
Hadoop High Availability through Metadata Replication
Feng Wang

IBM China Research Laboratory
Beijing, 100193, China
wangfwf@cn.ibm.com

Bo Dong

Xi'an Jiaotong University
No.28, Xianning West Road

Xi'an 710049, China
dong.bo@mail.xjtu.edu.cn

Jie Qiu
IBM China Research Laboratory

Beijing, 100193, China
qiujie@cn.ibm.com

Xinhui Li

IBM China Research Laboratory
Beijing, 100193, China
lixinhui@cn.ibm.com

Jie Yang
IBM China Research Laboratory

Beijing, 100193, China
yangyjie@cn.ibm.com

Ying Li

IBM China Research Laboratory
Beijing, 100193, China

lying@cn.ibm.com

ABSTRACT
Hadoop is widely adopted to support data intensive distributed
applications. Many of them are mission critical and require
inherent high availability of Hadoop. Unfortunately, Hadoop has
no high availability support yet, and it is not trivial to enhance
Hadoop. Based on thorough investigation of Hadoop, this paper
proposes a metadata replication based solution to enable Hadoop
high availability by removing single point of failure in Hadoop.
The solution involves three major phases: in initialization phase,
each standby/slave node is registered to active/primary node and
its initial metadata (such as version file and file system image) are
caught up with those of active/primary node; in replication phase,
the runtime metadata (such as outstanding operations and lease
states) for failover in future are replicated; in failover phase,
standby/new elected primary node takes over all communications.
The solution presents several unique features for Hadoop, such as
runtime configurable synchronization mode. The experiments
demonstrate the feasibility and efficiency of our solution.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE OF
SYSTEMS – Design studies, Reliability, availability, and
serviceability. E.5 [Data]: FILES – Backup/recovery.

General Terms
Management, Design, Reliability.

Keywords
Hadoop, namenode, jobtracker, metadata, replication, high
availability.

1. INTRODUCTION
The businesses today are facing tremendous challenges due to the

complex applications and dramatic growth in data volumes.
Hadoop, an open-source project developed for reliable, scalable,
distributed computing and storage, has been widely adopted to
support data intensive distributed applications [1]. More and more
researchers, developers and users are interested in Hadoop with
the purpose of building big data ecosystem such as Cloud based
on it [2].

As a platform of computing and storage, availability of Hadoop is
the foundation of applications’ availability on it. It is necessary to
keep full-time availability of platform for product environment, or
else the inestimable loss will be caused. For example, on July 21,
2008, Amazon S3 stopped working for nearly eight hours, thus
thousands of online stores using S3 service were down for hours
too. This accident led to a great loss of revenues, and damaged
reputations to S3 users [3].

Hadoop has tried some methods to enhance the availability of
applications running on it, e.g. maintaining multiple replicas of
application data and redeploying application tasks based on
failures, but it doesn’t provide high availability for itself. In the
architecture of Hadoop, there exists SPOF (Single Point of
Failure), which means the whole system gives up and becomes
out of work caused by the failure of critical node where only a
single copy is kept. SPOF of Hadoop thus is a huge threat to the
availability of Hadoop.

To provide high availability for Hadoop, there are several
challenges as follows.

(1) SPOF identification. Namenode and jobtracker are SPOF in
Hadoop, and how to identify the critical component and state
information more exactly to remove these SPOF is not an
easy job.

(2) Low overhead. Achieve high availability needs additional
time cost for runtime synchronization among different nodes,
so a performance optimized solution for implementing high
availability is necessary.

(3) Flexible configuration. To implement high availability for
Hadoop, many configurable options should be considered to
meet performance requirements of different workloads in
different execution environments (e.g. network bandwidth
and latency).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CloudDB'09, November 2, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-802-5/09/11...$10.00.

37

This paper analyzes the SPOF existing in critical nodes of
Hadoop and proposes a metadata replication based solution to
enable Hadoop high availability. The solution involves three
major phases: in initialization phase, each standby/slave node is
registered to active/primary node and its initial metadata (such as
version file, file system image) are caught up with those of
active/primary node; In replication phase which is the core phase
of our solution, the runtime metadata (such as outstanding
operations, lease states) for failover are replicated; in failover
phase, standby/new elected primary node takes over all
communications. In our solution, several unique features for
improving availability of Hadoop are presented, such as online
reconfigurable synchronization mode and corresponding adaptive
decision method.

The rest of this paper is organized as follows. Section 2
investigates SPOF in Hadoop. Section 3 introduces our solution to
enable Hadoop high availability. Section 4 evaluates the proposed
solution. Section 5 includes the related works and section 6
concludes the whole paper.

2. SPOF OF HADOOP
Hadoop provides a distributed file system (HDFS) and a
framework to run MapReduce application. Both of HDFS and
MapReduce form the kernel of Hadoop [1, 4].

HDFS stores data on the compute nodes, providing very high
aggregate bandwidth across the cluster. A HDFS installation
consists of a single namenode as the master node and a number of
datanodes as the slave nodes. The namenode manages the file
system namespace and regulates access to files by clients. The
datanodes are distributed, one datanode per machine in the
cluster, which manage data blocks attached to the machines where
they run. The namenode executes the operations on file system
namespace and maps data blocks to datanodes. The datanodes are
responsible for serving read and write requests from clients and
perform block operations upon instructions from namenode.

MapReduce is a computational paradigm, which divides the
execution of application into many small fragments of work. Each
of the fragments may be executed or re-executed on any machine
in the cluster. As similar as HDFS, MapReduce also follows the
architecture of master-slave. In Hadoop, the implementation of
MapReduce has a single master node called jobtracker and several
slaves nodes called tasktrackers. The jobtracker receives
map/reduce jobs from clients, then puts them in a queue of
pending jobs and schedules them on a first come first served
basis. The jobtracker manages the assignment of map and reduce
jobs’ component tasks to tasktrackers. The tasktrackers execute
tasks upon instructions from the jobtracker and also handle data
motion between the map phase and the reduce phase.

According to the design of Hadoop architecture, it is clear that the
namenode of HDFS and the jobtracker of MapReduce are both
critical nodes which take very important roles in management of
Hadoop. But because there is only a single copy of them in
Hadoop, no matter which node is down, HDFS or MapReduce
will be out of service immediately.

The target of our high availability solution is to remove these
SPOF in Hadoop.

3. PROPOSED SOLUTION
In this paper, we propose a metadata (described in section 3.1)
replication based solution to enable Hadoop high availability. The
solution consists of three major phases: the first is initialization
phase which initializes the execution environment of high
availability; the second is replication phase which replicates
metadata from critical node to corresponding backup node at
runtime; and the third is failover phase which resumes the running
of Hadoop despite the critical node is out of work.

The execution environment of high availability consists of the
critical node and one or more nodes used for its backup. Our
solution supports two types of topology architecture of nodes in
execution environment: one is active-standby topology which
consists of one active critical node and one standby node; the
other is primary-slaves topology which consists of one primary
critical node and several slave nodes. Within primary-slaves
topology architecture, all nodes are reachable from others, so that
slave nodes can communicate with each other for leader election
described in section 3.4.1. The main difference between standby
node and slave node is that the slave node takes a portion of read
requests but the standby node does not, and it has little impact on
our high availability solution

Both types of node topology architecture are suitable for medium
amounts of files but higher volumes of read requests which are
typical application scenarios of Hadoop. From the standpoint of
architecture, active-standby topology is much simpler than
primary-slaves topology, so unless otherwise noted, we take
primary-slaves topology architectures as the representative in
order to describe our solution more clearly.

To reduce performance penalty for replication, our solution only
replicates metadata which are the most valuable management
information for failover instead of a complete data copy stored in
active/primary critical node. Note that all management
information contained in jobtracker is stored in HDFS persistently
and the information can be recovered for failover of jobtracker, so
it is unnecessary to design specific metadata replication
mechanism for jobtracker. Therefore, unless otherwise noted in
this paper, we take the namenode as the representative to present
our solution.

In the following sections, we present the description of metadata
at first, and then present detailed information of each phase of our
solution.

3.1 Metadata
Metadata are the most important management information
replicated for namenode failover. In our solution, the metadata
include initial metadata which are replicated in initialization
phase and two types of runtime metadata which are replicated in
replication phase.

The initial metadata include two types of files: version file which
contains the version information of running HDFS and file system
image (fsimage) file which is a persistent checkpoint of the file
system. Both files are replicated only once in initialization phase,
because their replication are time-intensive processes. Slave node
updates fsimage file based on runtime metadata to make the file
catch up with that of primary node.

38

The first type of runtime metadata is edit log which records the
write operations submitted by file system clients. There are eleven
types of write operations in HDFS, including: add, rename, delete,
close, make directory, set replication, set permissions, set
ownership, set generation stamp, update access time and set disk
quota. Each operation is a piece of edit log. The metadata are
replicated for tracking the write operations on HDFS fsimage. To
avoid unbound growth of edit log file content, when the file size
exceeds a predefined threshold, the standby node will load
fsimage and edit log into memory and applies each write
operations recorded by the edit log to update the fsimage file. The
process is similar to the internal merge process of current
secondary namenode [4].

The second type of runtime metadata is lease state. In HDFS, the
file can only be written by a single writer in any time and
namenode provides a lease to authorize a writer during a certain
time interval [1]. For failover, lease state is valuable for
guaranteeing operation consistency and should be recovered
correctly. Lease state stays in memory and consists of the writer,
file path and update time. A lease monitor takes charge to check if
the last update time has expired, and the writer sends renew lease
request periodically. We add a directory in slave node to store
lease state information and a probe to intercept the renew lease
request in primary node. When a renew request is received, the
corresponding change of lease state is recorded by primary node.
The metadata of lease state is helpful to do more accurate failover.

HDFS does not persistently store block mapping information,
which contains the connection between a block and the datanode
where it is stored. The block mapping information is constructed
in memory based on the block lists sent by datanodes when they
join Hadoop cluster and then be updated periodically based on
block reports from datanodes. In our solution, we also don’t take
the block mapping information as the metadata, and the
reconstruction of block mapping for failover is presented in
section 3.4.2.

3.2 Initialization
The main tasks of initialization phase include node registration to
register slave nodes and initial metadata synchronization to make
initial metadata consistent between primary node and slave nodes.

3.2.1 Node registration
Node registration process makes the primary node know the
initial states of existing slave nodes. In our solution, the
registration process involves three major steps showed in Figure 1.

Figure 1. Slave node registration.

In Figure 1, the registration process begins with a slave node
sending a registration request that contains the IP address

information of itself to primary node. When primary node
receives the request, it registers the slave node by writing the IP
address information contained in the request into a slave IP
address table and sends a reply message with the table contents to
all slave nodes registered in the IP address table of primary node.
Next, slave nodes receive the reply message from primary node,
and then they update their local slave IP address table and send
acknowledgements to primary node. Meanwhile, the primary
node waits for acknowledgements sent by slave nodes which have
been registered and checks if all acknowledgements from
registered slave nodes have been received successfully. If it is
done without timeout, the registration process is completed;
otherwise, the primary node has to unregister the node whose
acknowledgement is not received by removing corresponding IP
address information from the slave IP address table, and then
resends the content of updated table to all registered slave nodes.
The process executes recursively till the whole registration
process completes.

This registration process guarantees all of live slave nodes can be
registered by the primary node during initialization phase. For
active-standby topology architecture, the registration process is
very simple, because there have no other nodes need to be
registered except the standby node.

3.2.2 Initial metadata synchronization
When the registration process is completed, the initial metadata of
slave nodes must be synchronized to catch up with those of
primary node.

In our solution, the process of initial metadata synchronization
involves three steps in sequence: version file checking, fsimage
file checking and metadata synchronizing.

Firstly, in the version file checking step, primary node asks slave
nodes to deliver their version file information and checks if the
information is consistent to those of primary node, If no, e.g. no
any name space ID (a unique identifier for the file system) exists
in the information of slave node or its value is different from the
name space ID kept in primary node, the slave node will be
recorded as an inconsistent node by primary node.

Next, in the fsimage file checking step, primary node checks if
there has fsimage file information of the slave node is inconsistent
to primary, e.g. the latest update information of fsimage file. If
there are any differences between fsimage file information of
primary node and slave node, the slave node is considered as
inconsistency, and then primary node will record the slave node
as an inconsistent node.

Finally, in the metadata synchronizing step, primary node asks the
inconsistent slave nodes for their version file or fsimage file to
refresh the initial metadata stored previously. Primary node sends
its initial metadata to inconsistent slave nodes and each slave
node takes the received metadata as the consistent initial metadata.

This process keeps the consistency between the initial metadata of
primary node and slave nodes, which provides correct foundation
for the subsequent operations.

3.3 Replication
Replication is the core of our high availability solution, and it
involves several unique features for Hadoop. The most important

Primary node New slave node
Registration request

Reply (slaves IP table)

Acknowledgement

Reply (slaves IP table)

Acknowledgement

Other slave nodes

Recursive
execution

39

is a flexible data synchronization mode and corresponding
adaptive online decision method to meet performance
requirements of different workloads in different execution
environments.

In this section, taking the replication between primary node and
one of slave nodes as an example, we introduce the architecture of
replication at first, and then present more detailed descriptions of
configurable synchronization mode.

3.3.1 Architecture
The main architecture of replication is presented in Figure 2.

Figure 2. Architecture of replication.

In Figure 2, primary node and slave node have the same
configurations of hardware and software. They communicate with
each other by network. The connection-oriented TCP protocol is
used in communication to ensure reliable data transfer.

In primary node, the metadata container component collects
metadata from client request processing threads. It controls the in-
memory processing (MemWrite), in-disk processing (DiskWrite)
and commitment of multiple client requests simultaneously.
Moreover, the metadata container involves an adaptive adjustor
component (not showed in figure 2) which is one of the most
important components of our Hadoop high availability solution.
The adjustor can change synchronization mode (described in
section 3.3.2) of replication based on runtime adaptive analysis to
meet performance requirements of different workloads in
different execution environments (such as network bandwidth and
latency).

In slave node, the receiver component puts the received metadata
to a metadata buffer. The metadata handler component gets
metadata from metadata buffer and then handles the processing of
received metadata including MemWrite, DiskWrite. There is an
adjustor component in slave node too, and it changes
synchronization mode of replication according to the control
message sent from primary node. An additional function of this
adjustor is to adjust the size of metadata buffer based on metadata
processing performance and network communication speed.

There are two types of message are transferred from slave node to
primary node: one is the acknowledgement message of received
metadata; the other is the heartbeat message to indicate that the
salve node is still alive. Meanwhile, there are three types of
message are transferred in opposite direction: the first is the

acknowledgement message of received heartbeat; the second is
the metadata to be replicated; and the third is the control message
to inform slave node change synchronization mode. These
messages are sent/received by sender/receiver component in
primary node and slave node.

3.3.2 Configurable synchronization mode
Synchronization mode is very critical to improve the performance
of replication process. One of the most important features of our
solution is to provide a configurable synchronization mode
(showed in figure 3) to fit for diverse ranges of workload
performance requirements and execution environments.

Figure 3. Synchronization mode.

In Figure 3, Mode (1) commits the client request on primary node
only after relevant metadata have been written to disk on both
primary and slave; Mode (2) commits the client request on
primary node after relevant metadata have been written to disk on
primary and received into memory on slave; and Mode (3) sends
metadata before local disk write on primary node and commits the
client request on primary node after relevant metadata have been
written to disk on primary and received into memory on slave.
Mode (1) and (2) guarantee the metadata are stored in primary
node before they are sent to slave node, and Mode (3) has
advantage on metadata transfer performance. To keep the
consistency among nodes, we use a three-phase commit protocol
with non-blocking capability [5].

We choose replication synchronization mode according to
workload performance and network transfer speed. For a wide
area network with low bandwidth, Mode (3) is recommended
because transmission latency overlaps the time cost on metadata
disk writing of primary. For a local area network with high
bandwidth, the choice of synchronization mode is most often
between Mode (1) and (2). Furthermore, the choice of Mode (1)
or Mode (2) depends on the tradeoff between workload
performance and synchronization protection. For example, Mode
(1) has higher performance penalty for waiting for disk writing of
metadata on slave node and Mode (2) has potential threat caused
by the failure of slave node stores the metadata into disk.

In practice, waiting for acknowledgements sent from all slave
nodes may result in large time overhead. So, to improve

Disk

Write

Mem

Write

Mem

Write

Disk

Write

Metadata Ack
Commit

(1)
Disk

Write

Mem

Write

Mem

Write

Disk

Write

Metadata Ack
Commit

(2)

Wait

Wait

Wait

Wait

Mem

Write

Wait
Metadata

Disk

Write

Mem

Write

Wait

Disk

Write

Commit

Ack

(3)

Metadata container

DiskWrite

Sender

Receiver

Primary node Slave node

Metadata handler

Receiver

Metadata buffer

Sender

Ack/
Metadata/
Control

Ack/
Heartbeat MemWrite

Client request processing Metadata
processing Primary

Slave

Primary

Slave

Primary

Slave

40

performance, the primary node can commit request after it
receives acknowledgements from a majority of slave nodes. This
improvement needs some enhancements on synchronization
modes in figure 3, e.g. assign sequence number for each metadata
transfer and corresponding acknowledgement to handle the
overdue acknowledgement which is received by primary node
after the corresponding request has been committed.

In our solution, an adaptive method is provided to choose the
most suitable synchronization mode for replication phase instead
of a fixed configuration. Within adaptive method, network
throughput threshold and workload performance threshold are
configured by users who set the thresholds based on network
environments and performance requirements. Analysis engine
collects network throughput information and workload
performance information at runtime. Meanwhile, the engine
automatically makes the choice among three types of
synchronization modes according to an adaptive analysis, i.e.
collects data with a fixed time period and compares the average
value of data with the threshold, then decides which mode is the
best.

3.4 Failover
Once slave node has not received the acknowledgement of its
heartbeat message for a long time which exceeds a predefined
time interval threshold, the slave node considers that the primary
node is out of work. Then, a failover process is started and a slave
will act as the primary node at the end. Two steps for failover are
leader election and IP address transition. If the active-standby
topology is used, the former step is not necessary. Note that the
failover process of namenode is similar to the process of
jobtracker except that namenode needs an additional lease
management step and some other delicate difference, such as
block mapping information reconstruction of HDFS and job
history recovery of MapReduce, so we give more detailed
description in this section to the representative failover process of
namenode.

3.4.1 Leader election
Leader election is a process of designating a slave node to take
the place of primary node, and this process is a negotiation and it
is handled by slave nodes automatically.

Within primary-slaves topology architecture, there may be a set of
slave nodes that join into the competence of new primary node
when the original primary node is out of work. Our solution
introduces a node ordering mechanism to help slave nodes resolve
this conflict.

In our solution, we order the slave nodes who are new primary
node candidates by assigning them an increasing sequence
number and make each slave node keep tracking the most recent
sequent number it has seen so far. When a slave node believes the
primary node is out of work and wants to become the primary
node, it generates a unique sequence number at first. A simple
method to generate sequence number is as follows: considering
that there are n slave nodes (this information can be got by
checking local salve IP address table), assigns each slave node r a
unique id ir between 0 and n-1, and the slave node r picks the
smallest sequence number s larger than any it has seen such that s
mod n = ir. This method guarantees the number unique effectively.

When sequence number is generated, slave node broadcasts the
sequence number to all slave nodes in the slave IP address table
except itself. When a slave node receives the message, it checks
whether the primary node is out of work or not. If it finds that the
primary node is still working, the salve node will respond a
disagreement message to the sender immediately; otherwise, the
slave node will continue to check if there has seen a higher
sequence number. If the sequence number in the message is the
highest, the salve node will reply with an agreement message, or
else it replies with a disagreement message.

Next, if the slave node receives a majority of agreement messages
replied from other slave nodes, the slave is qualified for being the
primary node, then it sends a confirm message to tell slave nodes
that it will take the role of primary node and the leader election is
completed. Otherwise, the slave node has not received enough
number of agreement messages, and a new round of leader
election will be launched till a slave node satisfies the conditions
to complete this election.

When leader election completes, the new primary node loads
metadata stored in replication phase into memory for
reconstructing the latest execution state of the old primary. For
example, fsimage file is loaded and then each operation recorded
in edit log is applied. Once the primary has reconstructed a
consistent in-memory image, it creates new files for recording the
following metadata. Only at this point, the primary is ready for
listening requests from other nodes.

3.4.2 IP address transition
The namenode of HDFS is accessed through IP address. When the
leader is elected, the new primary node changes its IP address to
the IP address of the old primary node, so that it can takes over all
communications with other nodes, e.g. datanodes, slave nodes.
Meanwhile, other nodes will not find any change and they can
access the primary node as directly as ever.

In our solution, primary node and slave nodes are placed on
different servers which have own IP address. So, we take the IP
address of primary node as a parameter and invoke Linux shell
commands such as ifconfig to modify IP address information of
the new elected primary node. Furthermore, it is necessary to
change IP address information in the network configuration file
directly, because the configuration set by ifconfig command will
be lost when the machine is restarted. For jobtracker, the new
primary node needs another modification in its hostname, it can
be done by using Linux shell command such as hostname and
modifying corresponding configuration files.

To speed up the failover process, we use a technique known as
gratuitous ARP which is an ARP reply when there was no ARP
request. The new primary node issues a gratuitous ARP reply
message in order to trigger other nodes on the network to update
their ARP table and to inform switches of the MAC address of the
current primary node.

Within primary-slaves topology architecture, when the IP address
transition is completed, the new primary node needs to initialize
the remaining slave nodes again to guarantee the initial metadata
consistency. According to the entries saved in slave IP address
table, the new primary node sends a re-register message to the
slave nodes except itself, and each slave node responds the

41

message by a registration request. Then, the subsequence process
is the same as the initialization described in section 3.2.

For namenode of HDFS, an additional step is reconstructing block
mapping information in memory based on block lists sent by
datanodes. For jobtracker of MapReduce, an additional step is
recovering job management information according to job history
file stored in HDFS.

3.4.3 Lease management
In HDFS, to create or modify a file, client will first contact the
namenode which will grant it a lease for writing the file. Client
renews the lease periodically, and namenode checks the states of
leases throughout the write process of client to look for if there is
any lease expiration. Lease mechanism prevents a dead client
from the long term resource holding.

In our solution, lease management is very important to namenode
failover. If a client does not exhaust its lease before the primary is
out of work, remaining time of the lease must be recovered when
the primary failover is completed. This is necessary to keep
system operation consistent. We provide a lease management by
an approach similar as [6], but we need more information to
support more accurate management. The latest update state of
lease is recorded by primary namenode and replicated to slave
nodes as described in section 3.1. When the slave node finds the
primary is out of work, it records the time as the primary down
time. When the failover process completes and client contacts
with the new primary, the new primary will calculate the
difference between the old primary down time and the latest
update time of client lease as the elapsed lease time of client and
check if the elapsed lease time is smaller than a predefined limit
or not. If yes, the new primary uses the difference between the
elapsed lease time and the predefined limit as the remaining lease
time of corresponding client, and the client still has lease to write
the file in this time interval.

4. EXPERIMENTS
Two experiments are used to evaluate the feasibility and
efficiency of our Hadoop high availability solution: one is to
measure the failover time for critical node; the other is to measure
the time overhead induced by runtime replication. Note that we
take the failover and replication of namenode as the representative
in the experiments; the corresponding processes of jobtracker are
very similar to namenode.

4.1 Experiment Environment
The HDFS cluster in our experiment consists of 5 PC machines.
The active-standby topology is used; specifically, there are one
active namenode, one standby node and three datanodes.

The active namenode and the standby node are installed in the
same hardware and software configuration, which is Intel Pentium
4 CPU 3.2GHz, 1.5G DDR 400MHz memory, 1T disk and SUSE
Linux Enterprise Server 10.2 with the kernel of version 2.6.12.
All datanodes have similar hardware and software configuration
as namenode, except that they have only 1G DDR 400MHz
memory. All machines are interconnected with 1.0Gbps Ethernet
network.

Hadoop 0.20.0 is installed in all machines. Because the number of
file blocks affects HDFS significantly, to evaluate our solution
with different storage pressure, multiple file sets are auto-
generated. These files sets contain 5000, 10000, 50000 and
100000 files respectively. The size of each file is smaller than
64M, which is the default size of a HDFS data block.

4.2 Failover Time
Failover time is a metric to evaluate the performance of failover
process. The failover process begins at the time when
active/primary namenode is out of work and ends at the time
when standby/new elected primary node takes over the original
active/primary node.

Generally, the time interval of failover consists of four portions:
leader election time, IP address transition time, network transfer
time and block mapping construction time. Among these portions,
the time of leader election maybe have significantly huge
fluctuation because there are unpredictable conflicts during the
election process; the time of IP address transition can be
neglected because it only costs few time on network configuration
processing; the time of block mapping construction is related to
the number of blocks which are reported in block reports sent
from datanodes. There is no leader election process in our
experiments environment, so we take the sum of block mapping
construction time and network transfer time as the failover time.

To start the experiment, we upload the file set to HDFS cluster at
first. Each file is stored in a data block and each block has three
replicas which are distributed to three datanodes. Next, we shut
down the active namenode by pulling its power cord, then the
failover process begins to execute till the standby node replaces
the role of original active namenode. We record the time of block
mapping construction and network transfer, then compute the
failover time by averaging the sum of the two values. We repeat
twenty times of the experiment with each file set and take the
average as the failover time of HDFS. The experiment results are
illustrated in figure 4.

0

1000

2000

3000

4000

5000

6000

7000

8000

5000 10000 50000 100000

Number of blocks

Ti
m

e
co

st
 (m

s)

Block mapping construction Network transfer Failover

Figure 4. Failover time cost.
In figure 4, the time of failover varies from nearly 1 second to
more than 7 seconds, and increases as the number of blocks
increases. The other two lines in figure 4 have similar trends,
because more blocks means more block mapping information to
be transferred to namenode.

42

Theoretically, the time cost of failover is in direct proportion to
the size of file sets, but it is not very clear in figure 4. The reason
is batch processing of block mapping information reduces the
additional penalty in processing big volume data.

Within failover time, the proportion of block mapping
construction time is always much smaller than network transfer
time, because the process of block mapping construction consists
of in-memory operations and the structure of each block mapping
information is simple. Therefore, the network transfer is
bottleneck of failover process.

4.3 Replication Time Cost
Replication time cost is a metric to evaluate the performance
penalty of high availability solution. In our solution, the
replication of initial metadata (i.e. fsimage file and version file) is
executed only once in initialization phase, so it has little impact
on runtime performance of HDFS. We focus on the time overhead
of runtime metadata replication which runs concurrently with the
normal execution of namenode. Because the metadata processing
of active/primary namenode must be synchronized with the
standby/slave nodes at runtime, if the penalty of replication
process is too high, the performance of HDFS will reduced
dramatically. In our experiments, the synchronization mode (1)
described in section 3.3.2 is always be chosen by adaptive

analysis engine, because the network bandwidth is high enough.
So, the process of metadata processing begins at the time when
client request is processed in memory of active node and ends at
the time when the active node receives the acknowledgement
from standby node. In this metadata processing interval, the time
consumed by memory writing and disk writing in active
namenode is also required in normal execution process without
replication.

In our experiments, we upload the file set to HDFS cluster at first,
and then create a new file. Creating a file involves two write
operations: add and close. Both write operations generate
metadata to update namespace information stored in namenode.
Additionally, the add operation requests lease from namenode and
the close operation returns lease to namenode, therefore
corresponding lease states are collected as metadata too. All
metadata are replicated to standby node. We record time cost of
major steps in replication process includes memory writing and
disk writing in active namenode and standby node and network
communication. For comparing metadata processing performance
between replication process and normal process, we also record
the time overhead for file creation in HDFS without replication
process. The normal process has only two steps that are memory
writing and disk writing in namenode. We repeat fifty times of the
experiment with each file set and compute the average. The
experiment results are illustrated in table 1.

Table 1. Metadata processing performance comparison between replication process and normal process

Number of
blocks

Process
type

Mem. write
in namenode

(ms)

Disk write in
namenode

(ms)

Mem. write in
standby node

(ms)

Disk write in
standby node

(ms)

Network
communication

(ms)

Metadata
processing

(ms)
Replication 0.043 1.581 0.351 1.247 3.649 6.871

5000
Normal 0.084 2.042 - - - 2.126

Replication 0.129 1.636 0.431 1.330 3.426 6.952
10000

Normal 0.105 2.577 - - - 2.682

Replication 0.151 2.032 0.505 1.257 3.651 7.596
50000

Normal 0.127 2.265 - - - 2.392

Replication 0.165 1.899 0.529 1.400 3.499 7.492
100000

Normal 0.177 2.185 - - - 2.362

In table 1, the metadata processing time overhead of replication
process is nearly two times longer than that of normal process.
The most time-intensive step is network communication which
spends half of whole replication time, so the network
communication is bottleneck. A suitable synchronization mode is
helpful to resolve this problem, e.g. use synchronization mode (3)
described in section 3.3.2.

The time cost of in-memory processing in standby is always much
longer than that of active namenode, because it needs message
parsing to get the metadata when the standby node receives
packets from network and additional lease information processing
is time-consuming too.

According to the results in table 1, the size of file sets stored in
cluster is irrelevant to the replication time cost. Because only edit
log entry and lease state record is transferred as the metadata at

each time, the size of metadata transferred is small and nearly
invariant.

5. RELATED WORKS
High availability is an emerging topic in Hadoop community [2].
To our best known, there is no solution to improve the availability
of Hadoop effectively.

Hadoop provides a secondary namenode [1, 4], which
unfortunately does not act as a hot backup daemon for namenode.
Instead, it is mainly used for periodically merging the metadata
contained in namenode to prevent the data size from becoming too
large.

A subproject of Hadoop, named Zookeeper [7], supports
replication among a set of servers and provides a coordination
mechanism for leader election among the servers, but it focuses on

43

providing a coordination service for distributed applications
instead of a high availability solution.

ContextWeb experiments a high availability solution of Cloudera
Hadoop [8]. The solution primarily makes use of DRBD from
LINBIT and Heartbeat from Linux-HA project, but it is not
optimized for availability and performance of Hadoop, e.g. several
unnecessary data have to be replicated.

Replication plays an important role in our Hadoop high
availability solution. Although quite a few replication mechanisms
are available in mission-critical applications especially the
database applications, these mechanisms are not suitable for
Hadoop high availability.

E. Sorensen adds hot standby replication functionality to the
Apache Derby [9], but it does not support multi-threading to
deliver replication messages. So, the solution cannot be used for
parallel processing of large scale data in Hadoop.

Berkeley DB [10] has a well-defined replication mechanism, but it
targets at the database management system only. Users have to
spend a lot of time redesigning the replication framework if they
would like to use Berkeley DB replication for applications other
than database.

MySQL [11] presents several replication solutions used in many
different environments for a range of purposes, but it cannot
reconfigure replication process dynamically. Moreover, MySQL
has no official solution for failover.

IBM DB2 HADR (High Availability Disaster Recover) [12] is
capable of adjusting configuration of replication process for better
performance at runtime. The runtime configuration depends on a
simulator to estimate the performance of replication happened
before. It is not an effective approach to tune replication process
according to the actual execution scenario.

6. CONCLUSIONS
Both namenode and jobtracker are critical nodes in Hadoop. In
this paper, in order to enable Hadoop high availability, we present
a metadata replication based solution to remove the SPOF of
namenode and jobtracker. In our solution, when an initialization
phase consists of standby/slave nodes registration and initial
metadata synchronization is completed, a replication phase is
executed at runtime. To reduce performance penalty, we only
replicate metadata which includes outstanding operations and
lease states for failover in future. During the failover phase,
standby/new elected primary node recovers all metadata and takes
over all communications to resume the execution of Hadoop.
Different from existing replication technologies of database, our
solution caters to the specific requirements of Hadoop, e.g.

provides adaptive method to reconfigure synchronization mode of
replication at runtime.

Our experiments illustrate that our solution enable Hadoop high
availability effectively. Within our experiment environment, it
took less than 10 seconds for the whole failover process during
which the new active node recovered metadata for three datanodes
that each has 100000 data blocks.

Our future work includes researching more effective adaptive
algorithms to adjust configuration of replication process (such as
synchronization mode, metadata buffer size) and testing our
solution in Hadoop cluster with larger number of datanodes.
Additionally, we will introduce into Hadoop more high
availability technologies other than the replication based one.

7. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/
[2] E. Baldeschwieler and D. Cutting. 2009. State of Hadoop. In

Hadoop Summit 2009 (Santa Clara, US, June 10, 2009).
[3] A. Stern. 2008. Amazon S3 Down. July 20, 2008.

http://www.centernetworks.com/amazon-s3-down-july-2008
[4] T. White. 2009. Hadoop: The Definitive Guide. O’Reilly

Media, Inc. June 2009.
[5] D. Skeen and M. Stonebraker. 1983. A Formal Model of

Crash Recovery in a Distributed System. IEEE Transactions
on Software Engineering. Vol. 9, Issue 3 (May 1983), 219-
228. DOI = http://doi.acm.org/10.1109/TSE.1983.236608

[6] M. Burrows. 2006. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation (Seattle, WA, USA, November 06-08, 2006).
OSDI '06. USENIX Association, Berkeley, CA, 335-350.

[7] Apache Zookeeper. http://hadoop.apache.org/zookeeper/
[8] C. Bisciglia. Hadoop HA Configuration. Jul. 22, 2009.

http://www.cloudera.com/blog/2009/07/22/hadoop-ha-
configuration/

[9] E. Sorensen. 2007. Derby: Replication and Availability. MS
Thesis. Norwegian University of Science and Technology.
June 2007.

[10] H. Yadava. The Berkeley DB Book. Apress. Oct. 2007.
[11] MySQL. http://www.mysql.com/
[12] Torodanhan. 2009. Best Practice: DB2 High Availability

Disaster Recovery. Apr. 1, 2009.
http://www.ibm.com/developerworks/wikis/display/data/Best
+Practice+-+DB2+High+Availability+Disaster+Recovery

44

