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ABSTRACT 
Hadoop is widely adopted to support data intensive distributed 
applications. Many of them are mission critical and require 
inherent high availability of Hadoop. Unfortunately, Hadoop has 
no high availability support yet, and it is not trivial to enhance 
Hadoop. Based on thorough investigation of Hadoop, this paper 
proposes a metadata replication based solution to enable Hadoop 
high availability by removing single point of failure in Hadoop. 
The solution involves three major phases: in initialization phase, 
each standby/slave node is registered to active/primary node and 
its initial metadata (such as version file and file system image) are 
caught up with those of active/primary node; in replication phase, 
the runtime metadata (such as outstanding operations and lease 
states) for failover in future are replicated; in failover phase, 
standby/new elected primary node takes over all communications. 
The solution presents several unique features for Hadoop, such as 
runtime configurable synchronization mode. The experiments 
demonstrate the feasibility and efficiency of our solution.   

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: PERFORMANCE OF 
SYSTEMS – Design studies, Reliability, availability, and 
serviceability. E.5 [Data]: FILES – Backup/recovery. 

General Terms 
Management, Design, Reliability. 

Keywords 
Hadoop, namenode, jobtracker, metadata, replication, high 
availability. 

1. INTRODUCTION 
The businesses today are facing tremendous challenges due to the 

complex applications and dramatic growth in data volumes. 
Hadoop, an open-source project developed for reliable, scalable, 
distributed computing and storage, has been widely adopted to 
support data intensive distributed applications [1]. More and more 
researchers, developers and users are interested in Hadoop with 
the purpose of building big data ecosystem such as Cloud based 
on it [2]. 

As a platform of computing and storage, availability of Hadoop is 
the foundation of applications’ availability on it. It is necessary to 
keep full-time availability of platform for product environment, or 
else the inestimable loss will be caused. For example, on July 21, 
2008, Amazon S3 stopped working for nearly eight hours, thus 
thousands of online stores using S3 service were down for hours 
too. This accident led to a great loss of revenues, and damaged 
reputations to S3 users [3]. 

Hadoop has tried some methods to enhance the availability of 
applications running on it, e.g. maintaining multiple replicas of 
application data and redeploying application tasks based on 
failures, but it doesn’t provide high availability for itself. In the 
architecture of Hadoop, there exists SPOF (Single Point of 
Failure), which means the whole system gives up and becomes 
out of work caused by the failure of critical node where only a 
single copy is kept. SPOF of Hadoop thus is a huge threat to the 
availability of Hadoop. 

To provide high availability for Hadoop, there are several 
challenges as follows. 

(1) SPOF identification. Namenode and jobtracker are SPOF in 
Hadoop, and how to identify the critical component and state 
information more exactly to remove these SPOF is not an 
easy job. 

(2) Low overhead. Achieve high availability needs additional 
time cost for runtime synchronization among different nodes, 
so a performance optimized solution for implementing high 
availability is necessary. 

(3) Flexible configuration. To implement high availability for 
Hadoop, many configurable options should be considered to 
meet performance requirements of different workloads in 
different execution environments (e.g. network bandwidth 
and latency). 
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This paper analyzes the SPOF existing in critical nodes of 
Hadoop and proposes a metadata replication based solution to 
enable Hadoop high availability. The solution involves three 
major phases: in initialization phase, each standby/slave node is 
registered to active/primary node and its initial metadata (such as 
version file, file system image) are caught up with those of 
active/primary node; In replication phase which is the core phase 
of our solution, the runtime metadata (such as outstanding 
operations, lease states) for failover are replicated; in failover 
phase, standby/new elected primary node takes over all 
communications. In our solution, several unique features for 
improving availability of Hadoop are presented, such as online 
reconfigurable synchronization mode and corresponding adaptive 
decision method. 

The rest of this paper is organized as follows. Section 2 
investigates SPOF in Hadoop. Section 3 introduces our solution to 
enable Hadoop high availability. Section 4 evaluates the proposed 
solution. Section 5 includes the related works and section 6 
concludes the whole paper.  

2. SPOF OF HADOOP 
Hadoop provides a distributed file system (HDFS) and a 
framework to run MapReduce application. Both of HDFS and 
MapReduce form the kernel of Hadoop [1, 4]. 

HDFS stores data on the compute nodes, providing very high 
aggregate bandwidth across the cluster. A HDFS installation 
consists of a single namenode as the master node and a number of 
datanodes as the slave nodes. The namenode manages the file 
system namespace and regulates access to files by clients. The 
datanodes are distributed, one datanode per machine in the 
cluster, which manage data blocks attached to the machines where 
they run. The namenode executes the operations on file system 
namespace and maps data blocks to datanodes. The datanodes are 
responsible for serving read and write requests from clients and 
perform block operations upon instructions from namenode. 

MapReduce is a computational paradigm, which divides the 
execution of application into many small fragments of work. Each 
of the fragments may be executed or re-executed on any machine 
in the cluster. As similar as HDFS, MapReduce also follows the 
architecture of master-slave. In Hadoop, the implementation of 
MapReduce has a single master node called jobtracker and several 
slaves nodes called tasktrackers. The jobtracker receives 
map/reduce jobs from clients, then puts them in a queue of 
pending jobs and schedules them on a first come first served 
basis. The jobtracker manages the assignment of map and reduce 
jobs’ component tasks to tasktrackers. The tasktrackers execute 
tasks upon instructions from the jobtracker and also handle data 
motion between the map phase and the reduce phase. 

According to the design of Hadoop architecture, it is clear that the 
namenode of HDFS and the jobtracker of MapReduce are both 
critical nodes which take very important roles in management of 
Hadoop. But because there is only a single copy of them in 
Hadoop, no matter which node is down, HDFS or MapReduce 
will be out of service immediately. 

The target of our high availability solution is to remove these 
SPOF in Hadoop.  

3. PROPOSED SOLUTION 
In this paper, we propose a metadata (described in section 3.1) 
replication based solution to enable Hadoop high availability. The 
solution consists of three major phases: the first is initialization 
phase which initializes the execution environment of high 
availability; the second is replication phase which replicates 
metadata from critical node to corresponding backup node at 
runtime; and the third is failover phase which resumes the running 
of Hadoop despite the critical node is out of work. 

The execution environment of high availability consists of the 
critical node and one or more nodes used for its backup. Our 
solution supports two types of topology architecture of nodes in 
execution environment: one is active-standby topology which 
consists of one active critical node and one standby node; the 
other is primary-slaves topology which consists of one primary 
critical node and several slave nodes. Within primary-slaves 
topology architecture, all nodes are reachable from others, so that 
slave nodes can communicate with each other for leader election 
described in section 3.4.1. The main difference between standby 
node and slave node is that the slave node takes a portion of read 
requests but the standby node does not, and it has little impact on 
our high availability solution 

Both types of node topology architecture are suitable for medium 
amounts of files but higher volumes of read requests which are 
typical application scenarios of Hadoop. From the standpoint of 
architecture, active-standby topology is much simpler than 
primary-slaves topology, so unless otherwise noted, we take 
primary-slaves topology architectures as the representative in 
order to describe our solution more clearly. 

To reduce performance penalty for replication, our solution only 
replicates metadata which are the most valuable management 
information for failover instead of a complete data copy stored in 
active/primary critical node. Note that all management 
information contained in jobtracker is stored in HDFS persistently 
and the information can be recovered for failover of jobtracker, so 
it is unnecessary to design specific metadata replication 
mechanism for jobtracker. Therefore, unless otherwise noted in 
this paper, we take the namenode as the representative to present 
our solution. 

In the following sections, we present the description of metadata 
at first, and then present detailed information of each phase of our 
solution. 

3.1 Metadata 
Metadata are the most important management information 
replicated for namenode failover. In our solution, the metadata 
include initial metadata which are replicated in initialization 
phase and two types of runtime metadata which are replicated in 
replication phase. 

The initial metadata include two types of files: version file which 
contains the version information of running HDFS and file system 
image (fsimage) file which is a persistent checkpoint of the file 
system. Both files are replicated only once in initialization phase, 
because their replication are time-intensive processes. Slave node 
updates fsimage file based on runtime metadata to make the file 
catch up with that of primary node. 
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The first type of runtime metadata is edit log which records the 
write operations submitted by file system clients. There are eleven 
types of write operations in HDFS, including: add, rename, delete, 
close, make directory, set replication, set permissions, set 
ownership, set generation stamp, update access time and set disk 
quota. Each operation is a piece of edit log. The metadata are 
replicated for tracking the write operations on HDFS fsimage. To 
avoid unbound growth of edit log file content, when the file size 
exceeds a predefined threshold, the standby node will load 
fsimage and edit log into memory and applies each write 
operations recorded by the edit log to update the fsimage file. The 
process is similar to the internal merge process of current 
secondary namenode [4]. 

The second type of runtime metadata is lease state. In HDFS, the 
file can only be written by a single writer in any time and 
namenode provides a lease to authorize a writer during a certain 
time interval [1]. For failover, lease state is valuable for 
guaranteeing operation consistency and should be recovered 
correctly. Lease state stays in memory and consists of the writer, 
file path and update time. A lease monitor takes charge to check if 
the last update time has expired, and the writer sends renew lease 
request periodically. We add a directory in slave node to store 
lease state information and a probe to intercept the renew lease 
request in primary node. When a renew request is received, the 
corresponding change of lease state is recorded by primary node. 
The metadata of lease state is helpful to do more accurate failover. 

HDFS does not persistently store block mapping information, 
which contains the connection between a block and the datanode 
where it is stored. The block mapping information is constructed 
in memory based on the block lists sent by datanodes when they 
join Hadoop cluster and then be updated periodically based on 
block reports from datanodes. In our solution, we also don’t take 
the block mapping information as the metadata, and the 
reconstruction of block mapping for failover is presented in 
section 3.4.2. 

3.2 Initialization 
The main tasks of initialization phase include node registration to 
register slave nodes and initial metadata synchronization to make 
initial metadata consistent between primary node and slave nodes. 

3.2.1 Node registration 
Node registration process makes the primary node know the 
initial states of existing slave nodes. In our solution, the 
registration process involves three major steps showed in Figure 1.  

 
Figure 1. Slave node registration. 

In Figure 1, the registration process begins with a slave node 
sending a registration request that contains the IP address 

information of itself to primary node. When primary node 
receives the request, it registers the slave node by writing the IP 
address information contained in the request into a slave IP 
address table and sends a reply message with the table contents to 
all slave nodes registered in the IP address table of primary node. 
Next, slave nodes receive the reply message from primary node, 
and then they update their local slave IP address table and send 
acknowledgements to primary node. Meanwhile, the primary 
node waits for acknowledgements sent by slave nodes which have 
been registered and checks if all acknowledgements from 
registered slave nodes have been received successfully. If it is 
done without timeout, the registration process is completed; 
otherwise, the primary node has to unregister the node whose 
acknowledgement is not received by removing corresponding IP 
address information from the slave IP address table, and then 
resends the content of updated table to all registered slave nodes. 
The process executes recursively till the whole registration 
process completes. 

This registration process guarantees all of live slave nodes can be 
registered by the primary node during initialization phase. For 
active-standby topology architecture, the registration process is 
very simple, because there have no other nodes need to be 
registered except the standby node. 

3.2.2 Initial metadata synchronization 
When the registration process is completed, the initial metadata of 
slave nodes must be synchronized to catch up with those of 
primary node. 

In our solution, the process of initial metadata synchronization 
involves three steps in sequence: version file checking, fsimage 
file checking and metadata synchronizing. 

Firstly, in the version file checking step, primary node asks slave 
nodes to deliver their version file information and checks if the 
information is consistent to those of primary node, If no, e.g. no 
any name space ID (a unique identifier for the file system) exists 
in the information of slave node or its value is different from the 
name space ID kept in primary node, the slave node will be 
recorded as an inconsistent node by primary node. 

Next, in the fsimage file checking step, primary node checks if 
there has fsimage file information of the slave node is inconsistent 
to primary, e.g. the latest update information of fsimage file. If 
there are any differences between fsimage file information of 
primary node and slave node, the slave node is considered as 
inconsistency, and then primary node will record the slave node 
as an inconsistent node. 

Finally, in the metadata synchronizing step, primary node asks the 
inconsistent slave nodes for their version file or fsimage file to 
refresh the initial metadata stored previously. Primary node sends 
its initial metadata to inconsistent slave nodes and each slave 
node takes the received metadata as the consistent initial metadata.  

This process keeps the consistency between the initial metadata of 
primary node and slave nodes, which provides correct foundation 
for the subsequent operations. 

3.3 Replication 
Replication is the core of our high availability solution, and it 
involves several unique features for Hadoop. The most important 
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Acknowledgement 
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is a flexible data synchronization mode and corresponding 
adaptive online decision method to meet performance 
requirements of different workloads in different execution 
environments. 

In this section, taking the replication between primary node and 
one of slave nodes as an example, we introduce the architecture of 
replication at first, and then present more detailed descriptions of 
configurable synchronization mode.  

3.3.1 Architecture 
The main architecture of replication is presented in Figure 2.  

 
Figure 2. Architecture of replication. 

In Figure 2, primary node and slave node have the same 
configurations of hardware and software. They communicate with 
each other by network. The connection-oriented TCP protocol is 
used in communication to ensure reliable data transfer. 

In primary node, the metadata container component collects 
metadata from client request processing threads. It controls the in-
memory processing (MemWrite), in-disk processing (DiskWrite) 
and commitment of multiple client requests simultaneously. 
Moreover, the metadata container involves an adaptive adjustor 
component (not showed in figure 2) which is one of the most 
important components of our Hadoop high availability solution. 
The adjustor can change synchronization mode (described in 
section 3.3.2) of replication based on runtime adaptive analysis to 
meet performance requirements of different workloads in 
different execution environments (such as network bandwidth and 
latency).  

In slave node, the receiver component puts the received metadata 
to a metadata buffer. The metadata handler component gets 
metadata from metadata buffer and then handles the processing of 
received metadata including MemWrite, DiskWrite. There is an 
adjustor component in slave node too, and it changes 
synchronization mode of replication according to the control 
message sent from primary node. An additional function of this 
adjustor is to adjust the size of metadata buffer based on metadata 
processing performance and network communication speed. 

There are two types of message are transferred from slave node to 
primary node: one is the acknowledgement message of received 
metadata; the other is the heartbeat message to indicate that the 
salve node is still alive. Meanwhile, there are three types of 
message are transferred in opposite direction: the first is the 

acknowledgement message of received heartbeat; the second is 
the metadata to be replicated; and the third is the control message 
to inform slave node change synchronization mode. These 
messages are sent/received by sender/receiver component in 
primary node and slave node.  

3.3.2 Configurable synchronization mode 
Synchronization mode is very critical to improve the performance 
of replication process. One of the most important features of our 
solution is to provide a configurable synchronization mode 
(showed in figure 3) to fit for diverse ranges of workload 
performance requirements and execution environments.  

 
Figure 3. Synchronization mode. 

In Figure 3, Mode (1) commits the client request on primary node 
only after relevant metadata have been written to disk on both 
primary and slave; Mode (2) commits the client request on 
primary node after relevant metadata have been written to disk on 
primary and received into memory on slave; and Mode (3) sends 
metadata before local disk write on primary node and commits the 
client request on primary node after relevant metadata have been 
written to disk on primary and received into memory on slave. 
Mode (1) and (2) guarantee the metadata are stored in primary 
node before they are sent to slave node, and Mode (3) has 
advantage on metadata transfer performance. To keep the 
consistency among nodes, we use a three-phase commit protocol 
with non-blocking capability [5]. 

We choose replication synchronization mode according to 
workload performance and network transfer speed. For a wide 
area network with low bandwidth, Mode (3) is recommended 
because transmission latency overlaps the time cost on metadata 
disk writing of primary. For a local area network with high 
bandwidth, the choice of synchronization mode is most often 
between Mode (1) and (2). Furthermore, the choice of Mode (1) 
or Mode (2) depends on the tradeoff between workload 
performance and synchronization protection. For example, Mode 
(1) has higher performance penalty for waiting for disk writing of 
metadata on slave node and Mode (2) has potential threat caused 
by the failure of slave node stores the metadata into disk.  

In practice, waiting for acknowledgements sent from all slave 
nodes may result in large time overhead. So, to improve 
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performance, the primary node can commit request after it 
receives acknowledgements from a majority of slave nodes. This 
improvement needs some enhancements on synchronization 
modes in figure 3, e.g. assign sequence number for each metadata 
transfer and corresponding acknowledgement to handle the 
overdue acknowledgement which is received by primary node 
after the corresponding request has been committed. 

In our solution, an adaptive method is provided to choose the 
most suitable synchronization mode for replication phase instead 
of a fixed configuration. Within adaptive method, network 
throughput threshold and workload performance threshold are 
configured by users who set the thresholds based on network 
environments and performance requirements. Analysis engine 
collects network throughput information and workload 
performance information at runtime. Meanwhile, the engine 
automatically makes the choice among three types of 
synchronization modes according to an adaptive analysis, i.e. 
collects data with a fixed time period and compares the average 
value of data with the threshold, then decides which mode is the 
best. 

3.4 Failover 
Once slave node has not received the acknowledgement of its 
heartbeat message for a long time which exceeds a predefined 
time interval threshold, the slave node considers that the primary 
node is out of work. Then, a failover process is started and a slave 
will act as the primary node at the end. Two steps for failover are 
leader election and IP address transition. If the active-standby 
topology is used, the former step is not necessary. Note that the 
failover process of namenode is similar to the process of 
jobtracker except that namenode needs an additional lease 
management step and some other delicate difference, such as 
block mapping information reconstruction of HDFS and job 
history recovery of MapReduce, so we give more detailed 
description in this section to the representative failover process of 
namenode.  

3.4.1 Leader election 
Leader election is a process of designating a slave node to take 
the place of primary node, and this process is a negotiation and it 
is handled by slave nodes automatically. 

Within primary-slaves topology architecture, there may be a set of 
slave nodes that join into the competence of new primary node 
when the original primary node is out of work. Our solution 
introduces a node ordering mechanism to help slave nodes resolve 
this conflict. 

In our solution, we order the slave nodes who are new primary 
node candidates by assigning them an increasing sequence 
number and make each slave node keep tracking the most recent 
sequent number it has seen so far. When a slave node believes the 
primary node is out of work and wants to become the primary 
node, it generates a unique sequence number at first. A simple 
method to generate sequence number is as follows: considering 
that there are n slave nodes (this information can be got by 
checking local salve IP address table), assigns each slave node r a 
unique id ir between 0 and n-1, and the slave node r picks the 
smallest sequence number s larger than any it has seen such that s 
mod n = ir. This method guarantees the number unique effectively. 

When sequence number is generated, slave node broadcasts the 
sequence number to all slave nodes in the slave IP address table 
except itself. When a slave node receives the message, it checks 
whether the primary node is out of work or not. If it finds that the 
primary node is still working, the salve node will respond a 
disagreement message to the sender immediately; otherwise, the 
slave node will continue to check if there has seen a higher 
sequence number. If the sequence number in the message is the 
highest, the salve node will reply with an agreement message, or 
else it replies with a disagreement message. 

Next, if the slave node receives a majority of agreement messages 
replied from other slave nodes, the slave is qualified for being the 
primary node, then it sends a confirm message to tell slave nodes 
that it will take the role of primary node and the leader election is 
completed. Otherwise, the slave node has not received enough 
number of agreement messages, and a new round of leader 
election will be launched till a slave node satisfies the conditions 
to complete this election. 

When leader election completes, the new primary node loads 
metadata stored in replication phase into memory for 
reconstructing the latest execution state of the old primary. For 
example, fsimage file is loaded and then each operation recorded 
in edit log is applied. Once the primary has reconstructed a 
consistent in-memory image, it creates new files for recording the 
following metadata. Only at this point, the primary is ready for 
listening requests from other nodes.  

3.4.2 IP address transition 
The namenode of HDFS is accessed through IP address. When the 
leader is elected, the new primary node changes its IP address to 
the IP address of the old primary node, so that it can takes over all 
communications with other nodes, e.g. datanodes, slave nodes. 
Meanwhile, other nodes will not find any change and they can 
access the primary node as directly as ever. 

In our solution, primary node and slave nodes are placed on 
different servers which have own IP address. So, we take the IP 
address of primary node as a parameter and invoke Linux shell 
commands such as ifconfig to modify IP address information of 
the new elected primary node. Furthermore, it is necessary to 
change IP address information in the network configuration file 
directly, because the configuration set by ifconfig command will 
be lost when the machine is restarted. For jobtracker, the new 
primary node needs another modification in its hostname, it can 
be done by using Linux shell command such as hostname and 
modifying corresponding configuration files. 

To speed up the failover process, we use a technique known as 
gratuitous ARP which is an ARP reply when there was no ARP 
request. The new primary node issues a gratuitous ARP reply 
message in order to trigger other nodes on the network to update 
their ARP table and to inform switches of the MAC address of the 
current primary node. 

Within primary-slaves topology architecture, when the IP address 
transition is completed, the new primary node needs to initialize 
the remaining slave nodes again to guarantee the initial metadata 
consistency. According to the entries saved in slave IP address 
table, the new primary node sends a re-register message to the 
slave nodes except itself, and each slave node responds the 

41



message by a registration request. Then, the subsequence process 
is the same as the initialization described in section 3.2. 

For namenode of HDFS, an additional step is reconstructing block 
mapping information in memory based on block lists sent by 
datanodes. For jobtracker of MapReduce, an additional step is 
recovering job management information according to job history 
file stored in HDFS.  

3.4.3 Lease management 
In HDFS, to create or modify a file, client will first contact the 
namenode which will grant it a lease for writing the file. Client 
renews the lease periodically, and namenode checks the states of 
leases throughout the write process of client to look for if there is 
any lease expiration. Lease mechanism prevents a dead client 
from the long term resource holding. 

In our solution, lease management is very important to namenode 
failover. If a client does not exhaust its lease before the primary is 
out of work, remaining time of the lease must be recovered when 
the primary failover is completed. This is necessary to keep 
system operation consistent. We provide a lease management by 
an approach similar as [6], but we need more information to 
support more accurate management. The latest update state of 
lease is recorded by primary namenode and replicated to slave 
nodes as described in section 3.1. When the slave node finds the 
primary is out of work, it records the time as the primary down 
time. When the failover process completes and client contacts 
with the new primary, the new primary will calculate the 
difference between the old primary down time and the latest 
update time of client lease as the elapsed lease time of client and 
check if the elapsed lease time is smaller than a predefined limit 
or not. If yes, the new primary uses the difference between the 
elapsed lease time and the predefined limit as the remaining lease 
time of corresponding client, and the client still has lease to write 
the file in this time interval.  

4. EXPERIMENTS 
Two experiments are used to evaluate the feasibility and 
efficiency of our Hadoop high availability solution: one is to 
measure the failover time for critical node; the other is to measure 
the time overhead induced by runtime replication. Note that we 
take the failover and replication of namenode as the representative 
in the experiments; the corresponding processes of jobtracker are 
very similar to namenode.  

4.1 Experiment Environment 
The HDFS cluster in our experiment consists of 5 PC machines. 
The active-standby topology is used; specifically, there are one 
active namenode, one standby node and three datanodes. 

The active namenode and the standby node are installed in the 
same hardware and software configuration, which is Intel Pentium 
4 CPU 3.2GHz, 1.5G DDR 400MHz memory, 1T disk and SUSE 
Linux Enterprise Server 10.2 with the kernel of version 2.6.12. 
All datanodes have similar hardware and software configuration 
as namenode, except that they have only 1G DDR 400MHz 
memory. All machines are interconnected with 1.0Gbps Ethernet 
network. 

Hadoop 0.20.0 is installed in all machines. Because the number of 
file blocks affects HDFS significantly, to evaluate our solution 
with different storage pressure, multiple file sets are auto-
generated. These files sets contain 5000, 10000, 50000 and 
100000 files respectively. The size of each file is smaller than 
64M, which is the default size of a HDFS data block.  

4.2 Failover Time 
Failover time is a metric to evaluate the performance of failover 
process. The failover process begins at the time when 
active/primary namenode is out of work and ends at the time 
when standby/new elected primary node takes over the original 
active/primary node. 

Generally, the time interval of failover consists of four portions: 
leader election time, IP address transition time, network transfer 
time and block mapping construction time. Among these portions, 
the time of leader election maybe have significantly huge 
fluctuation because there are unpredictable conflicts during the 
election process; the time of IP address transition can be 
neglected because it only costs few time on network configuration 
processing; the time of block mapping construction is related to 
the number of blocks which are reported in block reports sent 
from datanodes. There is no leader election process in our 
experiments environment, so we take the sum of block mapping 
construction time and network transfer time as the failover time. 

To start the experiment, we upload the file set to HDFS cluster at 
first. Each file is stored in a data block and each block has three 
replicas which are distributed to three datanodes. Next, we shut 
down the active namenode by pulling its power cord, then the 
failover process begins to execute till the standby node replaces 
the role of original active namenode. We record the time of block 
mapping construction and network transfer, then compute the 
failover time by averaging the sum of the two values. We repeat 
twenty times of the experiment with each file set and take the 
average as the failover time of HDFS. The experiment results are 
illustrated in figure 4.  
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Figure 4. Failover time cost. 
In figure 4, the time of failover varies from nearly 1 second to 
more than 7 seconds, and increases as the number of blocks 
increases. The other two lines in figure 4 have similar trends, 
because more blocks means more block mapping information to 
be transferred to namenode. 
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Theoretically, the time cost of failover is in direct proportion to 
the size of file sets, but it is not very clear in figure 4. The reason 
is batch processing of block mapping information reduces the 
additional penalty in processing big volume data. 

Within failover time, the proportion of block mapping 
construction time is always much smaller than network transfer 
time, because the process of block mapping construction consists 
of in-memory operations and the structure of each block mapping 
information is simple. Therefore, the network transfer is 
bottleneck of failover process.  

4.3 Replication Time Cost 
Replication time cost is a metric to evaluate the performance 
penalty of high availability solution. In our solution, the 
replication of initial metadata (i.e. fsimage file and version file) is 
executed only once in initialization phase, so it has little impact 
on runtime performance of HDFS. We focus on the time overhead 
of runtime metadata replication which runs concurrently with the 
normal execution of namenode. Because the metadata processing 
of active/primary namenode must be synchronized with the 
standby/slave nodes at runtime, if the penalty of replication 
process is too high, the performance of HDFS will reduced 
dramatically. In our experiments, the synchronization mode (1) 
described in section 3.3.2 is always be chosen by adaptive 

analysis engine, because the network bandwidth is high enough. 
So, the process of metadata processing begins at the time when 
client request is processed in memory of active node and ends at 
the time when the active node receives the acknowledgement 
from standby node. In this metadata processing interval, the time 
consumed by memory writing and disk writing in active 
namenode is also required in normal execution process without 
replication. 

In our experiments, we upload the file set to HDFS cluster at first, 
and then create a new file. Creating a file involves two write 
operations: add and close. Both write operations generate 
metadata to update namespace information stored in namenode. 
Additionally, the add operation requests lease from namenode and 
the close operation returns lease to namenode, therefore 
corresponding lease states are collected as metadata too. All 
metadata are replicated to standby node. We record time cost of 
major steps in replication process includes memory writing and 
disk writing in active namenode and standby node and network 
communication. For comparing metadata processing performance 
between replication process and normal process, we also record 
the time overhead for file creation in HDFS without replication 
process. The normal process has only two steps that are memory 
writing and disk writing in namenode. We repeat fifty times of the 
experiment with each file set and compute the average. The 
experiment results are illustrated in table 1.  

Table 1. Metadata processing performance comparison between replication process and normal process  

Number of 
blocks 

Process 
type 

Mem. write 
in namenode  

(ms) 

Disk write in 
namenode 

(ms) 

Mem. write in 
standby node 

(ms) 

Disk write in 
standby node 

(ms) 

Network 
communication 

(ms) 

Metadata 
processing 

(ms) 
Replication  0.043 1.581 0.351 1.247 3.649 6.871 

5000 
Normal 0.084 2.042 - - - 2.126 

Replication  0.129 1.636 0.431 1.330 3.426 6.952 
10000 

Normal 0.105 2.577 - - - 2.682 

Replication  0.151 2.032 0.505 1.257 3.651 7.596 
50000 

Normal 0.127 2.265 - - - 2.392 

Replication  0.165 1.899 0.529 1.400 3.499 7.492 
100000 

Normal 0.177 2.185 - - - 2.362 
 

In table 1, the metadata processing time overhead of replication 
process is nearly two times longer than that of normal process. 
The most time-intensive step is network communication which 
spends half of whole replication time, so the network 
communication is bottleneck. A suitable synchronization mode is 
helpful to resolve this problem, e.g. use synchronization mode (3) 
described in section 3.3.2. 

The time cost of in-memory processing in standby is always much 
longer than that of active namenode, because it needs message 
parsing to get the metadata when the standby node receives 
packets from network and additional lease information processing 
is time-consuming too. 

According to the results in table 1, the size of file sets stored in 
cluster is irrelevant to the replication time cost. Because only edit 
log entry and lease state record is transferred as the metadata at 

each time, the size of metadata transferred is small and nearly 
invariant.  

5. RELATED WORKS 
High availability is an emerging topic in Hadoop community [2]. 
To our best known, there is no solution to improve the availability 
of Hadoop effectively. 

Hadoop provides a secondary namenode [1, 4], which 
unfortunately does not act as a hot backup daemon for namenode. 
Instead, it is mainly used for periodically merging the metadata 
contained in namenode to prevent the data size from becoming too 
large. 

A subproject of Hadoop, named Zookeeper [7], supports 
replication among a set of servers and provides a coordination 
mechanism for leader election among the servers, but it focuses on 
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providing a coordination service for distributed applications 
instead of a high availability solution. 

ContextWeb experiments a high availability solution of Cloudera 
Hadoop [8]. The solution primarily makes use of DRBD from 
LINBIT and Heartbeat from Linux-HA project, but it is not 
optimized for availability and performance of Hadoop, e.g. several 
unnecessary data have to be replicated. 

Replication plays an important role in our Hadoop high 
availability solution. Although quite a few replication mechanisms 
are available in mission-critical applications especially the 
database applications, these mechanisms are not suitable for 
Hadoop high availability. 

E. Sorensen adds hot standby replication functionality to the 
Apache Derby [9], but it does not support multi-threading to 
deliver replication messages. So, the solution cannot be used for 
parallel processing of large scale data in Hadoop. 

Berkeley DB [10] has a well-defined replication mechanism, but it 
targets at the database management system only. Users have to 
spend a lot of time redesigning the replication framework if they 
would like to use Berkeley DB replication for applications other 
than database. 

MySQL [11] presents several replication solutions used in many 
different environments for a range of purposes, but it cannot 
reconfigure replication process dynamically. Moreover, MySQL 
has no official solution for failover. 

IBM DB2 HADR (High Availability Disaster Recover) [12] is 
capable of adjusting configuration of replication process for better 
performance at runtime. The runtime configuration depends on a 
simulator to estimate the performance of replication happened 
before. It is not an effective approach to tune replication process 
according to the actual execution scenario.  

6. CONCLUSIONS 
Both namenode and jobtracker are critical nodes in Hadoop. In 
this paper, in order to enable Hadoop high availability, we present 
a metadata replication based solution to remove the SPOF of 
namenode and jobtracker. In our solution, when an initialization 
phase consists of standby/slave nodes registration and initial 
metadata synchronization is completed, a replication phase is 
executed at runtime. To reduce performance penalty, we only 
replicate metadata which includes outstanding operations and 
lease states for failover in future. During the failover phase, 
standby/new elected primary node recovers all metadata and takes 
over all communications to resume the execution of Hadoop. 
Different from existing replication technologies of database, our 
solution caters to the specific requirements of Hadoop, e.g. 

provides adaptive method to reconfigure synchronization mode of 
replication at runtime. 

Our experiments illustrate that our solution enable Hadoop high 
availability effectively. Within our experiment environment, it 
took less than 10 seconds for the whole failover process during 
which the new active node recovered metadata for three datanodes 
that each has 100000 data blocks. 

Our future work includes researching more effective adaptive 
algorithms to adjust configuration of replication process (such as 
synchronization mode, metadata buffer size) and testing our 
solution in Hadoop cluster with larger number of datanodes.  
Additionally, we will introduce into Hadoop more high 
availability technologies other than the replication based one. 
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