For k=3, we describe a 4-chromatic UDG that fits within a disk of radius 1/Sqrt[3] + eps for arbitrarily small positive eps. Our construction is a bitquite elaborate and is perhaps the most significant result presented in this report.

We begin with a cycle of n vertices with $n=1(\bmod 3)($ and $n>=7)$; we place the vertices at the corners of a regular polygon centered at the origin in such a way that the cycle winds around the origin ($n-1$)/3 times. It is easily seen that the distance of these vertices from the origin, which we denote r _1, asymptotically approaches 1/Sqrt[3] from above as n rises.

The remainder of our construction is repeated identically for all vertices of the cycle. Thus, for clarity, we describe the construction for one vertex, designated X, which we place at ($0,-\mathrm{r} _1$), i.e. at "six o'clock" in polar-coordinate terms. We designate X^{\prime} 's neighbors (in the cycle, not the polygon) as Y and Z, with Y being slightly anticlockwise of ten o'clock and Z being slightly clockwise of two o'clock. For a given choice of X, all the other vertices that we shall add will be in regions surrounding X, Y and Z whose diameter falls asymptotically to zero as n rises, thus delivering our desired result. Next we add vertex A at unit distance from Z and 0.5 distance from the point that is the middle between Y and Z , oriented so that A is north-east of and close to Y .

Next we add vertex B at unit distance from Y and A, oriented so that B is close to Z.
We add edges $Z A, A B$ and $B Y$.
Next we add vertices \triangle at unit distance from (and, of course, with edges joining it to) X and Z, and B at unit distance from X and Y, oriented so that A is close to Y and B is close to Z. Let the distance of A and B from the origin be r_2; clearly r_2 asymptotically approaches $1 /$ Sqrt[3] from below as n rises.

Now we add vertices P_1,... P_ j, jeven, as a chain between Z and Y (i.e., P _ i is at unit
 defined as follows:
forlodd, P _ i is close to Y, and for leven, P _ i is close to Z
for $1<-i<-j-1$, if $1-0$ or $1(\bmod 4), p$ iis r_1 from the origin, otherwise at r _ 2 from the origin
P jis at a distance r _ 3 from the origin such that $r _1>=r _3>=r 2$.
As shown in Figure $x_{x x}$, the upshot of this is that the P _ichain shuffles in an
anticlockwise direction around the annulus defined by radii $r_{-} 1$ and $r_{2} 2$, in very much
the same manner as the odd cycle within a rectangle of height eps and length 2
described earlier.

Next we add vertices $C_{-} i, 0<=i<-j$, connected to P _ i and P _ $i+1$ and near to X.
Finally, for each $C_{-} i$, we add atwe "Golomb triangles": RSTone for $Y, Z C_{-} i, Y$ and $C Z$ and the other for $C_{-} i, A$ and B. Here, a Golomb triangle for points L, M and N is a six-vertex, six-edge UDG consisting of a unit triangle RST with R,S,T connected to L,M,N respectively (see Figure $x x x$); the name is inspired by the 10-vertex, 4-chromatic graph known as the Golomb graph in which $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are the vertices of an equilateral triangle of edge Sqrt[3]. Depending on the relative locations of L, M, N, there are between zero and 12 possible locations for R, S, T. For present purposes, since the distances $\underline{Y Z} L M A, \underline{Y C L} E N$ and ZCAMN asymptotically approach 1 as n risesare always all close to 1 , it is easy to see that R, S, T can be chosen to lie close to $Z, C, Y M, N, t$
respectively (see figure). We will not take the trouble to name the vertices of our Golomb triangles, because they serve only one purpose for us: in a 3-coloring of the graph LMNNRST, it is not possible for L, M and N to be all the same color.

Now we can start to assign colors to our vertices. In any proper 3-coloring, ssince n is not a multiple of 3 , the ncycle with which we began must have at least one vertex whose neighbors (in the cycle, not the polygon) are the same color. We designate such a vertex to be the vertex X in the construction just described. Without loss of generality we assign X color 1 and both Y and Z color 2; this forces Cboth \wedge and B to be color $\underline{23}$.

Consequently, none of R, S and T can be color 2. Next, notice that all C_i must be color 1 . They cannot becolor 2 , because there is a

Golomb triangle connecting them to Y and Z, and similarly they cannot be color 3, because there is a Golomb triangle connecting them to A and B.

Now we consider the vertices P_i, in increasing order. P_1 is connected to Z (which is color 2) and C_1 (which is color 1), so it must be color 3. Then P_2 is connected to P_1 (which is color 3) and C_2 (which is color 1), so it must be color 2. Continuing, we see that all P _ i with lodd receive color 3 . But $j+1$ is odd, so Y receives color 3, which contradicts our original assignment of color 2 to Y. Thus, our graph is not 3-colorable.

