to- 

wards translation. It shows that XLM-T beats the 

multilingual baseline in 4 languages with signif- 

icant gains (En +3.3%, De +1.8%, Tr +4.3%, Fr 

+2.7%) as well as slightly better accuracy in Hi 

(+0.1%). The average accuracy across 5 languages 

is 74.2%, improving the baseline by 2.3%. The 

results indicate that XLM-T improves the represen- 

tations among different languages, which is impor- 

tant for multilingual NMT, especially when trans- 

lating low-resource languages. 

6 Related Work 

Multilingual Machine Translation Firat et al. 

(2016a) proposed a many-to-many model to sup- 

port translating between multiple languages by us- 

ing specific encoders and decoders for each lan- 

guage while sharing the attention mechanism. Ha 

et al. (2016) and Johnson et al. (2017) introduced a 

unified model that shared the encoders, decoders, 

and the attention mechanism for all languages. 

They used a language token to indicate which tar- 

get language to be translated. Firat et al. (2016b) 

proved that this multilingual NMT model can 

generalize to untrained language pairs, which en- 

abled zero-resource translation. Zoph et al. (2016) 

showed that training on high-resource languages 

helps transfer to low-resource machine translation. 

More recent work focused on model architecture 

with different strategies of sharing parameters or 

representations. Blackwood et al. (2018) proposed 

to share all parameters but that of the attention 

layers. Platanios et al. (2018) introduced a model 

that learns to generate specific parameters for a lan- 

guage pair while sharing the rest parameters. Gu 

et al. (2018) utilized a transfer-learning approach 

to share lexical and sentence level representations 

across multiple source languages into one target 

language. In contrast, we do not modify the archi- 

tecture of multilingual machine translation. 

Recently, there are some work focusing on scal- 

ing up multilingual machine translation. Aharoni 

et al. (2019) performed extensive experiments in 

training massively multilingual NMT models, en- 

abling the translation of up to 102 languages within 

a single model. Zhang et al. (2020) set up a bench- 

mark collected from OPUS for massively multilin- 

gual machine translation research and experiments. 

Gpipe (Huang et al., 2019) scaled up multilin- 

gual NMT with a very large and deep Transformer 

model. Gshard (Lepikhin et al., 2020) enabled to 

scale up multilingual NMT model with Sparsely- 

Gated Mixture-of-Experts beyond 600 billion pa-



rameters using automatic sharding. M2M-100 (Fan 

et al., 2020) built a multilingual parallel dataset 

through large-scale mining. They also investigated 

the methods to increase model capacity through a 

combination of dense scaling and language-specific 

sparse parameters. Different from these work, we 

do not scale the training data or increase the model 

size. Instead, we propose to leverage a pretrained 

model that has been learned on large-scale mono- 

lingual data. 

Language Model Pre-training Devlin et al. 

(2019) and Liu et al. (2019) use masked language 

modeling to pretrain the model on large-scale 

monolingual corpora and transferred to various 

downstream datasets. Yang et al. (2019) proposed 

a generalized auto-aggressive pre-training method 

that enables learning bidirectional contexts by max- 

imizing the expected likelihood over all permu- 

tations of the factorization order. UniLM (Dong 

et al., 2019; Bao et al., 2020) are unified pretrained 

language models that can be fine-tuned for both nat- 

ural language understanding and generation tasks. 

Hao et al. (2019) show that language model pre- 

training provides a good initial point for NLP tasks, 

which improves performance and generalization 

capability . In addition, XLM (Conneau and Lam- 

ple, 2019), XLM-R (Conneau et al., 2020) and 

InfoXLM (Chi et al., 20206) are the multilingual 

pretrained language models that achieve signifi- 

cant gains for a wide range of cross-lingual tasks. 

There are some models (Song et al., 2019; Raf- 

fel et al., 2020; Xue et al., 2020; Lewis et al., 

2020; Lin et al., 2020; Tang et al., 2020) based on 

the encoder-decoder framework that enables fine- 

tuning the whole models for language generation 

tasks. Lin et al. (2920) pretrain the multilingual ma- 

chine translation models with a code-switching ob- 

jective function. Compared with previous work, we 

focus on how to fine-tune pretrained cross-lingual 

encoders towards multilingual machine translation. 

7 Conclusion 

In this work, we propose XLM-T to scale up multi- 

lingual machine translation using pretrained cross- 

lingual encoders. This is achieved by initializing 

the multilingual NMT model with the off-the-shelf 

XLM-R model. XLM-T can achieve significant im- 

provements on two large-scale multilingual trans- 

lation benchmarks, even over the strong baseline 

with back-translation. We perform three probing 

tasks for XLM-T, including word alignment, un- 

supervised dependency parsing, and multilingual 

classification. The probing results explain its ef- 

fectiveness for machine translation. This simple 

method can be used as a new strong baseline for 

future multilingual NMT systems. 
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A Dataset Statistics 

Table % lists the statistics of 10 language pairs from 

WMT-10. The monolingual data is back-translated 

as the augmented training data. WMT provides var- 

ious resources of training data for each language 

pair. We use all data except Wikititles follow- 

ing (Wang et al., 2020). 

Table {0 summarizes the number of training, 

validation, and test samples for each language from 

OPUS-100. We remove 5 languages without any 

validation or test example. 

B_ Results on OPUS-100 

We provide the test BLEU of the multilingual base- 

line and XLM-T for all 94 language pairs on OPUS- 

100 test sets. Table 11 reports the scores on X — 

En test sets. Table 12 is on En — X test sets.



  

  

Code Language #Bitext #Mono _ Training Valid Test 

Fr French 10M 5.0M WMTI15_ Newstestl3 Newstest15 

Cs Czech 10M 5.0M WMTI19_ Newstestl6 Newstest18 

De German 4.6M 5.0M WMTI19- Newstestl16 Newstest18 

Fi Finnish 4.8M 5.0M WMTI19- Newstestl16 Newstest18 

Lv Latvian 1.4M 5.0M WMTI17 = Newsdevl17 Newstest17 

Et Estonian 0.7M 5.0M WMTI18 Newsdevl8 Newstest18 

Ro Romanian 0.5M 5.0M WMTI16 = Newsdevl6 Newstest16 

Hi Hindi 0.26M 5.0M WMT14 Newsdevl4 Newstestl4 

Tr Turkish 0.18M 5.0M WMTI18 _ Newstestl6 Newstest18 

Gu Gujarati 0.08M 5.0M WMT19 = Newsdevl19 Newstest19 
  

Table 9: Statistics and sources of the training, validation, and test sets from WMT. The languages are ranked with 

the size of parallel corpus. 
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af 

am 
ar 

as 
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be 

bg 
bn 

br 

bs 

ca 
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cy 
da 

de 

el 

€0 

es 
et 

eu 

fa 

fi 
fr 

fy 
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ky 
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Language 

Afrikaans 

Amharic 

Arabic 

Assamese 

Azerbaijani 
Belarusian 

Bulgarian 
Bengali 
Breton 

Bosnian 

Catalan 

Czech 

Welsh 

Danish 

German 

Greek 

Esperanto 

Spanish 
Estonian 

Basque 

Persian 

Finnish 

French 

Western Frisian 

Trish 

Gaelic 

Galician 

Gujarati 
Hausa 

Hebrew 

Hindi 

Croatian 

Hungarian 
Indonesian 

Igbo 
Icelandic 

Italian 

Japanese 
Georgian 
Kazakh 

Central Khmer 

Kannada 

Korean 

Kurdish 

Kyrgyz 
Limburgan 

Lithuanian 

Train 

275512 

89027 

1000000 

138479 

262089 

67312 

1000000 

1000000 

153447 

1000000 

1000000 

1000000 

289521 

1000000 

1000000 

1000000 

337106 

1000000 

1000000 

1000000 

1000000 

1000000 

1000000 

54342 

289524 

16316 

515344 

318306 

97983 

1000000 

534319 

1000000 

1000000 

1000000 

18415 

1000000 

1000000 

1000000 

377306 

79927 

111483 

14537 

1000000 

144844 

27215 

25535 

1000000 

Valid 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
1605 

2000 
2000 
2000 

2000 
2000 

2000 
2000 
2000 

1843 
2000 
2000 

2000 
2000 
2000 

2000 
917 

2000 

2000 
2000 
2000 

2000 

Test 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

1606 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

1843 

2000 

2000 

2000 

2000 

2000 

2000 

918 

2000 

2000 

2000 

2000 

2000 

Code Language 

Latvian 

Malagasy 
Macedonian 

Malayalam 
Marathi 

Malay 

Maltese 

Burmese 

Norwegian Bokmal 

Nepali 
Dutch 

Norwegian Nynorsk 
Norwegian 
Occitan 

Oriya 
Panjabi 
Polish 

Pashto 

Portuguese 
Romanian 

Russian 

Kinyarwanda 
Northern Sami 

Serbo-Croatian 

Sinhala 

Slovak 

Slovenian 

Albanian 

Serbian 

Swedish 
Tamil 

Telugu 
Tajik 
Thai 

Turkmen 

Turkish 

Tatar 

Uighur 
Ukrainian 

Urdu 

Uzbek 

Vietnamese 

Walloon 

Xhosa 

Yiddish 
Chinese 

Zulu 

Train 

1000000 

590771 

1000000 

822746 

27007 

1000000 

1000000 

24594 

142906 

406381 

1000000 

486055 

1000000 

35791 

14273 

107296 

1000000 

79127 

1000000 

1000000 

1000000 

173823 

35907 

267211 

979109 

1000000 

1000000 

1000000 

1000000 

1000000 

227014 

64352 

193882 

1000000 

13110 

1000000 

100843 

72170 

1000000 

753913 

173157 

1000000 

104496 

439671 

15010 

1000000 

38616 

Valid 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 

2000 
2000 
2000 

1317 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 

2000 
2000 
2000 

1852 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 
2000 
2000 

2000 

Test 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

1318 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

1852 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 
  

Table 10: Statistics of the training, validation, and test sets from OPUS-100. The languages are ranked in alphabet 

order.



  

Code | af am ar as az be bg bn br bs 

Multilingual NMT | 51.8 23.0 36.0 55.7) 27.2 284 32.1 21.9 23.3 30.8 
  

  

  

  

  

  

      
  

  

  

  

  

  

  

  

  

  

  

XLM-T 53.2 22.55 37.8 58.3 26.6 28.7) 32.5 23.2 23.5 31.0 

Code | ca CS cy da de el eo es et eu 

Multilingual NMT | 38.0 34.1 48.8 36.3 33.8 32.3 37.9 39.5 35.8 20.1 

XLM-T 38.7 34.8 49.8 37.1 349 33.5 38.3 40.9 36.2 20.6 

Code | fa fi fr fy ga ed gl gu ha he 

Multilingual NMT | 22.9 24.5 33.9 42.5 615 75.4 306 59.8 24.1 34.4 

XLM-T 23.6 25.3 346 40.6 63.33 77.7 31.0 61.6 24.1 36.0 

Code | hi br hu id ig is it ja ka kk 

Multilingual NMT | 27.5 31.0 26.7 33.8 53.9 23.4 35.7 14.0 22.4 28.7 

XLM-T 28.4 31.9 286 346 55.1 24.2 36.1 148 22.9 29.1 

Code |} km kn ko ku ky ii It ilvoomg mk 

Multilingual NMT | 37.5 41.2 15.0 248 39.0 364 41.9 45.5 28.1 34.0 

XLM-T 37.2 43.6 15.6 26.0 41.6 37.9 43.7 46.3 29.0 35.0 

Code | ml mr ms mt my~— nb ne nl nn no 

Multilingual NMT | 18.9 50.7) 29.7) 62.3. 195 43.3 46.9 31.3 37.0 25.0 

XLM-T 19.2 52.3 30.0 63.0 20.7 44.6 474 32.1 37.8 25.6 

Code | oc or pa pl ps pt ro ru rw se 

Multilingual NMT | 16.4 33.5 45.5 264 385 36.8 37.5 33.8 28.3 16.0 

XLM-T 15.3 35.1 46.2 27.7 41.6 37.3 39.0 35.1 284 14.8 

Code | sh SI sk sl Sq sr SV ta te tg 

Multilingual NMT | 55.2) 22.2) 38.2) 27.7) 41.7 30.3 31.9 29.1 43.2 24.6 

XLM-T 56.4 23.55 39.1 28.4 43.1 31.5 32.9 30.1 43.8 24.3 

Code | th tk tr tt ug uk ur uz vi wa 

Multilingual NMT | 21.1 48.5 246 19.9 20.8 27.0 21.5 20.2 25.2 31.2 

XLM-T 21.9 49.1 25.1 20.3 20.7) 28.0 21.6 18.7) 26.2 33.3 

Code | xh yl zh zu 

Multilingual NMT | 24.6 27.3 37.8 50.4 

XLM-T 26.5 29.9 39.0 50.5 
  

Table 11: X — En test BLEU for 94 language pairs in many-to-many setting on the OPUS-100 test sets. The 

languages are ranked in alphabet order.



  

Code | af am ar as az be bg bn br bs 

Multilingual NMT | 45.1 18.7) 20.0 41.5 285 26.2 28.8 11.6 25.0 21.5 
  

  

  

  

  

  

      
  

  

  

  

  

  

  

  

  

  

  

XLM-T 446 21.2 204 41.9 27.9 265 29.8 11.4 25.2 21.9 

Code | ca CS cy da de el eo es et eu 

Multilingual NMT | 35.2) 26.7) 42.2 34.8 30.1 26.7 33.6 37.0 30.2 14.1 

XLM-T 35.8 26.6 44.1 35.4 30.7 27.3 34.3 374 29.8 14.3 

Code | fa fi fr fy ga ed gl gu ha he 

Multilingual NMT | 9.6 20.9 32.4 33.1 50.4 27.6 27.33 52.4 47.5 28.2 

XLM-T 94 21.2 32.9 345 51.1 31.6 27.8 52.5 48.6 28.8 

Code | hi br hu id ig is it ja ka kk 

Multilingual NMT | 19.8 24.2) 20.3 30.0 45.8 21.1 294 12.0 16.6 25.1 

XLM-T 20.9 24.7 20.3 30.3 45.7 20.8 30.5 12.3. 17.4 25.0 

Code |} km kn ko ku ky ii It ilvoomg mk 

Multilingual NMT | 19.6 28.6 60 80 334 32.3 35.4 39.5 22.4 33.3 

XLM-T 20.22 294 67 79 35.1 31.5 36.2 40.1 22.6 33.9 

Code | ml mr ms mt my~— nb ne nl nn no 

Multilingual NMT | 5.1 31.8 24.2 47.4 13.0 37.7) 42.4 27.2 30.7) 28.5 

XLM-T 5.7 33.55 245 48.0 11.4 38.6 42.3 27.9 30.6 28.9 

Code | oc or pa pl ps pt ro ru rw se 

Multilingual NMT | 24.2 34.1 43.6 20.8 41.6 31.6 31.0 284 69.4 25.7 

XLM-T 23.33 31.5 42.9 21.3 41.9 32.3 31.3 28.7 68.8 26.2 

Code | sh SI sk sl Sq sr SV ta te tg 

Multilingual NMT | 50.9 10.6 29.7) 24.2 37.0 20.8 31.0 18.8 32.2 28.8 

XLM-T 51.4 10.5 30.3 25.2 374 21.5 31.7 19.4 32.3 28.9 

Code | th tk tr tt ug uk ur uz vi wa 

Multilingual NMT | 8.7) 45.4 16.7 196 12.0 15.6 196 15.2 21.9 27.5 

XLM-T 91 45.1 17.1 20.2 124 16.7 19.7 16.3 22.1 29.4 

Code | xh yl zh zu 

Multilingual NMT | 14.0 27.9 41.1 35.5 

XLM-T 13.6 27.2 41.5 36.3 
  

Table 12: En > X test BLEU for 94 language pairs in many-to-many setting on the OPUS-100 test sets. The 

languages are ranked in alphabet order.


