
# **MATHEMATICS**

#### 10th CLASS-work book



AllaSubbarao, M.Sc, M.phil, B.Ed,

School Assistant(Maths),

Cell No: 8019312341,

9963529677.

#### 1.REAL NUMBERS

#### 1.Concepts

- Rational numbers are numbers which can be written in the form of  $\frac{p}{q}$  (q  $\neq$  0) where p and q are integers.
- Numbers which cannot be expressed in the form of  $\frac{p}{q}$  (q  $\neq$  0) are irrational.
- ❖ The set of rational and irrational numbers together are called real numbers.
- ❖ The Fundamental Theorem of Arithmetic: Every composite number can be expressed (factorized) as a product of primes and this factorization is unique, apart from the order in which the prime factors occur.
- Let  $x = \frac{p}{q}$  (q \neq 0) to be a rational number, such that the primefactorization of 'q' is of the form  $2^m 5^n$ , where m, n are non-negative integers. Then x has a decimal expansion which is terminating.
- Let  $x = \frac{p}{q}$  (q  $\neq$  0) be a rational number, such that the prime factorization of q is not of the form  $2^m 5^n$ , where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.
- $\checkmark$   $\sqrt{p}$  is irrational, which p is a prime. A number is called irrational if it cannot be written in the form  $\frac{p}{q}(q \neq 0)$  where p and q are integers and  $q \neq 0$ .
- ❖ Let p be a prime. If p divides a<sup>2</sup>, (where a is a positive integer) then p divides a.
- If  $a^n = x$ , we write it as  $\log_a x = n$  where a and x are positive numbers and  $a \ne 1$ .
- Laws of logarithms

$$1.\log_a xy = \log_a x + \log_a y$$

$$1.\log_a xy = \log_a x + \log_a y$$
$$2.\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$3.\log_a x^m = m \log_a x$$

$$4.\log_a a = 1$$

$$5.\log_a 1 = 0.$$

## 2. Oral questions

| 1. I              | Define rational numb                                    | ers?                             |                                            |               |    |  |
|-------------------|---------------------------------------------------------|----------------------------------|--------------------------------------------|---------------|----|--|
| 2. I              | 2. Define Irrational numbers in two ways with examples? |                                  |                                            |               |    |  |
| 3. S              | 3. State the fundamental theorem of arithmetic?         |                                  |                                            |               |    |  |
| 4. <i>A</i>       | 4. Are all integers also in real numbers? why?          |                                  |                                            |               |    |  |
|                   | _                                                       |                                  |                                            | terminating   | ,  |  |
| J. 1              | iow can you say wild                                    | ther the given ratio             | onal $\frac{p}{q}(q \neq 0)$ ) will have a | i terminating |    |  |
| d                 | lecimal or a non-tern                                   | ninating, repeating              | decimal?                                   |               |    |  |
| 6. I              | Define logarithm?                                       |                                  |                                            |               |    |  |
| 7. S              | State the laws of loga                                  | rithms?                          |                                            |               |    |  |
| 8. I              | s the sum or differen                                   | ce of a rational and             | l an irrational is irrational?             | )             |    |  |
|                   |                                                         |                                  | nd an irrational is irrationa              |               |    |  |
|                   |                                                         |                                  | not be irrational. Give an                 |               |    |  |
| 10.1              | The sum of two man                                      |                                  |                                            | example!      |    |  |
|                   |                                                         | 3.Multiple Cl                    | hoice Questions                            |               |    |  |
| 1.Nu              | umbers which can b                                      | e written in the fo              | orm of $\frac{p}{q}$ (q \neq 0) where p    | and q are     |    |  |
| integ             |                                                         |                                  | Ч                                          | (             | )  |  |
|                   | A) integers                                             | B)rational                       |                                            | D) natural    |    |  |
| 2.Nu              | umbers which canno                                      | t be expressed in th             | the form of $\frac{p}{q}$ (q $\neq$ 0) are | (             | )  |  |
|                   |                                                         | B) rational                      | · ·                                        | D) natural    |    |  |
| 3.W               | hich of the following                                   | g is true?                       |                                            | (             | )  |  |
|                   | A) NCWCZCR                                              | B) WCZCNCR                       | C) RCZCWCN                                 | D)ZCWCR       | CN |  |
| 4.H               | CF(12,15,21) =                                          |                                  |                                            | (             | )  |  |
|                   | A) 2                                                    | B) 3                             | C) 1                                       | D) 5          |    |  |
| 5.LC              | CM(12,18) =                                             |                                  |                                            | (             | )  |  |
|                   | ,                                                       | B)18                             | C) 6                                       | D) 36         |    |  |
| 6. $\frac{1}{12}$ | 6 .<br><del>2</del> 5 <sup>1</sup> S                    | decimal.                         |                                            | (             | )  |  |
|                   | A) terminating                                          |                                  | B) non-terminating, recu                   | ırring        |    |  |
|                   | C) non-terminating                                      | g, non-recurring                 | D)none                                     |               |    |  |
| $7.\frac{10}{81}$ | 0.<br>–1s dec                                           | eimal.                           |                                            | (             | )  |  |
| 0.                | A) terminating                                          |                                  | B) non-terminating, recu                   | ırring        |    |  |
|                   | C) non-terminating                                      | g, non-recurring                 | D)none                                     |               |    |  |
| 8.Le              | et p be a prime. If p d                                 | livides a <sup>2</sup> ,(where a | is a positive integer) then                | p divides(    | )  |  |

C)2a

A) a

B)a<sup>2</sup>

D) $\sqrt{a}$ 

| 9. Which of the following                     | ng is a rational                             |                                    |                          | (                 | )              |
|-----------------------------------------------|----------------------------------------------|------------------------------------|--------------------------|-------------------|----------------|
| A)5- $\sqrt{3}$                               | B) $3\sqrt{2}$                               | C) $\sqrt{2} + \sqrt{3}$           | D)5+                     | $\sqrt{4}$        |                |
| $10.\log_2 512 =$                             |                                              |                                    |                          | (                 | )              |
| A) 8                                          | B) 7                                         | C) 9                               | D) 10                    | )                 |                |
| $11.\log_7 1 =$                               |                                              |                                    |                          | (                 | )              |
| A) 0                                          | B) 1                                         | C) 7                               | D) 8                     |                   |                |
| 12.7x11x13 +13 is                             | a numbe                                      | er.                                |                          | (                 | )              |
| A) composite                                  | B) prime                                     | C) both                            | D) no                    | ne                |                |
| $13.\log_2 2 =$                               |                                              |                                    |                          | (                 | )              |
| A) 0                                          | B) 1                                         | C) 2                               | D) 4                     |                   |                |
| 14.Logarithmic form of                        |                                              |                                    |                          | (                 | )              |
| A) $\log_{49} 7 = 2$                          | B) $\log_7 49 = 2$                           | C) $\log_7 49 = \frac{1}{2}$       | D) lo                    | g <sub>49</sub> 7 | $=\frac{1}{2}$ |
| 15. The exponential form                      | $m 	ext{ of } \log_a \sqrt{x} = b 	ext{ is}$ |                                    |                          | (                 | )              |
| A) $a^x = b$                                  | B) $\sqrt{x^a}$ =b                           | C) $a^b = \sqrt{x}$                | D) <i>a</i> <sup>v</sup> | $^{\prime_{x}}=b$ |                |
| 16. Which of the follow A) 3.131131113.       | •                                            | tional number C) 2.35 D) B         | and $C$ both             | (                 | )              |
| 17.A terminating decim                        |                                              |                                    |                          | (                 | )              |
| Denominator in t                              | -                                            |                                    | ·                        | `                 |                |
| A) $2^{m}3^{n}$ , m, n > 0                    | )                                            | B) $3^{m}5^{n}$ , m, $n > 0$       |                          |                   |                |
| C) $5^n 7^m$ , m, n > 0                       | 0                                            | D) $2^m 5^n$ , m, $n > 0$          |                          |                   |                |
| 18. HCF is always                             |                                              |                                    |                          | (                 | )              |
| A) Multiple of L.                             | .C.M.                                        | B) Factor of L.C.N                 | Л.                       |                   |                |
| C) Divisible by I                             | L.C.M.                                       | D) Aand Cboth                      |                          |                   |                |
| 19. $7 \times 11 \times 13 \times 15 + 15$ is | a                                            |                                    |                          | (                 | )              |
| A) Composite nu                               | ımber                                        | B) Whole number                    | r                        |                   |                |
| C) Prime numbe                                | er                                           | D) None of these                   |                          |                   |                |
| 20. HCF of two number                         | rs is 113, their LCM                         | I is 56952. It one nur             | mber is 904.             | The o             | ther           |
| number is:                                    |                                              |                                    | (                        | )                 |                |
| A) 7719                                       | B) 7119                                      | C) 7791                            | D) 7911                  |                   |                |
| 21.2.13113111311113.                          | is                                           |                                    |                          | (                 | )              |
| A) a rational num                             | nber                                         | B) a non-terminat                  | ing decimal i            | numb              | er             |
| C) an irrational n                            | umber                                        | D) both (A) & (C)                  | )                        |                   |                |
| 22. $\pi$ is                                  |                                              |                                    |                          | (                 | )              |
| A) rational                                   |                                              | B) irrational                      |                          |                   |                |
| C) both (A) & (I                              | 3)                                           | D) neither rational nor irrational |                          |                   |                |

#### 4.HomeAssignment-1(20marks)

1. State the fundamental theorem of arithmetic? 1m 2. Express 156 as a product of its prime factors.? 1m 3. Find the LCM and HCF of 17, 23 and 29 by the prime factorization method.? 2m4. Find the HCF and LCM of 12, 36 and 160, using the prime factorization method? 2m5. State whether  $\frac{6}{15}$  will have a terminating decimal expansion or a non-terminating repeatingdecimal.? 3m 6. State whether  $\frac{35}{50}$  will have a terminating decimal expansion or a non-terminating repeating decimal.? 3m7. Find the LCM and HCF of 192 and 8 and verify that LCM  $\times$  HCF = product of the two numbers.? 4m 8. Show that any number of the form  $4^n$ ,  $n \in \mathbb{N}$  can never end with the digit 0.? 4m 5.Home Assignment-1(20marks) 1. Prove that  $7\sqrt{5}$  is irrational.? 4m 2. Prove that  $\sqrt{3}$  is irrational.? 3m 3. State whether  $\frac{29}{343}$  will have a terminating decimal expansion or a non-terminating repeating decimal.? 2m 4. State whether  $\frac{23}{2^35^2}$  will have a terminating decimal expansion or a non-terminating repeating decimal.? 1m5. Prove that the difference and quotient of  $(3+2\sqrt{3})$  and  $(3-2\sqrt{3})$  are irrational? 1m 6. Show that  $5 - \sqrt{3}$  is irrational.? 2m7. Expand  $\log \frac{343}{125}$ ? 3m 8. Write  $2\log 3 + 3\log 5 - 5\log 2$  as a single logarithm? 4m

#### 1.Concepts

- ➤ Set theory was developed by "George Cantor"
- > Set: A well defined collection of distinct objects is called set.
- > Sets are denoted by higher case alphabets of English, where as elements are denoted by lower case alphabets of English.
- > Sets can be written in the roster form and the set builder form.
- ➤ The symbol for "is belongs to" is "∈" and "is doesn't belongs to" is "∉".
- A set which does not contain any element is called an empty set or a null set, or a void set.
- $\triangleright$  i) $\varphi = \{ \}$  ii)  $\varphi \neq \{ \emptyset \}$
- A set is called a finite set if it is possible to count the number of elements of that set.
- We can say that a set is infinite if it is not finite.
- > The number of elements in a set is called the cardinal number of the set.
- $\triangleright$  The universal set is denoted by " $\mu$ ". The universal set is usually represented by rectangles.
- $\triangleright$  A  $\subset$  B & B  $\subset$  A  $\Leftrightarrow$  A = B
- $\triangleright$  A  $\cap$  B is the set containing only those elements that are common in A & B.
- $\triangleright$  A  $\cup$  B = contains the elements that are either in A or in B or in both.
- $\triangleright$  A  $\cap$  B =  $\varphi$ , then A & B are disjoint sets and n(A  $\cap$  B) = 0
- $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- A & B are disjoint then  $n(A \cup B) = n(A) + n(B)$
- ightharpoonup A-B = {x: x \in A and x \notin B}
- > Every set is a subset of it self
- Null set is subset of every set.
- $\triangleright$  If  $A \subset B, B \subset C$  then  $A \subset C$ .
- $\triangleright$  If A $\subseteq$ B then AUB=B and A $\cap$ B=A.

#### 2. Oral questions

- 1. Define a set?
- 2. What are finite and infinite sets?
- 3. Give an example for null set?
- 4. Is an empty set is finite? Why?
- 5. Define subset?
- 6. Define equal sets?
- 7. Define a cardinal number of a set?
- 8. Draw a Venn diagram for AUB?
- 9. Draw a Venn diagram for A∩B?
- 10.Draw a Venn diagram for A-B?
- 11. The intersection of any two disjoint sets is a null set. Why?
- 12. Give an example for disjoint sets?
- 13. Say the set builder form of AUB, A∩B, A-B?

#### **3. Multiple Choice Questions**

| 1.Which of the followin                                                                                         | Which of the following collection is a set? ( )         |                                                          |                          |       |         |          |       |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------|-------|---------|----------|-------|
| <ul><li>A. All good stude</li><li>B. Ten most taler</li></ul>                                                   | •                                                       | ass                                                      | C.all boys<br>D.a team o | -     |         | batsmen  | -     |
| 2. The elements of $G = a$                                                                                      | ll the factors                                          | of 20.                                                   |                          |       |         | (        | )     |
| A.{1,2,4,5,10,20}                                                                                               | A.{1,2,4,5,10,20} B.{1,2,3,4,5,8,10,20} C.{10,20,30,40} |                                                          |                          |       |         | 0.{0,20} |       |
| 3. The elements of $S=\{x\}$                                                                                    | xx is a letter i                                        | n the w                                                  | ord "RAM                 | ANUJA | N"}     | (        | )     |
| $A.\{R,A,M,U,J,N\}$ $B.\{R,A,M,A,N,U,J,A,N\}$ $C.\{R,M,N,J\}$ $D.\{R,A,M,N,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L$ |                                                         |                                                          |                          |       |         |          | ,N,J} |
| 4.A is the set of factors 12.Which one of the following is not a member of A ( )                                |                                                         |                                                          |                          |       |         |          | )     |
| A.1                                                                                                             | B.4                                                     |                                                          | C.5                      |       | D.12    |          |       |
| 5.Match the roster forms with set builder form (                                                                |                                                         |                                                          |                          |       |         | )        |       |
| 1.{P,R,I,N,C,A,L                                                                                                | }                                                       | a. {x:x is a divisor of 18}                              |                          |       |         |          |       |
| 2.{0}                                                                                                           |                                                         | b. $\{x:x \in Z, x^2-9=0\}$<br>c. $\{x:x \in Z, x+1=1\}$ |                          |       |         |          |       |
| 3.{1,2,3,6,9,18}                                                                                                |                                                         |                                                          |                          |       |         |          |       |
| 4.{3,-3}                                                                                                        |                                                         | <pre>d.{x: x is a letter of word "PRINCIPAL"}</pre>      |                          |       |         |          |       |
| A.a,b,c,d                                                                                                       | B.d,c,a,b                                               |                                                          | C.d,c,b,a                |       | D.b,c,d | a,       |       |
| 6. Empty set is denoted                                                                                         | by                                                      |                                                          |                          |       |         | (        | )     |
| $A.\emptyset$                                                                                                   | B.{ }                                                   |                                                          | C. Øor{                  | }     | D.{0}   |          |       |
| 7. $n(\emptyset) =$                                                                                             |                                                         |                                                          |                          |       |         | (        | )     |
| A.1                                                                                                             | B. Ø                                                    |                                                          | C.0                      |       | D.infin | ite      |       |

| 8. Which of the following                   | ng is nota empty se        | et?                       |                      | (            | )    |
|---------------------------------------------|----------------------------|---------------------------|----------------------|--------------|------|
| A.Set of all natura                         | al numbers < 1             | B.Set of even prir        | ne numbers           | `            |      |
|                                             |                            | ainder zero, when d       |                      |              |      |
| D.Set of integers                           | which lies between         | 2 and 3.                  | •                    |              |      |
| 9. Which of the following                   | ng set is infinite?        |                           |                      | (            | )    |
| A.Set of all natura                         | al numbers < 10            | B.Set of prime nu         | umbers< 10           |              |      |
| C.Set of all intege                         | ers < 10 D.Se              | et of all factors of 10   | ).                   |              |      |
| 10.The universal set is                     | denoted by                 |                           |                      | (            | )    |
| A. Ø                                        | $\mathrm{B}.\mu$           | C.O                       | D.A                  |              |      |
| 11. Which is not true?                      |                            |                           |                      | (            | )    |
| A.N⊂ W                                      | B.Z⊂Q                      | $C.Q \subset Q^1$         | $D.Q^1 \subset R$    |              |      |
| 12. Which is a subset of                    | every set?                 |                           |                      | (            | )    |
| A. Ø                                        | $\mathrm{B}.\mu$           | C.{O}                     | D.NONE               |              |      |
| 13.If $A \subset B$ and $B \subset A$       | then                       |                           |                      | (            | )    |
| $A.A \neq B$                                | $B. A = \emptyset$         | $C.B = \emptyset$         | D.A = B              |              |      |
| 14. Which of the following                  | ng are true?               |                           |                      | (            | )    |
| $A.\{ \} = \emptyset$                       | $\mathbf{B}.\ \emptyset=0$ | $C. 0 = \{0\}$            | D. $\emptyset = \mu$ |              |      |
| 15.A = { Quadrilaterals following are true? | $B = \{Square, rec$        | tangle,trapezium, rh      | ombus}. Wh           | nich of<br>( | the  |
| A.A⊂ B                                      | $B.B \subset A$            | C.A = B                   | D.none               |              |      |
| 16.Let $A = \{a,b,c,d\}$ . He               | ow many subsets de         | oes the set A have?       |                      | (            | )    |
| A.5                                         | B.6                        | C.16                      | D.64                 |              |      |
| 17.P is a set of factors o                  | f 5, Q is a set of fac     | ctors of 25,R is a se     | t of factors of      | of 125       |      |
| Which of the following                      | are false?                 |                           |                      | (            | )    |
| A.P⊂ Q                                      | B.Q⊂R                      | C.R⊂P                     | D.P⊂R                |              |      |
| 18.If $A \subset B$ and $B \subset C$       | then                       |                           |                      | (            | )    |
| $A.A \subset C$                             | $B.C \subset A$            | C.A = C                   | D.none               |              |      |
| 19. Which of the following                  | ng are false given         | that $A = \{1,2,3,4\}.$   |                      | (            | )    |
| A.2∈ A                                      | B.2∉ {1,2,3,4}             | $C.A \subset \{1,2,3,4\}$ | D.{2,3,4}c           | ={1,2,3      | 3,4} |
| 20.A and B are disjoint                     | sets then $A \cap B =$     |                           |                      | (            | )    |
| A.A                                         | B.B                        | C. Ø                      | D. μ                 |              |      |
| 21.If $A = \{1,2,3,4\} B =$                 | $\{2,4,6,8\}$ then AU      | υB =                      |                      | (            | )    |
| A.{1,2,3,4,5,6,7,8                          | 3}B.{2,4}                  | C.{1,3,6,8}               | D.{1,3}              |              |      |

22.Let  $A = \{1,3,7,8\}$   $B = \{2,4,7,9\}$  then  $A \cap B =$ )  $D.\{2,4,9\}$ A.{1,2,3,4,6,7,8} B.{7} C.{1,3,8} 23.If  $A = \{6,9,11\}$  then  $A \cup \emptyset =$ ) C. *µ* A.A B. Ø D.none 24.If  $A = \{2,3,5\}$  then  $A \cap \emptyset =$ ) C. *µ* A.A B. Ø D.none 25.Let  $A = \{1,2,3,4,5\}$   $B = \{4,5,6,7\}$  then A - B =)  $C.\{1,2,3\}$ A.{1,2,3,4,5,6,7,} B.{4,5}  $D.\{6,7\}$ 26. Which of the following are false? ) A.AUB=BUA B.A∩B=B∩A C.A-B=B-A $D.A \cup \emptyset = A$ 27.Let  $A = \{1,2,3,4\}$   $B = \{2,4,6,8,\}$  then  $(A \cup B) - (A \cap B) =$ ) A.{1,2,3,4,6,8} B.{2,4} C.{1,3,6,8} D.{1,6,8}  $28.n(A) = 5,n(B) = 5,n(A \cap B) = 2 \text{ then } n(A \cup B) =$ ) A.12 B.8 C.5 D.2 29..If A⊂ B then A∪B = ( ) A.A B.BC. Ø  $D. \mu$ 30..If A⊂ B then A∩B = ) B.B C. Ø A.A D.  $\mu$ 

#### 4.HomeAssignment-1(20marks)

| 1. Write $A = \{x: x \text{ is natural number less than 6} \}$ in roster form?                  | 1m |  |  |  |
|-------------------------------------------------------------------------------------------------|----|--|--|--|
| 2. Write $P = \{5,25,125,625\}$ in the set builder form?                                        | 1m |  |  |  |
| 3. Show that the sets A and B are equal, where $A = \{x: x \text{ is a letter in the word "}\}$ |    |  |  |  |
| "ASSASINATION"}, $B = \{x: x \text{ is a letter in the word "station"}\}.$                      | 2m |  |  |  |
| 4.If $A = \{a,b,c,d\}$ . Write all subsets of A?                                                | 2m |  |  |  |
| 5.Illustrate AUB in venn diagram where $A = \{1,2,3,4\}, B = \{2,4,6,8\}$ ?                     | 3m |  |  |  |
| 6.Illustrate $A \cap B$ in venn diagram where $A = \{1,2,3\}, B = \{3,4,5\}$ ?                  | 3m |  |  |  |
| 7.If $A = \{1,2,3,4,5\}$ , $B = \{4,5,6,7\}$ then find $A-B,B-A$ . Are they equal?              | 4m |  |  |  |
| 8.Let $A = \{2.4, 6.8, 10\}$ $B = \{3.6, 9, 12, 15\}$ then find( $A \cup B$ )- ( $A \cap B$ )?  | 4m |  |  |  |

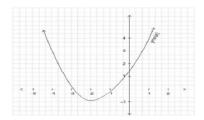
#### 3.POLYNOMIALS

#### 1.Concepts

- Let x be a variable, n be a positive integer and  $a_0$ ,  $a_1$ ,  $a_2$ , .....,  $a_n$  be constants. Then  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$  is called a polynomial in variable x.
- The exponent of the highest degree term in a polynomial is known as its *degree*.

| • D | egree | Name of Polynomial         | Form of the Polynomial                  |
|-----|-------|----------------------------|-----------------------------------------|
|     | 0     | <b>Constant Polynomial</b> | f(x) = a, a is constant                 |
|     | 1     | Linear Polynomial          | $f(x) = ax + b, a \neq 0$               |
|     | 2     | Quadratic Polynomial       | $f(x) = ax^2 + bx + c; a \neq 0$        |
|     | 3     | Cubic Polynomial           | $f(x) = ax^3 + bx^2 + cx + d; a \neq 0$ |

- If f(x) is a polynomial and kis any real number, then the real number obtained by replacing x by kin f(x) at x = kand is denoted by f(k).
- A real number kis a zero of a polynomial f(x), if f(k) = 0.
- A polynomial of degree n can have at most n real zeroes.
- Geometrically, the zeroes of a polynomial f(x) are the x-coordinates of the points where the graph y = f(x) intersects x-axis.
- For any quadratic polynomial  $ax^2 + bx + c = 0$ ,  $a \ne 0$ , the graph of the corresponding equation  $y = ax^2 + bx + c$  has one of the two shapes either open upwards like Uor downwards like  $\cap$ , depending on whether a > 0 or a < 0. These curves are called *Parabolas*.
- If  $\alpha$  and  $\beta$  are the zeroes of a quadratic polynomial  $f(x) = ax^2 + bx + c$ ,  $a \ne 0$  then  $\alpha + \beta = \frac{coeffiecent\ of\ x}{coeffiecent\ of\ x^2} = \frac{-b}{a}$  and  $\alpha\beta = \frac{constant}{coeffiecent\ of\ x^2} = \frac{c}{a}$
- If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the zeroes of a cubic polynomial  $f(x) = ax^3 + bx^2 + cx + d$ ,  $a \ne 0$  then  $\alpha + \beta + \gamma = \frac{coeffiecent\ of\ x^2}{coeffiecent\ of\ x^3} = \frac{-b}{a}$  and  $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{coeffiecent\ of\ x}{coeffiecent\ of\ x^3} = \frac{c}{a}$   $\alpha\beta\gamma = \frac{-constant}{coeffiecent\ of\ x^2} = -\frac{d}{a}$
- **Division Algorithm**: If f(x) is a polynomial and g(x) is a non-zero polynomial, then there exist two polynomials q(x) and r(x) such that f(x) = g(x)xq(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).


## 2. Multiple choice questions

| 1.Areal no. k is a zero of the polyno                               | mial f(x) if                            |                                               | (      | )   |
|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|--------|-----|
| (a) $f(k) > 0$ (b) $f(k) = 0$                                       | (c) f(k) < 0                            | (d) none                                      |        |     |
| 2. The zero's of a polynomial $f(x)$ as                             | re the coordinates of th                | e points where the                            | e      |     |
| graph of $y = f(x)$ intersects                                      |                                         |                                               | (      | )   |
| (a) $x$ -axis (b) $y$ -axis                                         | (c) origin                              | (d) (x, y)                                    |        |     |
| 3. If k is 0 zero of $f(x)$ then is                                 | one of the factors of f(x               | (x)                                           | (      | )   |
| (a) $(x - k)$ (b) $(x - 2k)$                                        | (c) (x + k)                             | (d) (2x - k)                                  |        |     |
| 4. If $(y - a)$ is factor of $f(y)$ then                            | is a zero of $f(y)$                     |                                               | (      | )   |
| (a) $y$ (b) $a$                                                     | (c)2a                                   | (d) 2 <i>y</i>                                |        |     |
| 5. Which of the following is not cor                                | rect for: A quadratic p                 | oolynomial may h                              | ave    |     |
| (a) no real zeros                                                   | (b) two equal real z                    | eros                                          | (      | )   |
| (c) two distinct zeros                                              | (d) three real zeros.                   |                                               |        |     |
| 6. Cubic polynomial $x = f(y)$ cuts y-axis at almost                |                                         |                                               |        |     |
| (a) one point (b) two points                                        | (c) three points                        | (d) four points                               |        |     |
| 7. Polynomial $x^2 + 1$ has zeros                                   |                                         |                                               | (      | )   |
| (a) only one real                                                   | (b) no real                             |                                               |        |     |
| (c) only two real (d) one real and theother non-real.               |                                         |                                               |        |     |
| 8. If $\alpha$ , $\beta$ are the zeros of the polynomials $\beta$ . | omials $f(x) = x^2 + x + 1$             | 1 then $\frac{1}{\alpha} + \frac{1}{\beta} =$ | (      | )   |
| (a) 1 (b) $-1$                                                      | (c) 0                                   | (d) none                                      |        |     |
| 9. If one of the zero of the polynom                                | ial $g(x) = (k^2 + 4) x^2 +$            | 13x + 4k isrecipro                            | cal of | the |
| other then $k = \underline{\hspace{1cm}}$                           |                                         |                                               | (      | )   |
| (a) $2$ (b) $-2$                                                    | (c) 1                                   | (d) - 1                                       |        |     |
| 10. If 2 is a zero of both the polynomial                           | $mial, 3x^2 + ax - 14 and$              | 12x - b then $a - 2a$                         | b =    | _   |
| (a) $-2$ (b) $7$                                                    | (c) - 8                                 | (d) -7                                        | (      | )   |
| 11. If zeros of the polynomial $ax^2$ +                             | bx+c are reciprocal o                   | f each other then                             | (      | )   |
| (a) $a = c$ (b) $a = b$                                             | (c) $b = c$                             | (d) a = -c                                    |        |     |
| 12. The zeros of the polynomial $h(x)$                              | $(x^2 - x - 6)$ and $(x^2 - x - 6)$ are | re                                            | (      | )   |
| (a) $-2$ , 3, 5 (b) $-2$ , $-3$ , $-5$                              |                                         |                                               |        |     |
| 13. Graph of $y = ax^2 + bx + c$ interse                            | cts x-axis at 2 distinct                | points if                                     | (      | )   |
| (a) $b^2 - 4ac > 0$ (b) $b^2 - 4ac < 0$                             |                                         |                                               |        |     |
| 14. Which of the following is polyn                                 | omial?                                  |                                               | (      | )   |
| (a) $x^2 - 6\sqrt{x} + 2$ (b) $\sqrt{x} + \frac{1}{\sqrt{x}}$       | $(c)\frac{5}{x^{2+3x+1}}$ (d) not       | ne of these                                   |        |     |
| 15. Polynomial $2x^4 + 3x^3 - 5x^2 + 9x$                            | +1is a                                  |                                               | (      | )   |
| (a) Linear polynomial                                               | (b) quadratic polyne                    | omial                                         |        |     |
| (c) cubic polynomial                                                | (d) Biquadratic polynomial              |                                               |        |     |

#### 3.Oral questions

- 1. Give an example for linear polynomial?
- 2. Give an example for quadratic polynomial?
- 3. Give an example for cubic polynomial?
- 4. Say the general form of a first degree polynomial in one variable x?
- 5. Define zeroes of polynomial?
- 6. If  $p(x) = 5x^7 6x^5 + 7x 6$  then coefficient of  $x^5$ ?
- 7. If  $p(x) = 5x^7 6x^5 + 7x 6$  then degree of p(x)?
- 8. Say the polynomial that has 2 zeroes?
- 9. Say the polynomial that has 1 zero?
- 10. How will you verify if it has only one zero?
- 11. The number of zeroes of (i) 2x+1 (ii)  $x^2-1$  (iii)  $x^3$ ?
- 12. The sum of the zeroes of  $ax^2 + bx + c$ ?
- 13. The product of the zeroes of  $ax^2 + bx + c$ ?
- 14. Say the division algorithm?
- 15. The sum of the zeroes of  $ax^3 + bx^2 + cx + d$ ?
- 16. The product of the zeroes of  $ax^3 + bx^2 + cx + d$ ?

#### 4.HomeAssignment-1(20marks)



- 1. In the graph of a polynomial p(x) is given. Find the zeroes of the polynomial.?
- 2. Write the zeroes of the polynomial  $x^2 x 6$ . ?
- 3. Write a quadratic polynomial, sum of whose zeroes is  $2\sqrt{3}$  and their product is 2. ?
- 4. Find a quadratic polynomial, the sum and product of whose zeroes are given as  $\frac{1}{4}$ ,-1 respectively. ?
- 5. If a andb are the zeros of a given quadratic polynomial  $p(x)=6x^2+x-2$ , find the value of  $\frac{a}{b}+\frac{b}{a}$ ?
- 6. If two zeroes of the polynomial  $x^4+3x^3-20x^2-6x+36$  are 2 and 2 , find the other zeroes of the polynomial. ?
- 7. Find the zeroes of the quadratic polynomial  $6x^2 3 7x$  and verify the relationship between the zeroes and the coefficients. ?
- 8. Obtain all the zeroes of the polynomial  $f(x) = 3x^4 + 6x^3 + 2x^2 + 10x + 5$  if two of its zeroes are  $\sqrt{\frac{5}{3}}$  and  $-\sqrt{\frac{5}{3}}$ ?

#### 4.PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

#### 1.Concepts

- An equation of the form ax + by + c = 0, where a, b, c are real numbers  $(a \ne 0, b \ne 0)$  is called a linear equation in two variables x and y.
- The most general form of a pair of linear equations is :

$$a_1x + b_1y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

Where  $a_1$ ,  $a_2$ ,  $b_1$ ,  $b_2$ ,  $c_1$ ,  $c_2$  are real numbers and  $a_1^2 + b_1^2 \neq 0$ ,  $a_2^2 + b_2^2 \neq 0$ .

- The graph of a pair of linear equations in two variables is represented by two lines;
  - (i) If the lines intersect at a point, the pair of equations is consistent.

The point of intersection gives the unique solution of the equation.

- (ii) If the lines coincide, then there are infinitely many solutions. The pair of equations is dependent. Each point on the line will be a solution.
- (iii) If the lines are parallel, the pair of the linear equations has nosolution. The pair of linear equations is inconsistent.
- If a pair of linear equations is given by  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$ 
  - i.  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$   $\Rightarrow$  the pair of linear equations is consistent. (Unique solution).
  - (ii)  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$   $\Rightarrow$  the pair of linear equations is inconsistent(No solution).
  - (iii)  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$   $\Rightarrow$  the pair of linear equations is dependent and consistent (infinitely many solutions).
- Algebraic methods of solving a pair of linear equations:
  - (i) Substitution method
  - (ii) Elimination Method
  - (iii) Cross multiplication method

## **2.Oral Questions**

| 1. Say the general form of a linear equation in two variations                                                                                                                                                                                                                  | nes?                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| 2. What do we mean by the solution for a pair of linear ed                                                                                                                                                                                                                      | quations?                            |  |  |  |  |
| 3. Whenisthe pair of equations consistent?                                                                                                                                                                                                                                      |                                      |  |  |  |  |
| 4. Say the number of solutions, when the lines intersects?                                                                                                                                                                                                                      | ?                                    |  |  |  |  |
| 5. Say the number of solutions, when the lines coincides?                                                                                                                                                                                                                       |                                      |  |  |  |  |
| 6. When is the pair of equations dependent?                                                                                                                                                                                                                                     |                                      |  |  |  |  |
| 7. Say the number of solutions, when the lines are parallel?                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 8. When is the pair of equations inconsistent?                                                                                                                                                                                                                                  |                                      |  |  |  |  |
| 9. If a pair of linear equations is given by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ , say the conditions for consistent, inconsistent, and dependent?  10. What are Algebraic methods of solving a pair of linear equations:?  *********************************** |                                      |  |  |  |  |
| 3.Multiple Choice Questions                                                                                                                                                                                                                                                     |                                      |  |  |  |  |
| 1. Every linear equation in two variables has solutio                                                                                                                                                                                                                           | $\operatorname{vn}(s)$ .             |  |  |  |  |
| (A) no 		 (B) one 		 (C) two                                                                                                                                                                                                                                                    | (D) infinitely many                  |  |  |  |  |
| $2. \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ is the condition for                                                                                                                                                                                                   | ( )                                  |  |  |  |  |
| (A) intersecting lines (B) parallel lines (C) coincid                                                                                                                                                                                                                           | dent lines (D) none                  |  |  |  |  |
| 3. For a pair to be consistent and dependent the pair mus                                                                                                                                                                                                                       | st have ( )                          |  |  |  |  |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                         | ely many solutions (D) none of these |  |  |  |  |
| 4. Graph of every linear equation in two variables repres                                                                                                                                                                                                                       |                                      |  |  |  |  |
| (A) point (B) straight line (C) curve                                                                                                                                                                                                                                           | (D) triangle                         |  |  |  |  |
| 5. Each point on the graph of pair of two lines is a comm                                                                                                                                                                                                                       |                                      |  |  |  |  |
| (A) Infinitely many solutions (B) only or (C) no solution (D) none or                                                                                                                                                                                                           | ne solution ( )                      |  |  |  |  |
| (D)  Holic o                                                                                                                                                                                                                                                                    | T those                              |  |  |  |  |

| 6. The pair of linear equations $x = y$ and $x + y = 0$ has           |                               |                                           |   | ) |  |  |  |
|-----------------------------------------------------------------------|-------------------------------|-------------------------------------------|---|---|--|--|--|
| (A) no common solution                                                | (B) infinitely man            | y solutions                               |   |   |  |  |  |
| (C) unique solution                                                   | (D) none                      |                                           |   |   |  |  |  |
| 7. One of the common solution of $ax + by =$                          | c and y-axis is               | <u> </u>                                  | ( | ) |  |  |  |
| $(A)(0,\frac{c}{b}) \qquad (B)(0,\frac{-c}{b})$                       | $(C)(\frac{c}{b},0)$          | (D) $(0, \frac{b}{c})$                    |   |   |  |  |  |
| 8. For $x = 2$ in $2x - 8y = 12$ the value of y wi                    | ll be                         |                                           | ( | ) |  |  |  |
| (A)-1 $(B)+1$                                                         | (C) 0                         | (D) 2                                     |   |   |  |  |  |
| 9. The pair of linear equations is said to be in                      | nconsistent if they l         | nave                                      | ( | ) |  |  |  |
| (A) only one solution                                                 | (B) no solution               |                                           |   |   |  |  |  |
| (C) infinitely many solutions.                                        | (D) both $a$ and $c$          |                                           |   |   |  |  |  |
| 10. On representing $x = a$ and $y = b$ graphical                     | lly we get                    |                                           | ( | ) |  |  |  |
| (A) parallel lines                                                    | (B) coincident line           | es                                        |   |   |  |  |  |
| (C) intersecting lines at $(a, b)$ (D) intersecting lines at $(b, a)$ |                               |                                           |   |   |  |  |  |
| 12. For $2x + 3y = 4$ , y can be written in terms                     |                               |                                           | ( | ) |  |  |  |
| (A) $y = \frac{4+2x}{3}$ (B) $y = \frac{4-2x}{3}$                     | (C) $x = \frac{4-2y}{3}$      | (D) $x = \frac{4+2y}{3}$                  |   |   |  |  |  |
| 13. The pair of linear equations $x = 2$ and $x = 2$                  | = 5 has                       |                                           | ( | ) |  |  |  |
| (A) no common solution                                                | (B) infinitely man            | y solutions                               |   |   |  |  |  |
| (C) unique solution                                                   | (D) none                      |                                           |   |   |  |  |  |
| 14. The coordinates of the point where <i>x</i> -axis                 | and the line repres           | sented by $\frac{x}{2} + \frac{y}{3} = 1$ |   |   |  |  |  |
| intersect, are                                                        |                               | (                                         | ) |   |  |  |  |
| (A) $(0,3)$ (B) $(3,0)$                                               | (C)(2,0)                      | (D) (0, 2)                                | , |   |  |  |  |
| 15. Graphically $x - 2 = 0$ represents a line                         |                               |                                           | ( | ) |  |  |  |
| (A) parallel to x-axis at a distance 2 un                             | nits from <i>x</i> -axis.     |                                           |   |   |  |  |  |
| (B) parallel to y-axis at a distance 2 un                             | nits from it.                 |                                           |   |   |  |  |  |
| (C) parallel to <i>x</i> -axis at a distance 2 un                     | nits from <i>y</i> -axis.     |                                           |   |   |  |  |  |
| (D) parallel to y-axis at a distance 2 un                             | nits from x-axis              |                                           |   |   |  |  |  |
| 16. Which of the following is not a linear equ                        | uation?                       |                                           | ( | ) |  |  |  |
| (A) $5+4x=y=3$ (B) $x+2y=y-x$                                         | $(C)3-x=y^2+4$                | (D)x+y=0                                  |   |   |  |  |  |
| 17. Which of the following is not a linear equ                        |                               |                                           | ( | ) |  |  |  |
| (A) $2x+1=y-3$ (B) $3t-1=2t=5$                                        | $(C)2x-1=x^2$                 | $(D)x^2-x+1=0$                            |   |   |  |  |  |
| 18. A solution for $2(x+3)=18$ ?                                      |                               |                                           | ( | ) |  |  |  |
| (A) $5$ (B) $6$                                                       | (C) 13                        | (D) 21                                    |   |   |  |  |  |
| 19. The value of x satisfies the equation $2x-(x)$                    |                               | (D) 0 F                                   | ( | ) |  |  |  |
| (A) 4.5 (B) 3                                                         | (C) 2.25                      | (D) 0.5                                   | , |   |  |  |  |
| 20. The equation x-4y=5 has                                           | (D): " : 1                    | 1                                         | ( | ) |  |  |  |
| (A) no solution                                                       | (B) infinitely many solutions |                                           |   |   |  |  |  |
| (C) unique solution                                                   | (D) none                      |                                           |   |   |  |  |  |

#### 4.HomeAssignment-1

- 1. For which values of p does the pair of equations given below have unique solution? 4x + py + 8 = 0, 2x + 2y + 2 = 0
- 2.Two rails are represented by the equations x + 2y 4 = 0 and 2x + 4y 12 = 0. Represent this situation graphically?
- 3. On comparing the ratio  $\frac{a_1}{a_2}$ ,  $\frac{b_1}{b_2}$ ,  $\frac{c_1}{c_2}$  find out whether the lines representing the pair of linear equation intersect at a point, is parallel or coincident: x + 3y = 6, 2x 3y = 12.? 4. Solve graphically: 3x + 2y = 14x, x 4y = 7?
- 5. For which values of k will the following pair of linear equations have no solution? 3x y 5 = 0; 6x 2y k = 0.?
- 6. Solve the following pairs of equations:

(i) 
$$5x + 8y = 9$$
,  $2x + 3y = 4$  (ii)  $2x + 7y = 11$ ,  $3x - y = 5$ 

- 7. Find the value of 'a' so that the point(3,9) lies on the line represented by 2x-3y=5?
- 8. Find the value of k for which x + 2y = 5, 3x+ky+15=0 is inconsistent?
- 9. For what value of k, will the system of equations x+2y=5,3x+ky-15=0 has a unique solution. ?
- 10. 6. A boat goes 30km upstream and 44km downstream in 10 hours. In 13 hours, it can go 40kmupstream and 55km down-stream Determine the speed of the stream and that of the boat in still water.
- 11. The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digit. Find the number.
- 12. The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.
- 13. 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.
- 14. Roohi travels 300km to her home partly by train and partly by bus. She takes 4 hours if she travels 60km by train and the remaining by bus. If she travels 100km by train and theremaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
- 15. Solve the given pair of equations using substitution method?

$$2x-y=5,3x+2y=11$$

16. Solve the given pair of equations using elimination method?

$$3x+2y=11$$
,  $2x+3y=4$ 

17. Solve the given pair of equations by reducing them to a pair of linear equations?

$$\frac{2}{x} + \frac{3}{y} = 13, \frac{5}{x} - \frac{4}{y} = -2$$

18. Aftab tells his daughter. "Seven years age I was 7 times as old as you were then, also 3 years from now I shall be 3 times as old as your will be. Represent the situation algebraically.

#########

#### **5.QUADRATIC EQUATIONS**

#### 1.Concepts

- 1. The general form of a quadratic equation is  $ax^2+bx+c=0$ ,  $a\neq 0$ . a, b and c are real numbers.
- 2.A real number x is said to be a root of the quadratic equation  $ax^2+bx+c=0$  where  $a\neq 0$
- 3. If  $ax^2+bx+c=0$ , The zeroes of the quadratic polynomial  $ax^2+bx+c$ , and the roots of the corresponding quadratic equation  $ax^2+bx+c=0$  are the same.
- 4.Discriminant:- The expression  $b^2$ -4ac is called discriminant of the equation  $ax^2+bx+c=0$  and is usually denoted by D. Thus discriminant  $D=b^2$ -4ac.
- 5. Every quadratic equation has two roots which may be real, co incident or imaginary.
- 6. If  $\alpha$  and  $\beta$  are the roots of the equation  $ax^2+bx+c=0$  then  $\alpha = \frac{-b+\sqrt{b^2-4ac}}{2a}$  and

$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$7.\alpha + \beta = \frac{coefficent\ of\ x}{coefficent\ of\ x^2} = \frac{-b}{a}$$
 and  $\alpha\beta = \frac{constant}{coefficent\ of\ x^2} = \frac{c}{a}$ 

8. Forming quadratic equation, when the roots  $\alpha$  and  $\beta$  are given.

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

- 9.i.If D>0, then roots are real and unequal.
  - ii. D=0, then the equation has equal and real roots.
  - iii. D<0, then the equation has no real roots
- 10.If we can factorize  $ax^2 + bx + c = 0$ ,  $a \ne 0$  in to product of two linear factors, then the roots of the quadratic equation can be found by equating each factors to zero.
- 11.A quadratic equation can also be solved by the method of completing the square.

(i) 
$$a^2 + 2ab + b^2 = (a+b)^2$$

(ii) 
$$a^2 - 2ab + b^2 = (a - b)^2$$

#### **2.Oral Questions**

- 1. The general form of a quadratic equation is ......
- 2. Number of solutions of a quadratic equation are ......
- 3. Discriminant of a quadratic equation  $ax^2 + bx + c = 0$  is ......
- 4. If the roots of a quadratic equation are equal, than discriminant is ......
- 5. The sum of the roots of the quadratic equation  $ax^2 + bx + c = 0$  is ......
- 6. The product of the roots of the quadratic equation  $ax^2 + bx + c = 0$  is.....
- 7. If the quadratic equation  $ax^2 + bx + c = 0$  has a real root, then  $b^2$  4ac must be .......
- 8. If the quadratic equation  $ax^2 + bx + c = 0$  has no real root, then  $b^2$  4ac must be .....
- 9. The quadratic equation whose roots  $\alpha$  and  $\beta$  is......

## 3. Multiple Choice Questions

| 1. The general form of a qu                                               | nadratic equation is $(a \neq a)$                       | 0)                                           |                                                 | (       | ) |  |
|---------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------|---|--|
| (A) $ax^2 + bx + c$ (B) $ax^2$<br>2. Number of solutions of               | · · · · · · · · · · · · · · · · · · ·                   | (D) $ax + b =$                               | 0                                               | (       | ) |  |
| ( )                                                                       | (B) 1                                                   | (C) 2                                        | (D) 3                                           |         |   |  |
| 3. Discriminant of a quadra                                               | _                                                       | _                                            |                                                 | ( )     | ) |  |
| $(A)\sqrt{b^2 - 4ac} \qquad ($                                            | (B) $\sqrt{b^2 + 4ac}$                                  | (C) $b^2 - 4ac$                              | (D) $b^2 + 4ac$                                 |         |   |  |
| 4. Which is a quadratic equ                                               | uation?                                                 |                                              |                                                 | (       | ) |  |
| (A) $x + \frac{1}{x} = 2$ (                                               | (B) $x^2 + 1 = (x+3)^3$                                 | (C) x(x+2)                                   | (D) $x + \frac{1}{x}$                           |         |   |  |
| 5. If the roots of a quadratic equation are 2 and 3, then the equation is |                                                         |                                              |                                                 |         |   |  |
| (A) $x^2 + 5x + 6 = 0$ (                                                  | `a '                                                    | (C) $x^2 - 5x - 6 = 0$                       | (D) $x^2 - 5x +$                                | 6 = 0   |   |  |
| 6. Roots of the equations <i>x</i>                                        |                                                         |                                              |                                                 | ( )     | ) |  |
| (A) $1, -2$                                                               |                                                         | (C)-1,-2                                     | (D) 1, 2                                        |         |   |  |
| 7. If the roots of a quadrati                                             | -                                                       |                                              |                                                 | ( )     | ) |  |
| ( )                                                                       | (B) 0                                                   | (C) greater than 0                           | (D) less than                                   | zero    |   |  |
| 8. If one root of $2x^2 + kx + 1$                                         | $1 = 0$ is $\frac{1}{2}$ then the value of              | S'k' is                                      | (                                               | )       |   |  |
|                                                                           | (B)-3                                                   | (C) 5                                        | (D) -5                                          |         |   |  |
| 9. The sum of the roots of t                                              | the quadratic $5x^2 - 6x + 1$                           | = 0 is                                       | (                                               | )       |   |  |
| $(A)\frac{6}{5}$ (                                                        | $(B) - \frac{6}{5}$                                     | (C) $\frac{1}{5}$                            | (D) $-\frac{1}{5}$                              |         |   |  |
| 10. The product of the roots                                              | s of the quadratic equation                             |                                              |                                                 | (       | ) |  |
| _                                                                         | <b>-</b>                                                | (C) $\frac{7}{2}$                            | (D) $-\frac{7}{2}$                              |         |   |  |
| 11. If the roots of the quad                                              | $\operatorname{lratic}^2 2x^2 + kx + 2 = 0 \text{ are}$ | equal then the valu                          | e of ' $k^{7}$ is                               | (       | ) |  |
| _                                                                         | (B)-4                                                   | <del>.</del>                                 | (D) $\pm 16$                                    | `       |   |  |
| 12.If the sum and product                                                 | of roots of a quadratic ed                              | quation are $-\frac{7}{2}$ and $\frac{5}{2}$ | respectively,                                   |         |   |  |
| then the equation is                                                      |                                                         |                                              |                                                 | (       | ) |  |
| $(A) 2x^2 + 7x + 5 = 0$                                                   | (B) $2x^2 - 7x + 5 = 0$                                 | (C) $2x^2 - 7x - 5 = 0$                      | $0 \text{ (D) } 2x^2 + 7x$                      | c-5=    | 0 |  |
| 13.If a and b are the roots                                               | of the equation $5x^2 - 7x +$                           | -1 = 0, then the value                       | ue of $\frac{1}{\alpha} + \frac{1}{\beta}$ is ( | )       |   |  |
| $(A) 7 \qquad \qquad ($                                                   | (B) 9 (C) 6                                             | (D) 8                                        | и р                                             |         |   |  |
| 14. If the roots of the quad                                              | Iratic equation. $ax^2 + bx +$                          | c = 0 are equal the                          | n                                               | (       | ) |  |
| $(A) b^2 = 4bc \qquad ($                                                  | $(B) a^2 = 4bc$                                         | (C) $c^2 = 4ab$                              | (D) $b^2 = 4ac$                                 | ,       |   |  |
| 15. If the quadratic equation                                             |                                                         |                                              |                                                 | (       | ) |  |
| $(A) \ge 0 $                                                              | $(\mathbf{B}) = 0$                                      | $(C) \le 0$                                  | (D) $> 0$                                       |         |   |  |
| 16. Value of x for $x^2 - 8x + 1$                                         | 5 = 0 is quadratic formu                                | la is                                        |                                                 | (       | ) |  |
| (A) 3,2                                                                   | (B) 5,2                                                 | (C) 5,3                                      | (D) 2,3                                         |         |   |  |
| 17. The quadratic equation                                                | whose root are 3 and -3                                 | is                                           |                                                 | (       | ) |  |
|                                                                           | (B) $x^2 - 3x - 3 = 0$                                  |                                              |                                                 |         |   |  |
| 18. The product of two Cor                                                | nsecutive positive integer                              | rs is 306. Represent                         | ation is quad                                   | ratic   |   |  |
| Equations                                                                 | 2                                                       |                                              | (                                               | )       |   |  |
| (A) $x^2 + x - 306 = 0$                                                   | (B) $x^2 - x + 306 = 0$                                 | (C) $x^2 + 2x - 106 =$                       | $0 (D) x^2 - x -$                               | 306 = 0 | 0 |  |

(A) one (B) two (C) three (D) four 20. Which of the following is a root of the equation  $2x^2 - 5x - 3 = 0$ ? ) (D) x = -3(C) x = 1(A) x = 3(B) x = 4 $21.x = \sqrt{2}$  is a solution of the equation (A)  $x^2 + \sqrt{2}x - 4 = 0$  (B)  $x^2 - \sqrt{2}x - 4 = 0$  (C)  $3x^2 + 5x + 2 = 0$  (D) (A) and (B) both 22. Which of the following equations has 2 as a root? (A)  $x^2 - 4x + 5 = 0$  (B)  $x^2 + 3x - 12 = 0$  (C)  $2x^2 - 7x + 6 = 0$  (D)  $3x^2 - 6x - 2 = 0$ 23. The roots of  $4x^2 + 4\sqrt{3}x + 3 = 0$  are (A) real and equal (B) real and unequal (C) not real (D) none of these (C)  $p^2 - 8q$  (D)  $q^2 - 8p$  nct roots, then (C) k > 4 (D) k < 424. Discriminant of  $x^2 + px + 2q = 0$  is (B)  $p^2 + 8q$ (A) p - 8q25. If the equation  $x^2 + 4x + k = 0$  has real and distinct roots, then ) (A) k < 4(B) k > 4

19. If p(x) = 0 is a quadratic equation, then p(x) is a polynomial of degree

#### **4.HomeAssignment-1**

- 1. Check whether  $(x+1)^2 = 2(x-3)$  is quadratic equation?
- 2. Find the roots of the quadratic equation  $x \frac{1}{3x} = \frac{1}{6}$ ?
- 3. Find the roots of the quadratic equation  $x^2 3x 10 = 0$ ?
- 4. Find the roots of the quadratic equation  $5x^2 6x 2 = 0$  by the method of completing square?
- 5. Find the roots of the quadratic equation  $x^2 + 4x + 5 = 0$  using the quadratic formula?
- 6. Find the discriminant of the quadratic equation  $2x^2 4x + 3 = 0$ ?
- 7. If one root of the equation  $x^2 + 7x + k = 0$  is -2, then find the value of k and the other root.
- 8. For what value of 'k' the equation  $2x^2 + kx + 3 = 0$  has equal roots?
- 9. For what value of 'p', the equation  $3x^2 + px + 3 = 0$  has real roots?
- 10. The product of two consecutive odd integers is 63. Represent this in form of a quadratic equation.?

#### **5.Home Assignment-2**

- 1.A two digit number is such that the product of the digit is 35, when 18 is added to the number, the digits inter change their places. Find the number.?
- 2. Three consecutive positive integers are such that the sum of the square of the first and the product of the other two is 46, find the integers.?
- 3. A motor boat whose speed is 9 km/h in still water goes 12 km down stream and comes back in a total time 3 hours. Find the speed of the stream.?
- 4. A train travels 360 km at uniform speed. If the speed had been 5 km/hrmore it would have taken 1 hour less for the same journey. Find the speed of the train.?
- 5. The hypotenuse of right angled triangle is 6cm more than twice the shortest side. If the third side is 2 cm less than the hypotenuse, find the sides of the triangle.?

)

#### 1.Concepts

- 1. Arithmetic progression (A.P.): An A.P. is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
- 2. This fixed number is called the common difference of the A.P.
- 3. If a is first term and d is common difference in A.P., then the A.P is a, a+d, a+2d, a+3d......
- 4. The n <sup>th</sup> term of an A.P is denoted by  $a_n$  and  $a_n = a+(n-1) d$ , where a = first term and d = common deference.
- 5. Three terms a-d, a, a+d are in A.P with common difference d.
- 6. Four terms a-3d, a-d, a+d, a+3d are with common difference 2d in A.P
- 7. The sum of first n natural number is  $\frac{n(n+1)}{2}$
- 8. The sum of n terms of an A.P with first term a and common difference d is denoted by
- 9.  $S_n = \frac{n}{2} \{ 2a + (n-1) d \}$  also  $\frac{n}{2} (a+1)$  where  $\frac{1}{2} = last$  term.
- $10.a_n = S_n S_{n-1}$  where  $a_n$  the n <sup>th</sup> term of an a.p
- 11.d = common deference=  $a_n$   $a_{n-1}$
- 12. Geometric progression (G.P): G.P. is a list of numbers in which each term is obtained by multiplying a fixed number to the preceding term except the first term.
- 13. This fixed number is called the common ratio of the G.P.
- 14. If a is first term and r is common ratio in G.P., then the G.P is a, ar, ar<sup>2</sup>, ar<sup>3</sup>......
- 15. The n <sup>th</sup> term of G.p is denoted by  $a_n$  and  $a_n = ar^{n-1}$

#### 2.Oral Questions

- 1. What is an arithmetic progression?
- 2. Give an example for an A.P.?
- 3. What is the general term of an A.P.?
- 4. Say the sum of first n natural numbers?
- 5. Say the sum of first n numbers in A.P.?
- 6. What is an Geometric progression?
- 7. Give an example for an G.P.?
- 8. What is the general term of an G.P.?

## **3. Multiple Choice Questions**

| 1. Three numbers in A.P. have sum 24. The middle term is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (              | )     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) 2           |       |
| 2. If <i>n</i> th term of an A.P. is $2n + 7$ , then 7th term of the A.P. is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (              | )     |
| (A) 15 (B) 21 (C) 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) 25          |       |
| 3. If <i>n</i> th term of the A.P. 4, 7, 10, is 82, then the value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n is $($       | )     |
| (A) 29 (B) 27 (C) 30 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D) 26          |       |
| 4. If a, b and c are in A.P. then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (              | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) $a=b+c$     |       |
| 5. 12th term of the A.P. $x - 7$ , $x - 2$ , $x + 3$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (              | )     |
| (A) $x + 62$ (B) $x - 48$ (C) $x + 48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D) $x - 62$    |       |
| 6. <i>n</i> th term of the A.P. –5, –2, 1, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (              | )     |
| (A) $3n + 5$ (B) $8 - 3n$ (C) $8n - 5$ (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /              |       |
| 7. If <i>n</i> th term of an A.P. is $5 - 3n$ , then common difference of the A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P. is (        | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) 3           |       |
| 8. If 5, $2k-3$ , 9 are in A.P., then the value of 'k' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (              | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) –5          |       |
| 9. Sum of first 10 natural numbers is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (              | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) 65          |       |
| 10.9th term from the end of the A.P. 7, 11, 15, 147 is (A) 135 (B) 125 (C) 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (              | )     |
| (A) 135 (B) 125 (C) 115 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D) 110         |       |
| 11. The sum of 3 numbers in A.P. is 30. If the greatest number is 13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then (         | )     |
| its common difference is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |       |
| (A)4 $(B) 3$ $(C)2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D) 5           |       |
| 12. The sum of 6th and 7th terms of an A.P. is 39 and common different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ence is 3, the | n the |
| first term of the A.P. is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (              | )     |
| (A) 2 (B) $-3$ (C) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) 3           |       |
| 13.2,, 26 the missing term in AP is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (              | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) 18          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |       |
| 14. The common difference of the A.P. 3, $1, -1, -3$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (              | )     |
| (A) $-2$ (B) 2 (C) $-1$ (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D) 3           |       |
| 15. The general form of an A.P. is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (              | )     |
| (A) $a, a-d, a-2d, a-3d,$ (B) $a, a+d, a+2d, a+2d$ | a + 3d,        |       |
| (C) $a$ , $2d$ , $3d$ , $4d$ , (D) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |       |
| 16. The common difference of the A.P. 8, 11, 14, 17, 20, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( )            |       |
| (A) 2 (B) $-2$ (C) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D)-3           |       |
| 17.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,              | `     |
| 17. The sum of first 5 multiples of 3 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (              | )     |
| (A) $45$ (B) $55$ (C) $65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D) 75          |       |
| 18. The sum of first <i>n</i> natural numbers is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (              | )     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 1)           | ,     |
| (A) $n^2$ (B) $\frac{n(n+1)}{2}$ (C) $\frac{n(n-1)}{2}$ (D)n(n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۲J             |       |

| 19.Whic                              | h of the following a                            | re not G.P.?          |                                      |                   | ( | ) |
|--------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------|-------------------|---|---|
|                                      | (A)6,12,24,48,<br>(C)1,-1,1,-1                  |                       | (B) 1,4,9,16,<br>(D) -4,-20,-100,-50 |                   |   |   |
| 20.The c                             | ommon ratio of 25,                              |                       | (D) -4,-20,-100,-3                   | 00                | ( | ) |
|                                      | (A) -5                                          |                       | (C) -1/5                             | (D) 1/5           |   | , |
| 21.The n                             | th term of G.p                                  |                       |                                      |                   | ( | ) |
|                                      | $(A) ar^{n-1}$                                  | (B) ar <sup>n+1</sup> | (C) $r^{n-1}$                        | (D) $r^{n+1}$     |   |   |
| 22.The n                             | th term of G.p 5,2                              | 5,125,                |                                      |                   | ( | ) |
|                                      | (A) $5^{n-1}$                                   | (B) $5^{n+1}$         | (C) 5 <sup>n</sup>                   | (D) 5             |   |   |
| 23.g <sub>1</sub> ,g <sub>2</sub> ,g | g <sub>3</sub> are three terms be               | etween in a and b th  | en ab =                              |                   | ( | ) |
|                                      | (A) $g_2^2$                                     | (B) $g_1g_3$          | (C) both A,B                         | (D) none          |   |   |
| 24.If K <sup>a</sup> ,F              | K <sup>b</sup> , K <sup>c</sup> are in G.P., tl | hen a,b,c are in      |                                      |                   | ( | ) |
|                                      | (A) AP                                          | (B) GP                | (C) both A,B                         | (D) none          |   |   |
| 25.Ifa,b,c                           | are in GP then b =                              |                       |                                      | (                 | ) |   |
|                                      | $(A)^{\frac{a+c}{2}}$                           | (B) ac                | (C) $\sqrt{ac}$                      | (D) $\frac{a}{c}$ |   |   |
|                                      |                                                 |                       |                                      |                   |   |   |

#### 4.HomeAssignment-1

- 1. The p<sup>th</sup> term of an AP is q and q<sup>th</sup> term is p. Find its  $(p+q)^{th}$  term.?
- 2. If m times the m<sup>th</sup> term of an A.P is equal to n times its n<sup>th</sup> term, Show that the  $(m+n)^{th}$ term of the AP is zero.?
- 3. Which is the next term of the AP  $\sqrt{2}$ ,  $\sqrt{8}$ ,  $\sqrt{18}$ ,  $\sqrt{32}$ ,......
- 4. If the sum of three numbers in AP, be 24 and their product is 440, find the numbers?
- 5. If  $a^2$ ,  $b^2$ ,  $c^2$  are in A.P then prove that  $\frac{1}{b+c}$ ,  $\frac{1}{c+a}$ ,  $\frac{1}{a+b}$  are in A.P?

#### **5.HomeAssignment-2**

- 1. Determine the 12th term of a G.P. whose 8th term is 192 and common ratio is 2?
- 2. If a, b, c are 3 consecutive terms of an A.P., then prove that  $k^a$ ,  $k^b$ ,  $k^c$  are 3 consecutive terms of a G.P., where k is positive.?
- 3. If  $\frac{-2}{7}$ , x,  $\frac{-7}{2}$  are in GP, then find x?
- 4. Find x so that x, x+2, x+6 are consecutive terms of a GP?
- 5. Which term of the GP  $2,2\sqrt{2},4$ , ..... is 128?

#### 7.COORDINATE GEOMETRY

#### 1.Concepts

- ✓ In the rectangular coordinate system, two numberlines are drawn at right angles to each other. The point of intersection of these two number lines is called the **origin** whose coordinates are taken as (0, 0). The horizontal number line is known as the *x*-axis and the vertical one as the *y*-axis.
- ✓ In the ordered pair (p, q), p is called the **x-coordinate**or **abscissa** and q is known as **y coordinate** or **the point**.
- ✓ The distance between any two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  is given by  $PQ = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- ✓ If O(0, 0) is the origin and P(x, y) is any point, then from the above formula, we have  $OP = \sqrt{x^2 + y^2}$
- ✓ The distance between any two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  on a line parallel to Y-axis is  $|y_2 y_1|$
- ✓ The distance between any two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  on a line parallel to X-axis is  $|x_2 x_1|$
- ✓ The coordinates of the point P(x, y) which divides the line segment joining A(x<sub>1</sub>, y<sub>1</sub>) and B(x<sub>2</sub>, y<sub>2</sub>) internally in the ratio m: n, are given by  $(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})$
- ✓ The coordinates of the point P(x, y) which divides the line segment joining A(x<sub>1</sub>, y<sub>1</sub>) and B(x<sub>2</sub>, y<sub>2</sub>) externally in the ratio m: n, are given by  $(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n})$
- ✓ The coordinates of the mid-point M of a line segment AB with end points A( $x_1$ ,  $y_1$ ) and B( $x_2$ ,  $y_2$ ) are  $(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2})$
- ✓ The point of intersection of the medians of a triangle is called its *centroid*.
- ✓ The coordinates of the centroid of the triangle whose vertices are  $(x_1, y_1)$ ,  $(x_2, y_2)$  and  $(x_3, y_3)$  are given by  $(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$
- ✓ The area of a DABC with vertices A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) is given by area  $(\Delta ABC) = \frac{1}{3} |x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)|$
- ✓ Three given points A( $x_1, y_1$ ), B( $x_2, y_2$ ) and C( $x_3, y_3$ ), are collinear if  $\Delta = 0$  or  $\frac{1}{2}|x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)| = 0$
- ✓ Area of a triangle formula "Heron's Formula"  $A = \sqrt{s(s-a)(s-b)(s-c)}$ , where  $S = \frac{a+b+c}{2}$ , a,b,c are three sides of ΔABC.
- ✓ Slope of line containing the points  $(x_1, y_1)$ ,  $(x_2, y_2)$  is  $m = \frac{y_2 y_1}{x_2 x_1}$

## **2.Oral Questions**

| 1. | The distance between two points $(x_1, y_1, y_2, \dots, y_n)$ | $(y_1)$ and $(x_2, y_2)$ is |                                           |             |         |  |  |
|----|---------------------------------------------------------------|-----------------------------|-------------------------------------------|-------------|---------|--|--|
| 2. | 2. The distance of a point (x,y) from the origin is           |                             |                                           |             |         |  |  |
|    | 3. The section formula is                                     |                             |                                           |             |         |  |  |
| 4. | The mid point of line segment joining                         | the points $(x_1, v_1)$ .   | $(x_2, v_2)$ is                           |             |         |  |  |
|    | The centroid of a triangle is                                 |                             |                                           |             |         |  |  |
|    | The formula for area of a triangle is                         |                             |                                           |             |         |  |  |
|    | The Heron's formula for area of a tria                        |                             |                                           |             |         |  |  |
|    | The condition for collinearity of three                       |                             |                                           |             |         |  |  |
|    | Slope of line containing the points ( $x_1$                   | •                           |                                           |             |         |  |  |
|    | The line equation for X- axis is                              |                             |                                           |             |         |  |  |
|    | The line equation for Y- axis is                              |                             |                                           |             |         |  |  |
| 11 | The fine equation for 1 - axis is                             |                             | •••••                                     | • • • • • • |         |  |  |
|    |                                                               |                             |                                           |             |         |  |  |
|    | 3.Multiple C                                                  | choice Questi               | <u>ons</u>                                |             |         |  |  |
| 1  | $P$ is a point on $x$ axis at a distance of $\Im$             | 3 unit from v axis to       | o its left. The coordi                    | inates      |         |  |  |
| •• | of P are                                                      | y unit from y unit to       |                                           | (           | )       |  |  |
|    |                                                               | (C)(-3,0)                   | (D) $(0, -3)$                             |             | ,       |  |  |
| 2. | The distance of point $P(3, -2)$ from y                       | . , ,                       |                                           | (           | )       |  |  |
|    |                                                               | (C) –2 units                |                                           |             |         |  |  |
| 3. | The coordinates of two points are (6,                         | 0) and $(0, -8)$ . The      | coordinates of the r                      | nid poi     | int     |  |  |
|    | are                                                           | (C) (0, 0)                  | (D) ( A 2)                                | (           | )       |  |  |
| 4  |                                                               | (C)(0,0)                    |                                           | (           | `       |  |  |
| 4. | If the distance between $(4, 0)$ and $(0, 10)$                |                             |                                           | (           | )       |  |  |
| 5  | (A) 2 (B) 3<br>The area of triangle <i>OAB</i> , the coordin  | (C) 4                       | (D) 5<br>(A, 0) R(0, 7) and               | l O orio    | ain     |  |  |
| ٥. | is                                                            | ates of the points A        | $(\mathbf{q}, 0) \mathbf{D} (0, -1) $ and | (           | g,<br>) |  |  |
|    | (A) 11 sq. units (B) 18 sq. units                             | (C) 28 sq. units            | (D) 14 sq. units                          | (           | ,       |  |  |
| 6. | The distance between the line $2x + 4 = 1$                    |                             |                                           | (           | )       |  |  |
|    | (A) 9 units (B) 1 unit                                        |                             | (D) 7 units                               | `           |         |  |  |
| 7. | The distance between the points (5 co                         | (0, 5) and $(0, 5)$         | cos 55°) is                               | (           | )       |  |  |
|    | (A) 10 units (B) 5 units                                      |                             | (D) 2 units                               |             |         |  |  |
| 8. | The points $(-4, 0)$ , $(4, 0)$ and $(0, 3)$ are              | e the vertices of a         |                                           | (           | )       |  |  |
|    | (A) right triangle                                            | (B) Isosceles trian         | •                                         |             |         |  |  |
|    | (C) equilateral triangle                                      | (D) Scalene triang          |                                           |             |         |  |  |
| 9. | The perimeter of triangle formed by the                       | _ ·                         |                                           | (           | )       |  |  |
|    | ` /                                                           | (C) $6\sqrt{2}$ units       | ` '                                       |             |         |  |  |
| 10 | AOBC is a rectangle whose three vert                          | ices are A $(0, 3), 0$      | (0,0), B $(5,0)$ The                      | length      | 1       |  |  |
|    | of its diagonal is                                            | (0) [0]                     |                                           | (           | )       |  |  |
|    | (A) 5 units (B) 3 units                                       | (C) $\sqrt{34}$ units       | (D) 4 units                               |             |         |  |  |

|                                                                                                                                                                                                                                                                 | ed by $(9, a), (b, -4)$ and $(7, (6), (5, 2))$                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en (a, l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>b</i> ) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | ( / ( / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · /                                                                                                                                                                                                                                                             | ( )                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | (D) 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ` /                                                                                                                                                                                                                                                             | ` /                                                                                                                                                                                                                                                                                                                                              | (B) 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | (D) 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \ <i>/</i>                                                                                                                                                                                                                                                      | < ,                                                                                                                                                                                                                                                                                                                                              | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s of the point which                                                                                                                                                                                                                                            | and the following (-1,7) as                                                                                                                                                                                                                                                                                                                      | 11 <b>u</b> (4,-3) 111 tii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C Tallo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (D) (2.2)                                                                                                                                                                                                                                                       | (C) (2.1)                                                                                                                                                                                                                                                                                                                                        | (D) (1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | ( ) ( ) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zantna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                                                                                                                                                                                               | Te AB is the diameters of a c                                                                                                                                                                                                                                                                                                                    | circie wnose C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | entre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ` '                                                                                                                                                                                                                                                             | (C) (2, 10)                                                                                                                                                                                                                                                                                                                                      | (D) (4.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | ( / ( / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (a. a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| points of trisection                                                                                                                                                                                                                                            | of the line segment joining                                                                                                                                                                                                                                                                                                                      | g the points $A($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,-2)a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| * *                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | · / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                 | , $B(4,K)$ and $C(6,-3)$ are coll                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · /                                                                                                                                                                                                                                                             | · ,                                                                                                                                                                                                                                                                                                                                              | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of the line segment                                                                                                                                                                                                                                             | joining $(2a,4)$ and $(-2,3b)$ is                                                                                                                                                                                                                                                                                                                | s(1,2a+1). T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) $a = 1, b = 3$                                                                                                                                                                                                                                              | (C) $a = 2, b = 3$                                                                                                                                                                                                                                                                                                                               | (D) $a = 1, b = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A and B are (-3,a)ar                                                                                                                                                                                                                                            | nd $(1,a+4)$ . The mid-point                                                                                                                                                                                                                                                                                                                     | of AB is (-1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) . Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B)(2)                                                                                                                                                                                                                                                          | (C)(3)                                                                                                                                                                                                                                                                                                                                           | (D)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ch the points $(2,-3)$                                                                                                                                                                                                                                          | and $(5,6)$ divided by the $x$ -                                                                                                                                                                                                                                                                                                                 | axis is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> Z</u>                                                                                                                                                                                                                                                       | ` '                                                                                                                                                                                                                                                                                                                                              | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| iween <i>Pla T</i> iana C                                                                                                                                                                                                                                       | ) (1 2) i.e E The Fe i                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 | (1,3) is 5. The value of a i                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B)(-4,-2)                                                                                                                                                                                                                                                      | (1,3) is 5. The value of a i<br>(C) (4,-2)                                                                                                                                                                                                                                                                                                       | s (D) (4,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie                                                                                                                                                                                                                                 | (C) (4,-2)                                                                                                                                                                                                                                                                                                                                       | (D)(4,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) y - axis                                                                                                                                                                                                                 | (C) (4,-2)<br>(C) both                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (<br>f these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) y - axis<br>the point (-4,-6) from                                                                                                                                                                                       | (C) (4,-2)  (C) both om the origin is                                                                                                                                                                                                                                                                                                            | (D) (4,1)<br>(D) none of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (<br>f these<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$                                                                                                                                                                  | (C) $(4,-2)$<br>(C) both om the origin is (C) $2\sqrt{12}$                                                                                                                                                                                                                                                                                       | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$                                                                                                                                                                  | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (-                                                                                                                                                                                                                                                            | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$                                                                                                                                                                  | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (-                                                                                                                                                                                                                                                            | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>s of the mid point of (B) (1,2)                                                                                                                               | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (-                                                                                                                                                                                                                                                            | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>s of the mid point of (B) (1,2)                                                                                                                               | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (C) (1,3)  1) and $B(5,1)$ . If the coordin                                                                                                                                                                                                                   | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>s of the mid point of (B) (1,2)<br>If a DABC are $A(1,-1)$                                                                                                    | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (C) (1,3)  1) and $B(5,1)$ . If the coordin                                                                                                                                                                                                                   | (D) (4,1)<br>(D) none of $(D)\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) tates of its cen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>s of the mid point of (B) (1,2)<br>If a DABC are $A(1,-1)$<br>mates of the third very (B) (1,3)                                                               | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (C) (1,3)  1) and $B(5,1)$ . If the coordinate $C$ is  (C) (-1,3)                                                                                                                                                                                             | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>s of the mid point of (B) (1,2)<br>f a DABC are $A(1,-1)$<br>mates of the third verified.                                                                     | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (C) (1,3)  1) and $B(5,1)$ . If the coordinate $C$ is  (C) (-1,3)                                                                                                                                                                                             | (D) (4,1)<br>(D) none of $(D)\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) tates of its cen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) $(-4,-2)$<br>point $(-4,0)$ lie<br>(B) $y$ - $axis$<br>The point $(-4,-6)$ from (B) $2\sqrt{13}$<br>so of the mid point of (B) $(1,2)$<br>for a DABC are $A(1,-1)$ mates of the third very point on $y$ -axis                                               | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ If the line segment joining (a  (C) (1,3) I) and $B(5,1)$ . If the coordinates C is  (C) (-1,3)  (C) 2                                                                                                                                                                                   | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) (attes of its cent)<br>(D) (1,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>so of the mid point of (B) (1,2)<br>for a DABC are $A(1,-1)$ and (B) (1,3)<br>The every point on $y$ - $ax$ (B) 1<br>The every point on $x$ - $ax$ (B) 1      | (C) $(4,-2)$ (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining (-(C) $(1,3)$ )  1) and $B(5,1)$ . If the coordinates C is  (C) $(-1,3)$ xxis is  (C) 2                                                                                                                                                                      | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) (attes of its cent)<br>(D) (1,2)<br>(D) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) $(-4,-2)$<br>point $(-4,0)$ lie<br>(B) $y$ - $axis$<br>The point $(-4,-6)$ from (B) $2\sqrt{13}$<br>so of the mid point of (B) $(1,2)$<br>If a DABC are $A(1,-1)$ and (B) $(1,3)$<br>The every point on $y$ -are (B) 1<br>The every point on $x$ -are (B) 1 | (C) $(4,-2)$ (C) both om the origin is  (C) $2\sqrt{12}$ If the line segment joining (a  (C) $(1,3)$ I) and $B(5,1)$ . If the coordinates C is  (C) $(-1,3)$ axis is  (C) $2$ axis is  (C) $2$                                                                                                                                                   | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) (attes of its cent)<br>(D) (1,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (<br>3) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (B) (-4,-2)<br>point (-4,0) lie<br>(B) $y$ - $axis$<br>The point (-4,-6) from (B) $2\sqrt{13}$<br>so of the mid point of (B) (1,2)<br>for a DABC are $A(1,-1)$ and (B) (1,3)<br>The every point on $y$ - $ax$ (B) 1<br>The every point on $x$ - $ax$ (B) 1      | (C) (4,-2)  (C) both om the origin is  (C) $2\sqrt{12}$ f the line segment joining ((C) (1,3))  1) and $B(5,1)$ . If the coordinates C is  (C) (-1,3)  axis is  (C) 2  axis is  (C) 2                                                                                                                                                            | (D) (4,1)<br>(D) none of (D) $\sqrt{13}$<br>-5,4) and (7,-8)<br>(D) (-1,-2) (attes of its cent)<br>(D) (1,2)<br>(D) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (<br>3) is<br>atroid l<br>(<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                 | tween the points (C (B) 2  whose vertices are (B) 32  whose vertices are (B) 32  so of the point which (B) (2,3)  so of a point A, when (1, 4) is (B) (2,9)  points of trisection (B) 1:3, 3:1  if the points $A(2,3)$ (B) -1  of the line segment (B) $a = 1, b = 3$ and B are (-3,a) and (B) (2)  ch the points (2,-3) and (B) $2:\frac{1}{2}$ | (B) 2 (C) 1<br>whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$ is<br>(B) 32 (C) 24<br>whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$ is<br>(B) 32 (C) 24<br>sof the point which divides the join of $(-1,7)$ at<br>(B) $(2,3)$ (C) $(3,1)$<br>sof a point A, where AB is the diameters of a $(1,4)$ is<br>(B) $(2,9)$ (C) $(3,-10)$<br>points of trisection of the line segment joining<br>(B) 1:3, 3:1 (C) 1:1, 2:1<br>if the points $A(2,3)$ , $B(4,K)$ and $C(6,-3)$ are collar of the line segment joining $(2a,4)$ and $(-2,3b)$ is<br>(B) $a=1,b=3$ (C) $a=2,b=3$<br>and B are $(-3,a)$ and $(1,a+4)$ . The mid-point<br>(B) $(2)$ (C) $(3)$<br>ch the points $(2,-3)$ and $(5,6)$ divided by the $x-(B)$ $2:\frac{1}{2}$ (C) 2:1 | tween the points $(Cos\theta, Sin\theta)$ and $(Sin\theta, -Cos\theta)$ is $(B) \ 2$ $(C) \ 1$ $(D)\sqrt{2}$ whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$ is $(B) \ 32$ $(C) \ 24$ $(D) \ 25$ whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$ is $(B) \ 32$ $(C) \ 24$ $(D) \ 25$ s of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the $(B) \ (2,3)$ $(C) \ (3,1)$ $(D) \ (1,1)$ s of a point A, where AB is the diameters of a circle whose $(1,4)$ is $(B) \ (2,9)$ $(C) \ (3,-10)$ $(D) \ (4,5)$ points of trisection of the line segment joining the points $A(2,3)$ if the points $A(2,3)$ , $B(4,K)$ and $C(6,-3)$ are collinear is $(B) \ -1$ $(C) \ 2$ $(D) \ 0$ of the line segment joining $(2a,4)$ and $(-2,3b)$ is $(1,2a+1)$ . The $(B) \ a = 1,b = 3$ $(C) \ a = 2,b = 3$ $(D) \ a = 1,b = 3$ and $(C) \ (C) $ | tween the points $(Cos\theta)$ , $Sin\theta$ ) and $(Sin\theta)$ , $-Cos\theta$ ) is (B) 2 (C) 1 (D) $\sqrt{2}$ whose vertices are (1,-1),(-4,6) and (-3,-5) is (B) 32 (C) 24 (D) 25 (B) 32 (C) 24 (D) 25 (B) 32 (C) 24 (D) 25 (D) 25 (D) 32 (C) 34 (D) 35 (D) 36 (D) 37 (D) 37 (D) 38 (D) |

30. The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is ) (A) 8 (D) 15 (B) 10 (C) 12 31. The slope of the line joining the points (2,3), (4,5) is ) (B) 4 (D) -1(A) 1 (C) 3 32.2 is the slope of the line through (2,5) and (x,3) then x =) (D) -1(A) 1 (B) 4 (C) 3

#### 4.HomeAssignment-1

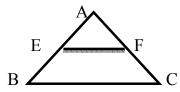
- 1. For what value of P are the points (2,1) (p,-1) and (-13) collinear?
- 2. Find the third vertex of a D if two of its vertices are at (1,2) and (3,5) and thecentroid is at the origin.?
- 3. Show that (1,1), (-1,-1),  $(\sqrt{3},\sqrt{3})$  are the vertices of an equilateral triangle?
- 4. If the point P(x, y) is equidistant from the points A(5,1) and B(1,5), prove that x = y?
- 5. Find the lengths of the medians of the triangle whose vertices are (1,-1),(0, 4) and (-5,3).?
- 6. The area of a D is 5. Two of its vertices are (2,1) and (3,-2). The third vertex lies on y = x + 3. Find the third vertex.?
- 7. Prove that the point (a,o),(a,b) and (1,1) are collinear if  $\frac{1}{a} + \frac{1}{b} = 1$ ?
- 8. In what ratio is the line segment joining the points (-2,3) and (3,7) divided by the y-axis?
- 9. Find the relation between x and y such that the point (x, y) is equidistant from the points (7,1) and (3,5)?
- 10. The coordinates of the vertices of DABC are A(4,1), B(-3,2) and C(O,K). Given that three area of DABC is 12, find the value of K.?
- 11. Using section formula show that the points (-1,2)(5,0) and (2,1) are collinear.?
- 12. Find the area of the quadrilateral whose vertices taken in order are (-4,-2),(-3,5),(3,-2) and (2,3)?
- 13. Find the centroid of the D whose vertices are (4,-8)(-9,7) and (8,13)?
- 14. Find the vertices of the D the mid points of whose sides are (3,1),(5,6) and (-3,2)?
- 15. Find the distance between the points (Cosq, Sinq) and (Sinq, Cosq)?

#### 8.SIMILAR TRIANGLES

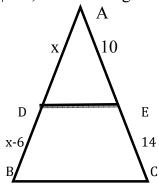
#### 1.Concepts

- 1. Two figures having the same shape but not necessarily the same size are called similar figures. Congruent figures are similar but the converse is not true
- 2. All regular polygons of same number of sides are similar. They are equilateral triangles, squares etc. All circles are also similar.
- 3. Two polygons of the same number of sides are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (i.e., proportion).
- 4. Two triangles are similar if their corresponding are equal and corresponding sides are proportional.
- **5.** Basic Proportionality Theorem or Thales Theorem.

If a line is drawn parallel to one side of a triangle, to interest the other two sides indistinct points, the other two sides are divided in the same ratio.


- 6. Converse of Basic Proportionality Theorem
  - If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.
- 7. If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.
- 8. Critieria for similarities of two triangles.
  - 1. AAA similarity criterian: If in two triangles, the corresponding angles are equal, then their corresponding sides are proportional (i.e. in the same ratio) and hence the triangles are similar.
  - In the above property if only two angles are equal, then the third angle will beautomatically equal .Hence AAA criteria is same as AA criteria.
  - 2. <u>SSS</u> similarity criteria: If the corresponding sides of two triangles are proportional (i.e.in the same ratio), their corresponding angles are equal and hence the triangles are similar.
  - 3. <u>SAScriteria</u>: If one angles of a triangle is equal to one angle of the other and the sides including these angles are proportional, the triangles are similar.
- 9. The ratio of the areas of two similar triangles are equal to the ratio of the squares of any two corresponding sides.
- 10. The areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.
- 11. The areas of two similar triangles are in the ratio of the squares of the corresponding medians.
- 12. If the areas of two similar triangles are equal, then the triangles are congruent, *i.e.*, equal and similar triangles are congruent.
- 13. Pythagoras Theorem. (Baudhayan Theorem)
  - In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
- 14.(Converse of Pythagoras Theorem): In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

#### **2.Oral Questions**


- 1. What are similar triangles?
- 2. What are similar polygons?
- 3. State THALES theorem?
- 4. State the converse of the Basic proportionality theorem?
- 5. State **AAA** similarity criterion?
- 6. State **SSS** similarity criterion?
- 7. State **SAS** similarity criterion?
- 8. State **Pythagoras** theorem?
- 9. State Converse of Pythagoras Theoremtheorem?

### **3. Multiple Choice Questions**

1. In the figure, if AE/EB = AF/FC then we can conclude that



- (A) E and F are the mid-points of AB and AC respectively
- (C) EF/BC = AB/AC
  - C = AB / AC (D) none of the above
- 2. In the triangle ABC,  $DE \parallel BC$ , then the length of DB is



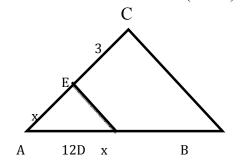
- (A) 2.5 cm
- (B) 5 cm

(C) 3.5 cm

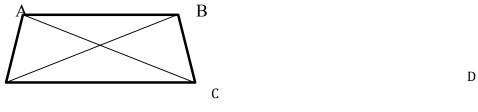
(B)  $EF \parallel BC$ 

(D) 3 cm

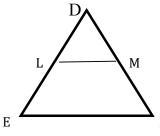
)


)

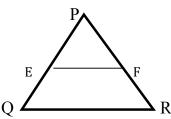
)


3. In  $\triangle ABC$ , if  $DE \parallel BC$ , then the value of x is




- (B)6
- (C) 8
- (D)9



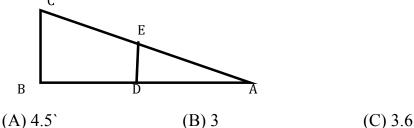

4. In the trapezium ABCD,  $AB \parallel CD$ , AO = x, OC = x-3 = OD, OB = x+3, then the value of x is



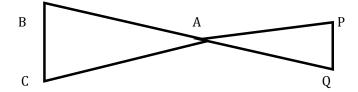
- (A) 2 (B) 3 (C) -2 (D) -3
- 5. In the  $\triangle DEF$ ,  $LM \parallel EF$  and DM / MF=2 / 3. If DE = 5.5 cm, then DL is



- (A) 2.5 cm (B) 2.4 cm (C) 2.2 cm (D) 2 cm
- 6. In the given figure, PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm, then




(A) EF is not parallel to QR


(B)  $EF \parallel QR$ 

(C) cannot say anything

- (D) none of the above
- 7. In the given figure, if  $\triangle ADE \sim \triangle ABC$ , AE = 1.5, EC = 3, ED = 1.2 then BC is equal to



8. In the given figure.  $\triangle ACB \sim \triangle APQ$ . If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, then the length of AQ is



(D) 2.4

|            | (A) 3.25 cm                                                                                              | (B) 4 cm                                                                                                                                                   | (C) 4.25 cm                                                                                                                          | (D) 3 cm                                                                                                        |                       |         |
|------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|---------|
|            | If $\triangle ABC \sim \triangle PQR$ (A) $100^{\circ}$                                                  | and $\angle P = 50^{\circ}$ , $\angle B = (B) 80^{\circ}$                                                                                                  | = $60^{\circ}$ , then $\angle R$ is (C) $70^{\circ}$                                                                                 | (D) cannot be de                                                                                                | (<br>termined         | )<br>1  |
|            |                                                                                                          | and the perimeters $C = 9$ cm, then $EF$ is (B) 5.4 cm                                                                                                     |                                                                                                                                      |                                                                                                                 | and 18                | cm<br>) |
|            | 25 cm, then perim (A) 35 cm                                                                              | eter of $\triangle ABC$ is<br>(B) 28 cm<br>and $\triangle ABC$ is not                                                                                      | (C) 42 cm                                                                                                                            | (D) 40 cm                                                                                                       | (                     | )       |
|            | not true?<br>(A) $BC$ . $EF = AC$ .<br>(C) $BC$ . $DE = AB$ .                                            | FD                                                                                                                                                         | (B) $AB$ . $EF = AC$ .<br>(D) $BC$ . $DE = AB$                                                                                       | . DE                                                                                                            | (                     | )       |
|            | (A) $\triangle PQR \sim \triangle CA$<br>(C) $\triangle CBA \sim \triangle PQA$                          | R                                                                                                                                                          | (B) $\triangle PQR \sim \triangle AB$<br>(D) $\triangle BCA \sim \triangle PQ$                                                       | C<br>QR                                                                                                         | (                     | )<br>D  |
|            |                                                                                                          | e, two line segment<br>cm, $PB = 3$ cm, $PC$<br>s equal to  A  6                                                                                           |                                                                                                                                      |                                                                                                                 | -                     |         |
| (A) 50     | <b>1</b> 0                                                                                               | B 30°                                                                                                                                                      | 2.5 D (C) 60°                                                                                                                        | (D) 100°                                                                                                        |                       |         |
| 15.<br>16. | If in triangles $ABC$<br>(A) $\angle B = \angle E$<br>The areas of two larger triangle is 2<br>(A) 12 cm | C and $DEF$ , $\frac{AB}{DE} = \frac{BC}{FB}$<br>(B) $\angle A = \angle C$<br>similar triangles are 6 cm, then the long (B) 14 cm rapezium $ABCD$ , $ABCD$ | then they will be $ \begin{array}{ll} C \\ D \end{array} $ (C) $\angle B = \angle C \\ C \\$ | e similar, when<br>$AD$ (D) $\angle A = 1$<br>AD cm <sup>2</sup> , if the longes<br>or triangle is<br>(D) 22 cm | ∠F<br>st side of<br>( | )       |

(A)  $168 \text{ cm}^2$  (B)  $336 \text{ cm}^2$  (C)  $252 \text{ cm}^2$  (D) none of these  $18.\text{If } \Delta ABC \sim \Delta PQR$ , area  $(\Delta ABC) = 80 \text{ cm}^2$  and area  $(\Delta PQR) = 245 \text{ cm}^2$ , then ABPQ is

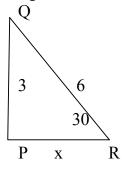
| (A) 16:49                                                                                                                                                         | (B) 4:7                                                                       | (C) 2:5            | (D) none o              | f these              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|-------------------------|----------------------|--|--|
| 19. In the similar triangles, $\triangle ABC$ and $\triangle DEF$ , $\frac{ar(\triangle ABC)}{ar(\triangle DEF)} = \frac{3}{4}$ . If the median $AL = 6$ cm, then |                                                                               |                    |                         |                      |  |  |
| the median DM                                                                                                                                                     |                                                                               | ur (2011)          | , 1                     | ( )                  |  |  |
| (A) $3\sqrt{2}cm$                                                                                                                                                 | (B) $4\sqrt{3}cm$                                                             | (C) $4\sqrt{2}cm$  | (D) $3\sqrt{3}cm$       | }                    |  |  |
| 20.If a ladder of le                                                                                                                                              | ength 13 m is place                                                           | d against a wall s | uch that its foot is    | s at a distance of 5 |  |  |
|                                                                                                                                                                   | l, then the height o                                                          | -                  | _                       |                      |  |  |
| (A) 10 m                                                                                                                                                          | (B) 11 m<br>EAC = DE then the                                                 | (C) 12 m           | (D) none o              | f these              |  |  |
| 21.In the figure, if                                                                                                                                              | CAC = DE, then the                                                            | e value of EB is   | , A                     | ( )                  |  |  |
|                                                                                                                                                                   |                                                                               |                    |                         |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    | E                       |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    | 12                      |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    |                         |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    | 000                     |                      |  |  |
|                                                                                                                                                                   | $_{\rm D}$ $\frac{\sqrt{2}}{2}$                                               | <del></del>        | $90^{0}$ B              |                      |  |  |
| (1) 2 [2(                                                                                                                                                         |                                                                               | (C) 2              | (1.5                    | 4 [17                |  |  |
| ` '                                                                                                                                                               | 0cm B) $2\sqrt{30}$                                                           | ` ′                | ` ′                     | 4√15cm               |  |  |
| (A)20 cn                                                                                                                                                          | a rhombus are 12 c<br>n (B) 40 c                                              |                    | -                       | 56 cm ( )            |  |  |
| ` /                                                                                                                                                               | ABC is right angle                                                            | ` '                | ` ′                     | ` /                  |  |  |
| of $AQ$ is                                                                                                                                                        | . 1                                                                           |                    |                         | ( )                  |  |  |
|                                                                                                                                                                   | A                                                                             |                    |                         |                      |  |  |
|                                                                                                                                                                   | 5                                                                             |                    |                         |                      |  |  |
|                                                                                                                                                                   | 5 13                                                                          | <b>i</b>           |                         |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    |                         |                      |  |  |
|                                                                                                                                                                   |                                                                               |                    |                         |                      |  |  |
|                                                                                                                                                                   | c \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                       | В                  |                         |                      |  |  |
| (A) 6 cm                                                                                                                                                          | (B) 12 c                                                                      | m (C) $\sqrt{6}$   | olem (D)                | 5√3cm                |  |  |
| 24. The lengths of                                                                                                                                                | the diagonals of a                                                            | a rhombus are 24   | em and 32 cm.           | The perimeter of     |  |  |
| the rhombus is                                                                                                                                                    | -                                                                             |                    |                         | ( )                  |  |  |
| (A) 9 cm                                                                                                                                                          | <b>\</b>                                                                      | ` ′                | ` ′                     | 56 cm                |  |  |
|                                                                                                                                                                   | ollowing cannot be                                                            | _                  | _ ,                     | ( )                  |  |  |
|                                                                                                                                                                   | n, 15 cm, 12 cm<br>mm, 300 mm, 500 n                                          |                    | cm, 1 cm, $\sqrt{5}$ cm |                      |  |  |
|                                                                                                                                                                   | R, $M$ is the mid-point.                                                      |                    |                         | OR If the area of    |  |  |
|                                                                                                                                                                   | $\alpha$ , $M$ is the initial point.<br>$\alpha$ . cm, the area of $\Delta$ . |                    | -                       |                      |  |  |

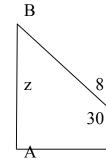
(C) 4 cm

 $27.\Delta ABC$  is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. If  $\Delta DEF \sim \Delta ABC$  and EF

= 4 cm, then perimeter of  $\Delta DEF$  is Prepared by: Allasubbarao, SA(Maths),8019312341.

(B) 12 cm


(A) 4.8 cm


(D) 5.6 cm

- (A) 15 cm
- (B) 22.5 cm
- (C) 7.5 cm
- (D) 30 cm
- 28.A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time, a tower casts a shadow 75 m long on the ground. The height of the tower is ( )
  - (A) 150 m
- (B) 100 m
- (C) 25 m
- (D) 200 m

29. In the figure  $\triangle ABC \sim \triangle PQR$ , then y + z is







- (A)  $2+\sqrt{3}$
- (B)  $4+3\sqrt{3}$
- (C)  $4+\sqrt{3}$
- (D)  $3+4\sqrt{3}$
- 30.If the ratio of the corresponding sides of two similar triangles is 2 : 3, then the ratio of their corresponding altitude is ( )
  - (A) 3 : 2
- (B) 16:81
- (C)4:9
- (D) 2:3

#### 4.HomeAssignment-1

- 1. If D and E are respectively the points on the sides AB and AC of a DABC such that AD=6cm, BD=9cm, AE=8cm, EC=12cm, Then show that DE||BC.?
- 2. The hypotenuse of a right triangle is 6m more than the twice of the shortest side. If the third side is 2m less than the hypotenuse. Find the side of the triangle?
- 3. PQR is a right triangle right angled at P and M is a point on QR such that PM  $\perp$  QR. Show that  $PM^2 = QM.MR$ ?
- 4. BL and CM are medians of  $\triangle ABC$  right angled at A. prove that  $4(BL^2 + CM^2) = 5BC^2$ ?
- 5. ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = C and let P be the length of perpendicular from C on AB prove that (i) cp = ab (ii)  $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ ?
- 6. Prove that the ratio of areas of two similar triangles are in the ratio of the squares of the corresponding sides. By using the above theorem solve In two similar triangles PQR and LMN, QR = 15cm and MN = 10 Find the ratio of areas of two triangles.?
- 7. In a quadrilateral ABCD P,Q,R,S are the mid points of the sides AB, BC, CD and DA respectively. Prove that PQRS is a parallelogram?
- 8. The length of the diagonals of a rhombus are 24 cm and 10cm. find each side of Rhombus?
- 9. In an isosceles right angled triangle prove that hypotenuse is  $\sqrt{2}$  times the side of a triangle?
- 10.A ladder reaches a window which is 12m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15m.?

#### 9.TANGENTS AND SECANTS TO A CIRCLE

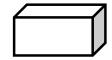
#### 1.Concepts

- A circle may be regarded as a collection of points in a plane at a fixed distance from a **fixed point**. The fixed point is called the Centre of the circle. The fixed distance between the centre of the circle and the circumference, is called **radius**.
- The perimeter of the circle is referred to as the **circumference** of the circle.
- ➤ A **chord** of a circle is a line segment joining any two points on the circumference.
- An arc of a circle is a part of the circumference.
- A diameter of a circle is a chord which passes through the Centre of the circle.
- A line, which intersects the circle in two distinct points, is called a **secant**.
- ➤ A line which has only one point common to the circle is called a **tangent** to the circle.
- There is one and only one tangent at a point of the circle.
- ➤ The tangent at any point of a circle is perpendicular to the radius through the point of contact.
- ➤ No tangent can be drawn from a point inside the circle.
- ➤ The lengths of tangents drawn from an external point to a circle are equal.
- ➤ The perpendicular at the point of contact to the tangent to a circle passes through the center of the circle.
- > Tangents drawn at the end points of a diameter of a circle are parallel.
- ➤ Area of segment of a circle = area of the corresponding sector area of the corresponding triangle.
- ightharpoonup Area of the sector  $=\frac{x}{360} \times \pi r^2$
- Area of the triangle =  $\frac{1}{2}$  b h
- $\triangleright$  Area of the circle =  $\pi$  r<sup>2</sup>
- Area of regular hexagon =  $6\frac{\sqrt{3}}{4}$  a<sup>2</sup>

## **2.Oral Questions**

| Ι. | What is secant of a circle?                                                           |                                |                                                   |           |        |
|----|---------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|-----------|--------|
| 2. | Define tangent of a circle/                                                           |                                |                                                   |           |        |
| 3. | The tangent at any point of a circle is                                               | to the radius                  | through the point o                               | f conta   | ct.    |
|    | The lengths of tangents drawn from a                                                  |                                | • •                                               |           |        |
|    | Tangents drawn at the end points of a                                                 | -                              |                                                   |           |        |
|    | What is area of segment of a circle?                                                  |                                | • <del>• • • • • • • • • • • • • • • • • • </del> |           |        |
|    | How many tangents can a circle have                                                   | 9                              |                                                   |           |        |
|    |                                                                                       |                                | t outside the airele                              | )         |        |
|    | How many tangents can be drawn to a                                                   |                                |                                                   |           |        |
|    | What is the distance between two para. How many tangents can be drawn to a            | •                              |                                                   |           |        |
| 10 | .110w many tangents can be drawn to a                                                 | a chere from a pom             | t mside the effere.                               |           |        |
|    | 3.Multiple                                                                            | Choice Que                     | <u>stions</u>                                     |           |        |
| 1  | If tangent DA and DD from a point D.t.                                                | eo o circle with cent          | ro O oro inclined to                              | s aaab d  | ath an |
| 1. | If tangent PA and PB from a point P t at an angle of 80°, then ∠POA is equal          |                                | ie O are memieu u                                 | ) each (  | Juiei  |
|    | (A) 50° (B) 60°                                                                       | (C) 70°                        | (D) 80°                                           | )         |        |
| 2. | From a point T, the length of the tang                                                | ( )                            | ( )                                               | e of T    |        |
|    | from the centre is 25 cm. The radius of                                               |                                |                                                   | (         | )      |
|    | (A) 7 cm (B) 12 cm                                                                    | (C) 15 cm                      | (D) 24.5 cm                                       |           | ,      |
| 3. | At one end of a diameter AB of a circ                                                 | le of radius 5 cm, t           | angent XAY is dra                                 | wn to t   | he     |
|    | circle. The length of the chord, paralle                                              |                                | stance of 8 cm from                               | n A is    |        |
|    |                                                                                       | (C) 6 cm                       | (D) 8 cm                                          |           | )      |
| 4. | If angle between two radii of a circle                                                | is 130°, the angle b           | etween the tangent                                | s at the  | ;      |
|    | ends of the redii is                                                                  | (C) 700                        | (D) 400                                           | (         | )      |
| 5  | (A) 90° (B) 50°  In the figure AP is a short of the circ                              | (C) 70°                        | (D) 40°                                           | / A CD    | _      |
| ٥. | In the figure, AB is a chord of the circle 50°. If AT is the tangent to the circle at |                                |                                                   | ZACD<br>( | _      |
|    | (A) $65^{\circ}$ (B) $60^{\circ}$                                                     | (C) 50°                        | (D) 40°                                           | (         | ,      |
| 6. | A tangent AB at a point A of a circle                                                 |                                | ( )                                               | e centr   | e O    |
|    | at a point B so that $OB = 12$ cm. Leng                                               |                                |                                                   | (         | )      |
|    | -                                                                                     | (C) 9 cm                       | $(D)\sqrt{119}$ cm                                |           | ,      |
| 7. | The length of the tangent drawn from                                                  | ` '                            | ` /                                               | re of a   |        |
|    | circle is 20 cm and radius of the circle                                              | is 16 cm, is                   | (                                                 | )         |        |
|    | ` /                                                                                   | (C) 169 cm                     | (D) 25 cm                                         |           |        |
| 8. | A tangent PQ at a point P of a circle of                                              |                                | ets a line through th                             | ne centr  | re O   |
|    | at a point Q so that $OQ = 25$ cm. Leng                                               |                                |                                                   | (         | )      |
| ^  | (A) 5 cm (B) 25 cm                                                                    | (C) 16 cm                      | (D) 20 cm                                         |           |        |
| 9. | In a circle of radius 7 cm, tangent LM                                                |                                | oint L such that LM                               | 1 = 24    | cm.    |
|    | If O is the centre of the circle, then let                                            |                                | (D) 26 am                                         | (         | )      |
| 10 |                                                                                       | (C) 25 cm<br>O If OT = 6 cm ar | (D) 26  cm                                        | n tha     |        |
| 10 | .PT is a tangent to a circle with centred length of tangent PT is                     | 0. 11 01 – 0 cm, ai            |                                                   | 11 UIC    | )      |
|    | 10115111 01 141150111 1 1 10                                                          |                                |                                                   | (         | ,      |

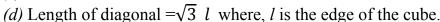
| (A) 8 cm                | (B) 12 cm                     | (C) 10 cm             | (D) 16 cm               |                   |       |
|-------------------------|-------------------------------|-----------------------|-------------------------|-------------------|-------|
| 11.is the centre of tw  | vo concentric circles         | of radii 3 cm and 5   | 5 cm. PQ is a chord     | of oute           | er    |
| circle which touc       | hes the inner circle.         | The length of chord   | d PQ is                 | (                 | )     |
| (A) 5 cm                | (B) 8 cm                      | (C) 10 cm             | (D) $\sqrt{34}$ cm      | •                 |       |
| 12.TP and TQ are tv     | ` '                           | ` '                   | · /                     | ∠PTC              | ) is  |
| equal to                | $\mathcal{E}$                 | ,                     |                         | (                 | )     |
| (A) 40°                 | (B) 50°                       | (C) 60°               | (D) $70^{\circ}$        |                   |       |
| 13. Quadrilateral PQ    | · /                           | · /                   | · /                     | If AP =           | = 5   |
|                         | nd DR = 3 cm, then            | _                     |                         | (                 | )     |
| (A) 9 cm                |                               | (C) 13 cm             |                         |                   |       |
| 14. The pair of tange   | ` '                           | ` '                   | ` /                     | vith              |       |
| <u> </u>                | endicular to each ot          |                       | -                       |                   | dius  |
| of the circle is        |                               |                       | (                       | )                 |       |
| (A) 10 cm               | (B) 7.5 cm                    | (C) 5 cm              | (D) 2.5 cm              |                   |       |
| 15. From a point P w    | hich is at a distance         | of 13 cm from the     | centre O of a circle    | of radi           | ius 5 |
| -                       | tangents PQ and               |                       |                         |                   |       |
| quadrilateral PQ0       | OR is                         |                       |                         | (                 | )     |
| (A) $60 \text{ cm}^2$   | (B) $65 \text{ cm}^2$         | (C) $30 \text{ cm}^2$ | (D) $32.5 \text{ cm}^2$ | •                 |       |
| 16. The perimeter of    |                               |                       |                         | or?               |       |
| (A) $50cm^2$            | (B) $42cm^2$                  | (C) $52cm^2$          | (D) none of these       |                   |       |
| 17. Tangent of circle   | intersect the circle          |                       |                         | (                 | )     |
| (A) Only one poi        | nt (B) Two points             | (C) Three points      | (D) None of these       | ,                 |       |
| 18. How many tange      | nts can a circle have         | ?                     |                         | (                 | )     |
| (A) 1                   | (B) 2                         | (C) 0                 | (D) infinite            |                   |       |
| 19.If PA and PB are     | tangents from a poi           | nt P lying outside tl | he circle such that F   | $\mathbf{A} = 10$ | )     |
| cm and $\angle APB = 0$ | $60^{\circ}$ . Find length of | chord AB              |                         | (                 | )     |
| (A) 10cm                | (B) 20cm                      | (C) 30cm              | (D) 40cm                |                   |       |
| 20.A tangent PQ at a    | a point P to a circle of      | of radius 5 cm meet   | s a line through the    | centre            |       |
| at a point Q so th      | at $OQ = 13$ cm the le        | ength of PQ.          |                         | (                 | )     |
| (A) 11cm                | (B) 12cm                      | (C) 10cm              | (D) None of these       | ;                 |       |
| 21.If tangents PA an    | _                             |                       | ntre O are inclined t   | o each            |       |
| _                       | 80° then $\angle POA$ is ed   | •                     |                         | (                 | )     |
| $(A) 50^{\circ}$        | $(B) 60^{\circ}$              | (C) 70°               | (D) 80°                 |                   |       |
| 22.A quadrilateral A    |                               | rcumscribe a circle   | IF AB = 4 cm, CD        | =7  cm            | ,     |
| BC= 3  cm,  Then        | -                             |                       | (                       | )                 |       |
| (A) 7 cm                | ` '                           | (C) 8 cm              | (D) none of these       |                   |       |
| 23.A circle touches     |                               | _                     | CD whose sides AB       | = 6  cm           | 1,    |
| BC = 7  cm, CD =        | = 4  cm Then AD = -           |                       |                         | (                 | )     |
| (A) 2 cm                | ` '                           | (C) 5 cm              | (D) 6cm                 |                   |       |
| 24. The length of tan   | -                             | le with radius 3 cm   | from a point 5 cm       | from              |       |
| thecentre of the c      |                               | 4.70                  |                         | (                 | )     |
| (A) 6 cm                | (B) 8 cm                      | (C) 4 cm              | (D) 7 cm                |                   |       |
| 25.A line intersecting  | •                             |                       |                         | (                 | )     |
| (A) Tangent             | (B) secant                    | (C) diameter          | (D) none of these       |                   |       |


#### 4.HomeAssignment-1

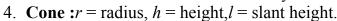
- 1. Two concentric circles are of radii 5 cm and 3 cm. find the length of the chord of the larger circle which touches the smaller circle?
- 2. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB+CD=AD+BC?
- 3. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at point T. Find the length TP?
- 4. The length of tangent from point A at a distance at 5 cm. from the centre of the circle is 4 cm. What will be the radius of the circle?
- 5. A circle touches all the four sides of a quadrilateral ABCD whose sides AB = 8 cm., BC = 9cm. and CD = 6 cm. find AD.?
- 6. What is the distance between two parallel tangents of a circle of the radius 4 cm.?
- 7. If PA and PB are tangents drawn from external point P such that PA = 10cm and  $\angle APB = 60^{\circ}$  find the length of chord AB?
- 8. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC?
- 9. Prove that parallelogram circumscribing a circle is a rhombus?
- 10. The lengths of two tangents drawn from an external point to a circle are equal?
- 11.Draw a circle of radius 6cm. From a point 10cm away from its centre, construct the pair of tangents to the circle and measure their lengths?
- 12. Find the area of sector , whose radius is 7cm, with angle 72°?

## 1.Concepts

#### 1. Cuboid:


- a. Lateral surface area = 2h(l + b)
- b. Surface area = 2(lb+bh+lh)
- c. Volume = lbh

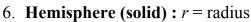



d. Length of diagonal = $\sqrt{l^2 + b^2 + h^2}$  where l, b, h are length, breadth and thickness of the cuboid.

#### 2. Cube:

- (a) Lateral surface area =  $4l^2$
- (b) Surface area =  $6l^2$
- (c) Volume =  $l^3$

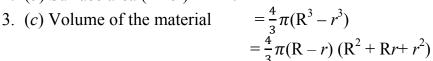


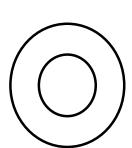

- 3. Cylinder: r = radius, h = height
  - a. Area of curved surface =  $2\pi rh$
  - b. Total surface area =  $2\pi r^2 + 2p\pi h = 2\pi r(r+h)$
  - c. Volume =  $\pi r^2 h$
  - d. Curved surface area of hollow cylinder =  $2\pi h(R + r)$
  - e. Total surface area of hollow cylinder =  $2\pi h (R + r) + 2\pi (R^2 r^2)$



- (a) Curved surface area =  $\pi r l = \pi r \sqrt{h^2 + r^2}$
- (b) Total surface area=  $\pi r^2 + \pi r l = \pi r (r + l)$
- (c) Volume =  $\frac{1}{3}\pi r^2 h$




- 5. **Sphere**: r = radius
  - a. Surface area =  $4\pi r^2$
  - b. Volume =  $\frac{4}{3}\pi r^3$




- (a) Curved surface area =  $2\pi r^2$
- (b) Total surface area =  $3\pi r^2$
- (c) Volume  $=\frac{2}{3}\pi r^3$



- 1. (a) Surface area (outer) =  $4\pi R^2$
- 2. (b) Surface area (inner) =  $4\pi r^2$





| 1. | What is diagonal of a cube of edge <i>a</i> ?            |                               |                                    |
|----|----------------------------------------------------------|-------------------------------|------------------------------------|
| 2. | What is the total surface area of a cuboid?              |                               |                                    |
| 3. | Say the volume of right prism?                           |                               |                                    |
| 4. | Say the curved surface area of regular circu             | lar cylinder?                 |                                    |
| 5. | What is the total surface area of a pyramid              | ?                             |                                    |
| 6. | Say the volume of sphere?                                |                               |                                    |
| 7. | Say the volume of hemi sphere ?                          |                               |                                    |
| 8. | What is diagonal of a cuboid?                            |                               |                                    |
| 9. | Say the lateral surface of sphere?                       |                               |                                    |
| 10 | .What is the total surface area of a cube?               |                               |                                    |
|    |                                                          |                               |                                    |
|    | 3.Multiple Cho                                           | oice Question                 | IS                                 |
| 1. | A funnel is combination of                               | oree Question                 | ( )                                |
|    | (A) a cone and a cylinder                                | (B) frustum of a co           | one and a cylinder                 |
|    | (C) a hemisphere and a cylinder                          | (D) a hemisphere a            | •                                  |
| 2. | The shape of a bucket is usually in the form             | • •                           | ( )                                |
|    | (A) a cone (B) frustum of a cone                         | (C) a cylinder                | (D) a sphere                       |
| 3. | A flask used in the laboratory is the combination        | • •                           | ( )                                |
|    | (A) a cylinder and a cone                                | (B) a sphere and a            | cone                               |
|    | (C) a sphere and a cylinder                              | (D) frustum of a co           |                                    |
| 4. | The ratio of the volumes of two spheres is 8             | • 1                           | <del>-</del>                       |
|    | areas is                                                 |                               | ( )                                |
|    | (A) 2:3 (B) 4:27                                         | (C) 8:9                       | (D) 4:9                            |
| 5. | The curved surface area of a cylinder is 264             | m <sup>2</sup> and its volume | is 924 m <sup>3</sup> . The height |
|    | of the pillar is                                         |                               | ( )                                |
|    | (A) 3 m (B) 4 m                                          | (C) 6 m                       | (D) 8 m                            |
| 6. | Volumes of two spheres are in the ratio 27:              | 64. The ratio of the          | eir surface areas is               |
|    | (A) 3:4 (B) 4:3                                          | (C) 9:16                      | (D) 16:9                           |
| 7. | If two solid hemispheres of same base radiu              | s $r$ are joined togeth       | ner along their bases,             |
|    | then curvedsurface area of the new solid is              |                               | ( )                                |
|    | (A) $4\pi r^2$ (B) $6\pi r^2$                            | (C) $3\pi r^2$                | (D) $8\pi r^2$                     |
| 8. | The total surface area of a hemisphere of rac            | dius 7 cm is                  | ( )                                |
|    | (A) $447\pi \text{cm}^2$ (B) $239\pi \text{cm}^2$ (C) 14 | $47\pi \text{cm}^2$           | (D) $174\pi \text{cm}^2$           |

| 9.  | The ratio of the to       | otal surface area to            | the lateral surface an                      | rea of a cylinde            | r with bas | e     |
|-----|---------------------------|---------------------------------|---------------------------------------------|-----------------------------|------------|-------|
|     | diameter 160 cm           | and height 20 cm i              | S                                           |                             | (          | )     |
|     | (A)1:2                    | (B) 2:1                         | (C) 3:1                                     | (                           | (D) 5 : 1  |       |
| 10  |                           | base of a cone is 5             | cm and its height is                        | 12 cm. Its curv             | ed surface | e     |
|     | area is                   | (D) $65  \text{m}  \text{am}^2$ | (C) $80  \pi \text{cm}^2$ (D) r             | ana af thaga                | (          | )     |
| 11  | ` '                       | ` '                             | orizontal plane passi                       |                             | mid naint  | ta of |
| 11  |                           |                                 | the upper part and the                      | -                           | mu-pomi    | 3 01  |
|     | (A) 1:2                   |                                 | (C) 1 : 6                                   |                             | (          | ,     |
| 12  | ` /                       | ` '                             | r stand on equal base                       | 1 1                         | same heig  | ht    |
|     | The ratio of their        | •                               | stand on equal ous                          | os ana nave the             | (          | )     |
|     |                           |                                 | (C) 2 : 3 : 1                               | (D) 1:2:3                   |            | ,     |
| 13  | ` '                       | ` '                             | a cuboid of dimension                       | ` ′                         | cm × 24 c  | m is  |
|     | -                         |                                 | e radius of the sphere                      |                             | (          | )     |
|     | (A) 25 cm                 | -                               | (C) 19 cm                                   |                             | `          | ,     |
| 14  | .The volume of a s        | sphere (in cu. cm)              | is equal to its surface                     | e area (in sq. cn           | n). The    |       |
|     | diameter of the sp        | ohere (in cm) is                |                                             |                             | (          | )     |
|     | (A) 3                     | (B) 6                           | (C) 2                                       | (D) 4                       |            |       |
| 15  | .A shuttle cock use       | ed for playing bad              | minton has the shape                        | e of the combina            | ation of ( | )     |
|     | (A) a cylinder and        | d a sphere                      | (B) a sphere and a                          | a cone                      |            |       |
|     | •                         | *                               | (D) a hemisphere                            |                             |            |       |
| 16  | •                         | as a circumference              | of 4 m. The no. of r                        | evolutions it ma            | akes in mo | oving |
|     | 40 metres are             |                                 |                                             |                             | (          | )     |
|     | ` ′                       | ` '                             | (C) 8                                       | (D) 10                      |            |       |
| 17  |                           | -                               | doubled and the heig                        | ght remains unc             | hanged, it | ts    |
|     | curved surface are        |                                 | (3) 1 12                                    |                             | (          | )     |
| 4.0 | (A) double                | (B) three times                 | · · ·                                       | (D) no change               |            |       |
| 18  | -                         |                                 | and recast into the sl                      | nape of a solid             | cone of he | eight |
|     |                           | of the base of the c            | _                                           | r                           | (          | )     |
|     | (A) r                     | (B) $2r$                        | (C) $r^2$                                   | $(D)\frac{r}{2}$            |            |       |
| 19  | .The volume of a l        | largest sphere that             | can be cut from cylin                       | ndrical log of w            | ood of ba  | se    |
|     | radius 1 m and he         | eight 4 m is                    |                                             |                             | (          | )     |
|     | $(A) \frac{8}{3} \pi m^3$ | (B) $\frac{10}{3} \pi m$        | $(C)\frac{16}{3}\pi m^3$                    | $(D)^{\frac{4}{3}}\pi \eta$ | $n^3$      |       |
| 20  | .Total surface area       | -                               | em2, it's volume is (C) 196 cm <sup>3</sup> | -                           |            | )     |
|     | (A) $216 \text{ cm}^3$    | (B) $144 \text{ cm}^3$          | (C) $196 \text{ cm}^3$                      | (D) $212 \text{ cm}^3$      | •          | •     |

## 4.HomeAssignment

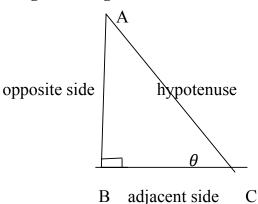
- 1. Find the ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height.
- 2. A cone and a sphere have equal radii and equal volume. What is the ratio of the diameter of the sphere to the height of the cone?
- 3. What is the ratio of the volume of a cube to that of a sphere which will fit exactly inside the cube?
- 4. A solid cylinder of radius *r* and height *h* is placed over other cylinder of same height and radius. Find the total surface area of the shape so formed.
- 5. What is the ratio of the volume of a cube to that of a sphere which will fit exactly inside the cube?
- 6. Determine the ratio of the volume of a cube to that of a sphere which with exactly fit inside the cube?
- 7. Find the ratio of the volumes of two circular cones. If  $r_1: r_2 = 3: 5$  and  $h_1: h_2 = 2: 1$
- 8. 2cubes each of volume 64cm3 are joined end to end. Find the surface area of the resulting cuboid.
- 9. What is the height of a cone whose base area and volume are numerically equal?
- 10.A cylinder, a cone and a hemisphere are of same base and of same height. Find the ratio of their volumes?
- 11. Three metallic solid cubes whose edges are 3cm, 4cm, and 5cm are melted and converted into a single cube . Find the edge of the cube so formed?
- 12. The volume and surface area of a sphere are numerically equal. Find the radius of the sphere?
- 13. The diameter and height of a cylinder and a cone are equal. What is the ratio of their volume.?
- 14. A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio in their volumes?
- 15. The volume of cube is 8a<sup>3</sup>. Find its surface area.?

### 11.TRIGONOMETRY

## 1.Concepts

#### 1. Trigonometric ratios of an acute angle of right angled triangle:

$$\sin \theta = \frac{The \ side \ opposite \ to \ \angle \theta}{hypotenuse}$$


$$\cos \theta = \frac{The \ side \ adjacent \ to \ \angle \theta}{hypotenuse}$$

$$\tan \theta = \frac{The \ side \ opposite \ to \ \angle \theta}{The \ side \ adjacent \ to \ \angle \theta}$$

$$\operatorname{Cosec} \theta = \frac{1}{\sin \theta} = \frac{hypotenuse}{The \ side \ opposite \ to \ \angle \theta}$$

$$\operatorname{Sec} \theta = \frac{1}{\cos \theta} = \frac{hypotenuse}{The \ side \ adjacent \ to \ \angle \theta}$$

$$\operatorname{Cot} \theta = \frac{1}{\tan \theta} = \frac{The \ side \ adjacent \ to \ \angle \theta}{The \ side \ opposite \ to \ \angle \theta}$$



#### 2. Relationship between different trigonometric ratios:

$$\text{Cosec } \theta = \frac{1}{\sin \theta} \\
 \text{Sec } \theta = \frac{1}{\cos \theta} \\
 \text{Cot } \theta = \frac{\cos \theta}{\sin \theta} \\
 \text{Cot } \theta = \frac{1}{\tan \theta}$$

### 3. Table of values of various trigonometric ratios of 0°, 30°, 45°, 60° and 90°.

| T Ratios      | $0_0$       | $30^{0}$             | 45 <sup>0</sup>      | $60^{0}$             | $90^{0}$    |
|---------------|-------------|----------------------|----------------------|----------------------|-------------|
| $\sin \theta$ | 0           | 1_                   | 1                    | $\sqrt{3}$           | 1           |
|               |             | 2                    | $\sqrt{2}$           | 2                    |             |
| $\cos \theta$ | 1           | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0           |
| Tan $\theta$  | 0           | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | Not defined |
| Cosec θ       | Not defined | 2                    | $\sqrt{2}$           | $\frac{2}{\sqrt{3}}$ | 1           |
| Sec θ         | 1           | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$           | 2                    | Not defined |
| Cot $\theta$  | Not defined | $\sqrt{3}$           | 1                    | $\frac{1}{\sqrt{3}}$ | 0           |

### 4. Trigonometric Identities.

$$\sin^2\theta + \cos^2\theta = 1 \text{ or } \sin^2\theta = 1 - \cos^2\theta \text{ or } \cos^2\theta = 1 - \sin^2\theta$$

$$\sec^2\theta - \tan^2\theta = 1 \text{ or } 1 + \tan^2\theta = \sec^2\theta \text{ or } \tan^2\theta = \sec^2\theta - 1$$

$$\csc^2\theta - \cot^2\theta = 1 \text{ or } \csc^2\theta = 1 + \cot^2\theta \text{ or } \cot^2\theta = \csc^2\theta - 1$$

5. Trigonometric ratios of complementary angles

$$\sin(90^{\circ} - \theta) = \cos\theta,$$

$$\cos (90^{\circ} - \theta) = \sin \theta$$

$$\tan (90^{\circ} - \theta) = \cot \theta,$$

$$\cot (90^{\circ} - \theta) = \tan \theta$$

$$\sec (90^{\circ} - \theta) = \csc \theta,$$

$$\csc (90^{\circ} - \theta) = \sec \theta$$

## 2.Oral Questions

- 1. Say all trigonometric ratios w.r.t ∠A?
- 2. Say  $\tan\theta$  in terms of  $\sin\theta$  and  $\cos\theta$ ?
- 3. Say  $\cot \theta$  in terms of  $\sin \theta$  and  $\cos \theta$ ?
- 4. The value of  $\sin 45^{\circ}$ ?
- 5. The value of  $\sin 30^{\circ}$ ?
- 6. The value of  $\cos 45^{\circ}$ ?
- 7. The value of  $\tan 45^{\circ}$ ?
- 8. The value of  $\sec 90^{\circ}$ ?
- 9. The value of  $\cot 60^{\circ}$ ?
- 10. The value of  $\sin^2 45^0 + \cos^2 45^0$ ?
- 11. The value of  $\sec^2 30^0 \tan^2 30^0$ ?
- 12. The value of  $\csc^2 60^0 \cot^2 60^0$ ?
- 13. The value of  $\sin (90^{\circ} \theta)$
- 14. The value of  $\cos (90^{\circ} \theta)$
- 15. The value of  $\tan (90^{\circ} \theta)$
- 16. The value of  $\cot (90^{\circ} \theta)$
- 17. The value of  $\sec (90^{\circ} \theta)$
- 18. The value of cosec  $(90^{\circ} \theta)$

## 3. Multiple Choice Questions

- 1. If  $\cos A = 4/5$ , then the value of  $\tan A$  is ) (C) 4/3
- (B) 3/4(A) 3/52. If  $\sin \theta = ab$ , then  $\cos \theta$  is equal to

)

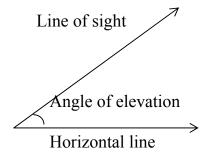
- $(A) \frac{b}{\sqrt{a^2 + b^2}}$
- (B)  $\frac{a}{\sqrt{a^2+b^2}}$
- $(C)\frac{b}{a}$
- (D)  $\frac{\sqrt{a^2+b^2}}{b}$

(D) 5/3

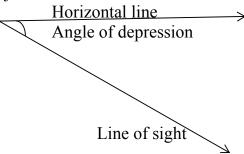
| 3. | The value of tan A                   | is always less than                                              | 1                                              |                        | (     | ) |
|----|--------------------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------|-------|---|
|    | (A) false                            |                                                                  | (B) true                                       |                        |       |   |
|    |                                      | e, sometimes false                                               | (D) none of the ab                             | ove                    |       |   |
| 4. | Maximum value o                      |                                                                  | (0)                                            | (7)                    | (     | ) |
|    |                                      | (B) less than 1                                                  | · · · <del>-</del>                             | (D) none of these      |       |   |
| 5. |                                      | f sin $\theta$ , where $\theta$ is a                             |                                                |                        | (     | ) |
|    |                                      | (B) more than 1                                                  |                                                | (D) less than 1        |       |   |
| 6. | If 4 $\tan \theta = 3$ , then        | $\frac{4sin\theta-cos\theta}{4sin\theta+cos\theta}$ is equal     | to                                             |                        | (     | ) |
|    | (A) $2/3$                            |                                                                  | (C) 1/2                                        | (D) $\frac{3}{4}$      |       |   |
| 7. |                                      | gle such that $\sec^2\theta =$                                   |                                                |                        | )     |   |
|    | (A) 4/7                              | (B) 3/7                                                          | (C) 2/7                                        | (D) 1/7                | ,     |   |
| 8  | $\sin \theta = 4/3$ for som          | ` '                                                              |                                                |                        | (     | ) |
| 0. | (A) true                             | ie angle o, is                                                   |                                                | (B) false              | (     | , |
|    | ` '                                  | le to say anything a                                             | bout it definitely                             | (D) neither (A) no     | r (B) |   |
| 9  | ` '                                  | $\cos^2\theta - \sin^2\theta$ is equ                             | •                                              | (2) 110101101 (12) 110 | (2)   | ) |
| ٦. |                                      | (B) 1                                                            | (C) - 7/25                                     | (D) 4/25               | (     | , |
| 10 | ` ′                                  | ` ′                                                              | ` /                                            | (D) 1/23               | (     | ` |
| 10 |                                      | the value of cot A : $(D) 1/\sqrt{2}$                            | •                                              | (D) 1                  | (     | ) |
|    |                                      |                                                                  | (C) $\sqrt{3/2}$                               | (D) 1                  |       |   |
| 11 | If $a = b \tan \theta$ , then        | $\frac{asin\theta + bcos\theta}{asin\theta - bcos\theta} =$      |                                                |                        | (     | ) |
|    | $(A)\frac{a^2+b^2}{a^2-b^2}$         | (B) $\frac{a^2-b^2}{a^2-b^2}$                                    | $(C)\frac{a+b}{a-b}$                           | (D) $\frac{a-b}{a+b}$  |       |   |
| 10 | e b                                  | 00 I D                                                           | u b                                            | a+b                    | `     |   |
| 12 |                                      | the value of (tan $\theta$                                       |                                                | (D) 2                  | )     |   |
|    | (A) $1$                              | (B) 1/2                                                          | (C) 2                                          | (D) $-2$               |       |   |
| 13 | $-\frac{1-\sin^2 45}{1+\sin^2 45} =$ |                                                                  |                                                |                        | (     | ) |
|    |                                      | (B) sin 60°                                                      | (C) tan 30°                                    | (D) sin 30°            |       |   |
| 14 | The value of (sin 3                  | $30^{\circ} + \cos 30^{\circ}$ ) – (sir                          | $160^{\circ} + \cos 60^{\circ}$ ) is           |                        | (     | ) |
|    |                                      | (B) 0                                                            |                                                | (D) 2                  |       |   |
|    | The value of (sin 4                  |                                                                  |                                                |                        | (     | ) |
|    | (A) $1/\sqrt{2}$                     |                                                                  | (C) $\sqrt{3/2}$                               | (D) 1                  |       |   |
| 16 | \ /                                  | $^{\circ} = \sin 60^{\circ} \cdot \cot 60^{\circ}$               |                                                |                        | (     | ) |
| 10 | (A) 1                                | (B) $\sqrt{3}$                                                   | (C) 1/2                                        | (D) $1/\sqrt{2}$       | (     | , |
| 17 | The value of tan30                   | ` '                                                              | (0) 1/2                                        | (D) 1/ <b>V</b> 2      | (     | ) |
| -, | -                                    | (B) $1/\sqrt{3}$                                                 | (C) $\sqrt{3}$                                 | (D) 1                  | (     | , |
| 18 | The value of sin45                   | ` /                                                              | (C) V3                                         | (D) 1                  | (     | ) |
| 10 | (A) 1                                | (B) 12                                                           | (C) $\sqrt{2}$                                 | (D) none of these      | (     | , |
| 19 | ` /                                  | $45^{\circ} \cos 30^{\circ} + \cos 45^{\circ}$                   | \ <i>\</i>                                     | (D) none of these      | (     | ) |
| 1) |                                      |                                                                  |                                                | <u>-</u><br>3–1        | (     | , |
|    | $(A)\frac{\sqrt{3}+1}{\sqrt{2}}$     | (B) $\frac{\sqrt{3}}{\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2\sqrt{3}}$ | $\frac{+1}{\sqrt{2}}$ (D) $\frac{\sqrt{3}}{2}$ | $\sqrt{2}$             |       |   |
| 20 | The value of (sin 3                  | $30^{\circ}\cos 60^{\circ} + \cos 30^{\circ}$                    | · · · · · · · · · · · · · · · · · · ·          |                        | (     | ) |
|    | (A) Sin 90°                          | (B) Cos 90°                                                      | (C) Sin 0°                                     | (D) Cos $30^{\circ}$   |       |   |
| 21 | $\frac{1-\sin 60}{=}$                |                                                                  |                                                |                        | (     | ) |

```
(A) \sin 60^{\circ}
                              (B) Sin 30°
                                                         (C) Sin 90°
                                                                                    (D) \sin 0^{\circ}
22. The value of 3\sin 30^{\circ} - 4\sin^3 30^{\circ} is
                                                                                                                       )
    (A) 1
                                                         (C) 2
                               (B) 0
                                                                                    (D) 1/2
23. The value of sin18°/cos72° is
                                                                                                                       )
    (A) 1
                                                         (C) -1
                                                                                    (D) \frac{1}{2}
24.\cos 48^{\circ} - \sin 42^{\circ} is
                                                                                                                       )
    (A) 1
                                                         (C) -1
                                                                                    (D) \frac{1}{2}
                               (B) 0
25. The value of \tan 80^{\circ} . \tan 75^{\circ} . \tan 15^{\circ} . \tan 10^{\circ} is
                                                                                    (D) None Of These
    (A) -1
                               (B) 0
                                                         (C) 1
26. The value of tan26°/cot64° is
                                                                                    (D) None Of These
    (A) 0
                                                         (C) -1
                               (B) -1
27.\cos 23^{\circ} - \sec 59^{\circ} is equal to
                               (B) 1
                                                         (C) -1
                                                                                    (D) \frac{1}{2}
28. The value of (tan 2° tan 4° tan 6° ... tan 88°) is
                                                                                    (D) Not Defined
    (A) 1
                               (B) 0
                                                         (C) 2
29.tan (40^{\circ} + \theta) – cot (40^{\circ} - \theta) is equal to
                               (B) 0
                                                                                    (D) 12
30. The value of \sin (50^{\circ} + \theta) - \cos (40^{\circ} - \theta) is
                               (B) 2
                                                         (C) 1/2
                                                                                    (D) 0
31. The value of the expression cosec (75^{\circ} + \theta) – sec (15^{\circ} - \theta) – tan (55^{\circ} + \theta) + cot (35^{\circ} - \theta)
    \theta) is
    (A) - 1
                               (B) 0
                                                         (C) 1
                                                                                    (D) 32
32.\sin{(45^{\circ} + \theta)} - \cos{(45^{\circ} - \theta)} is equal to
                                                                                                                       )
    (A) 2 Cosec \theta
                               (B) 0
                                                         (C) \sin \theta
                                                                                    (D) 1
33.9 \sec^2\theta - 9 \tan^2\theta is equal to
    (A) 1
                               (B)9
                                                         (C) 8
                                                                                    (D) 0
34.If \sin A = 8/17 and A is acute, then \cot A is equal to
    (A) 15/8
                               (B) 15/17
                                                         (C) 8/15
                                                                                    (D) 17/8
35.(\csc^2 72^\circ - \tan^2 18^\circ) is equal to
    (A) 0
                               (B) 1
                                                         (C) 3/2
                                                                                    (D) None Of These
36. If x = \sec \theta + \tan \theta, then \tan \theta is equal to
                                                                                                                       )
                               (B) \frac{x^2-1}{}
37.\tan^2\theta \sin^2\theta is equal to
                                                                                                                       )
    (A) Tan^2\theta - Sin^2\theta(B) Tan^2\theta + Sin^2\theta(C) Tan^2\theta Sin^2\theta
                                                                                    (D) None Of These
38. If \cos \theta - \sin \theta = 1, then the value of \cos \theta + \sin \theta is equal to
                                                         (C) \pm 2
    (A) \pm 4
                               (B) \pm 3
                                                                                    (D) \pm 1
39 \frac{1+tan^2 \theta}{\theta}
                                                                                                                       )
     1+cot^2\theta
     (A) Sec^2 \theta
                                                         (C) \cot^2 \theta
                                                                                    (D) Tan^2 \theta
                              (B) - 1
40.(\sec^2 10^\circ - \cot^2 80^\circ) is equal to
    (A) 1
                                                         (C) 2
                               (B) 0
                                                                                    (D) 12
41. The value of \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} =
                                                                                                                       )
    (A) \cot \theta - \csc \theta (B) \csc \theta + \cot \theta (C) \csc^2 \theta + \cot^2 \theta (D) \cot \theta + \csc^2 \theta
```

```
)
(A) \frac{1+\cos\theta}{\sin\theta} (B) \frac{1-\cos\theta}{\sin\theta} (C) \frac{1+\cot\theta}{\sin\theta}
43. If x = a \cos \alpha and y = b \sin \alpha, then b^2x^2 + a^2y^2 is equal to
                                                                                                                             )
    (A) a^2b^2
                                                            (C) a^4b^4
                                (B) ab
44.\sqrt{(1+\sin\theta)(1-\sin\theta)}
                                                                                                                             )
                          (B) \sin^2 \theta
     (A) \sin \theta
                                                            (C) \cos^2\theta
                                                                                        (D) \cos \theta
45.\left[\frac{\sin^2 22 + \sin^2 68}{\cos^2 22 + \cos^2 68} + \sin^2 63 + \cos 63\sin 27\right] =
                                                                                                                             )
                                                            (C) 0
                                                                                        (D) None Of These
46.If \cos 9\alpha = \sin \alpha and 9\alpha < 90^{\circ}, then the value of \tan 5\alpha is
                                                                                        (D) Cannot Be Determined
                                (B) 1
                                                            (C) 3
47. If cot A=12/5, then the value of (\sin A + \cos A) \times \csc A is
     (A) 13/5
                                (B) 17/5
                                                            (C) 14/5
                                                                                        (D) 1
48.cos 1°, cos 2°, cos 3°, ...... cos 180° is equal to
                                                                                                                             )
                                (B) 0
                                                            (C) 1/2
                                                                                        (D) -1
     (A) 1
49.5 \csc^2 \theta - 5 \cot^2 \theta is equal to
                                                            (C) 0
     (A) 5
                                 (B) 1
                                                                                        (D) -5
50. If \sin \theta = \cos \theta, then value of \theta is
                                                                                                                             )
                                (B) 45^{\circ}
                                                            (C) 30^{\circ}
                                                                                        (D) 90^{\circ}
51.9 \sec^2 \theta - 9 \tan^2 \theta is equal to
                                                                                                                             )
     (A) 1
                                (B) -1
                                                            (C) 9
                                                                                        (D) -9
52. If \sin \theta + \sin^2 \theta = 1, the value of (\cos^2 \theta + \cos^4 \theta) is
                                (B) 2
                                                                                        (D) 0
53. If \csc\theta = 3/2, then 2 (\csc^2\theta + \cot^2\theta) is
                                                                                                                             )
                                                            (C)9
                                                                                        (D) 5
                                (B) 7
54.\text{If } x = 3 \sec^2 \theta - 1, y = \tan^2 \theta - 2, \text{ then } x - 3y \text{ is equal to}
                                                                                                                             )
    (A) 3
                                (B) 4
                                                                                        (D) 5
55.(\sec A + \tan A)(1 - \sin A) is equal to
                                                                                                                             )
     (A) secA
                                (B) tan A
                                                            (C) sin A
                                                                                        (D) cos A
56. If \sec \theta - \tan \theta = 1/3, the value of (\sec \theta + \tan \theta) is
                                                                                                                             )
     (A) 1
                                (B) 2
                                                            (C) 3
                                                                               (D) 4
57. The value of \frac{\cot 45}{\sin 30 + \cos 60}
                                                                                                                             )
                                (B) 1/\sqrt{2}
    (A) 1
                                                            (C) 2/3
                                                                                        (D) \frac{1}{2}
58.\text{If }\cos 3\theta = \frac{\sqrt{3}}{2}, 0 < \theta < 90 then the value of \theta is
                                                                                                                             )
    (A) 15^{\circ}
                                (B) 10^{\circ}
                                                            (C) 0^{\circ}
                                                                                        (D) 12^{\circ}
59.\triangle ABC is a right angled at A, the value of tan B \times \tan C is
                                (B) 1
                                                                                        (D) None Of These
60. If \sin_{\theta}\theta = 1/3 then the value of 2 \cot^2{\theta} + 2 is equal to
                                (B) 9
                                                                                        (D) 18
61. The value of tan 1°.tan 2°.tan 3°...... tan 89° is
                                                                                                                             )
     (A) 0
                                (B) 1
                                                            (C) 2
                                                                                        (D) 1/2
62. If \sin(A-B)=1/2 and \cos(A+B)=1/2 then the value of B is
                                (B) 60^{\circ}
                                                            (C) 15^{\circ}
                                                                                        (D) 0^{\circ}
     (A) 45^{\circ}
```


```
63. Value of (1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta) is
                                                                                                                        )
                                                                                     (D) -4
    (A) 1
                               (B) -1
64. The value of [\sin^2 20^\circ + \sin^2 70^\circ - \tan^2 45^\circ] is
     (A) 0
                               (B) 1
                                                          (C) 2
                                                                                     (D) -1
65. Given that \sin A = 1/2 and \cos B = 1/\sqrt{2} then the value of (A + B) is
                                                                                                                        )
                               (B) 45^{\circ}
    (A) 30^{\circ}
                                                          (C) 75^{\circ}
                                                                                     (D) 15^{\circ}
66. The value of \frac{\cos A}{\cot A} + \sin A
    (A) cotA
                               (B) 2 sin A
                                                          (C) 2 cos A
                                                                                     (D) sec A
67. If \tan 2A = \cot (A - 18^{\circ}), then the value of A is
                                                                                                                        )
    (A) 18^{\circ}
                               (B) 36^{\circ}
                                                          (C) 24^{\circ}
                                                                                     (D) 27^{\circ}
68. Expression of sin A in terms of cot A is
                                                                                                                        )
     (A) \frac{\sqrt{1+\cot^2 A}}{}
                               (B) \frac{1}{\sqrt{1+cot^2A}} (C) \frac{\sqrt{1-cot^2A}}{cotA} (D) \frac{1}{\sqrt{1-cot^2A}}
69. If A is an acute angle in a right \triangle ABC, right angled at B, then the value of \sin A + \cos ABC
    A is
    (A) equal to one (B) greater than one (C) less than one (D) equal to two
70. If \cos(\alpha + \beta) = 0, then \sin(\alpha - \beta) can be reduced to
    (A) \cos \beta
                               (B) \cos 2\beta
                                                          (C) \sin \alpha
                                                                                     (D) \sin 2\alpha
71. If \csc\theta - \cot\theta = 1/3 the value of (\csc\theta + \cot\theta) is
                                                                                                                        )
                               (B) 2
                                                          (C) 3
                                                                                     (D) 4
72. If \sin \theta = \cos \theta, then the value of \csc \theta is
                                                                                                                        )
                                                          (C) 2/\sqrt{3}
                                                                                     (D) \sqrt{2}
     (A) 2
                               (B) 1
73. If \sin 3\theta = \cos (\theta - 26^{\circ}), where 3\theta and (\theta - 26^{\circ}) are acute angles, then value of \theta is
                                                          (C) 27^{\circ}
    (A) 30^{\circ}
                               (B) 29^{\circ}
                                                                                     (D) 26^{\circ}
74. If \sin\alpha = 1/2 and \alpha is acute, then (3 \cos \alpha - 4 \cos^3 \alpha) =
    (A) 0
                               (B) 1/2
                                                          (C) 1/6
                                                                                     (D) -1
75. If 2\sin 2\theta = \sqrt{3} then the value of \theta is
     (A) 90^{\circ}
                               (B) 30^{\circ}
                                                          (C) 45^{\circ}
                                                                                     (D) 60^{\circ}
76.[\cos^4 A - \sin^4 A] is equal to
                               (B) 2 \cos^2 A - 1
                                                                                    (D) 2 \sin^2 A + 1
                                                          (C) 2 \sin^2 A - 1
    (A) 2 \cos^2 A + 1
77. The value of the expression [(\sec^2 \theta - 1)(1 - \csc^2 \theta)] is
                                                                                                                        )
    (A) -1
                               (B) 1
                                                          (C) 0
                                                                                     (D) \frac{1}{2}
78. If tan(A-B)=1/\sqrt{3} and sin A=1/\sqrt{2} then the value of B is
                                                                                                                        )
    (A) 45^{\circ}
                               (B) 60^{\circ}
                                                          (C) 0^{\circ}
                                                                                     (D) 15^{\circ}
79. In \triangle ABC right angled at B, \tan A = 1, the value of 2 \sin A \cos A is
                                                                                                                        )
    (A) - 1
                               (B) 2
                                                          (C) 3
                                                                                     (D) 1
80. If \sqrt{2}\sin(60 - \alpha) = 1then the value of \alpha is
                                                                                                                        )
     (A) 45^{\circ}
                               (B) 15^{\circ}
                                                          (C) 60^{\circ}
                                                                                     (D) 30^{\circ}
81.\sin(60^{\circ} + \theta) - \cos(30^{\circ} - \theta) is equal to
                                                                                                                        )
     (A) 2 \cos \theta
                               (B) 2 \sin \theta
                                                          (C) 0
                                                                                     (D) 1
```

## **4.Home Assignment**


- 1. State whether the following are true or false. Justify your answer.
  - (i)  $\sin(A + B) = \sin A + \sin B$ .
  - (ii) The value of  $\sin \theta$  increases as  $\theta$  increases.
  - (iii) The value of  $\cos \theta$  increases as  $\theta$  increases.
  - (iv)  $\sin \theta = \cos \theta$  for all values of  $\theta$ .
  - (v)  $\cot A$  is not defined for  $A = 0^{\circ}$ .
- 2. If  $A = 30^{\circ}$  and  $B = 60^{\circ}$ , verify that :
  - (i)  $\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$
  - (ii)  $\cos (A + B) = \cos A \cdot \cos B \sin A \cdot \sin B$ .
- 3. If  $\sin 5A = \cos 4A$ , where 5A and 4A are acute angles, find the value of A.?
- 4. Express  $\sin 67^{\circ} + \cos 75^{\circ}$  in terms of trigonometric ratios of angles between  $0^{\circ}$  and  $45^{\circ}$ .?
- 5. If  $\tan A = \cot B$ , prove that  $A + B = 90^{\circ}$ .?
- 6. Given that  $\sin (A + B) = \sin A \cos B + \cos A \sin B$ , find the value of  $\sin 75^{\circ}$ ?
- 7. If  $\cos A = 7/25$  find the value of  $\tan A + \cot A$ ?
- 8. Prove that  $\sin^6 A + \cos^6 A + 3 \sin^2 A \cos^2 A = 1.$ ?
- 9. If  $x = aSec\theta + b tan\theta$ ,  $y = atan\theta + bsec\theta$  then prove that  $x^2 y^2 = a^2 b^2$ ?
- 10. Prove that  $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$ ?
- 11. If  $\sin \theta + \cos \theta = 1$ , prove that  $(\cos \theta \sin \theta) = \pm 1$ ?
- 12. If cosec  $\theta + \cot \theta = p$ , show that  $\cos \theta = \frac{P^2 1}{P^2 + 1}$ ?
- 13. Prove that :  $\cos^4\theta \cos^2\theta = \sin^4\theta \sin^2\theta$ .?
- 14. If  $\sec \theta \tan \theta = 4$ , then prove that  $\cos \theta = 8/17$ ?
- 15. Prove that  $\sin^6\theta + \cos^6\theta = 3 \sin^2\theta \cos^2\theta$ .?

## 1.Concepts

- **❖ Line of sight :** When an observer looks from a point O at an object P, then the line OP is called the *line of sight*.
- ❖ The angle of elevation of an object viewed, is the angle formed by the line of sight with the horizontal when it is above the horizontal level. i.e. the case when we raise our head to look the object.



❖ The angle of depression of an object viewed, is the angle formed by the line of sight with the horizontal when it is below the horizontal level. i.e., the case when we lower our head to look at the object.



- 1. What is an angle of elevation?
- 2. What is an angle of depression?
- 3. Draw an angle of elevation?
- 4. Draw an angle of depression?
- 5. The length of the shadow of a man is equal to the height of man. What is the angle of elevation?

# **3.Multiple Choice Questions**

| 1.    | The length of the s  | shadow of a man is          | equal to the             | height of                       | man. The ang         | le of      |          |
|-------|----------------------|-----------------------------|--------------------------|---------------------------------|----------------------|------------|----------|
|       | elevation is         |                             | -                        | -                               | _                    | (          | )        |
|       | (A) $90^{\circ}$     | (B) $60^{\circ}$            | (C) 45°                  | (I                              | O) 30°               |            |          |
| 2.    | The length of the s  | shadow of a pole 30         | m high at so             | me instan                       | t is $10\sqrt{3}$ m. | The angle  | e of     |
|       | elevation of the su  |                             | _                        |                                 |                      | (          | )        |
|       | $(A) 30^{\circ}$     | (B) 60°                     | (C) 45°                  | (I                              | O) 90°               | ·          |          |
| 3.    | Find the angle of o  | depression of a boat        | t from the br            | idge at a h                     | orizontal dist       | ance of 2  | 5m       |
|       | from the bridge, if  | the height of the b         | ridge is 25m             |                                 |                      | (          | )        |
|       | (A) $45^{\circ}$     | (B) $60^{\circ}$            | (C) 30°                  | (I                              | O) 15°               |            |          |
| 4.    |                      | oles of height 10m a        |                          |                                 | d with wire. If      | wire mal   | kes      |
|       | an angle of 30° wi   | th horizontal, then         | _                        |                                 |                      | (          | )        |
|       | (A) 10m              | (B) 18m                     | (C) 12m                  | `                               | O) 16m               |            |          |
| 5.    | <del>-</del>         | away from the foot          |                          | r, the angl                     | e of elevation       | of the to  | p of     |
|       |                      | he height of the tov        |                          | 4.0                             |                      | (          | )        |
|       | (A) $20\sqrt{3}$     | (B) $40\sqrt{3}$            | $(C)\frac{20}{\sqrt{3}}$ | (D) $\frac{40}{\sqrt{2}}$       |                      |            |          |
| 6     |                      | ngth of a tree and it       | V S                      | . ,                             | ngle of elevat       | ion of the | ciin     |
| 0.    |                      | ingth of a tree and it      | s snadow is              | $1.\overline{\sqrt{3}}$ The $a$ | ligic of cicvat      | ion or unc | Sum      |
|       | is                   | (D) 450                     | (0) (00                  | (Τ                              | 2) 000               | (          | )        |
| _     | (A) 30°              | ` /                         | (C) 60°                  | •                               | O) 90°               |            |          |
| 7.    |                      | a height of $50 \sqrt{3} m$ |                          | -                               | nd, attached to      | string     | ,        |
|       |                      | the horizontal, the l       | •                        | •                               |                      | (          | )        |
| 0     | (A) 100 m            | (B) 50 m                    | (C) 150 m                | (                               | O) 75 m              | 1 41       |          |
| 8.    |                      | t a height of 10 m a        |                          |                                 |                      |            | `        |
|       | _                    | an angle of 30° wi          |                          |                                 | _                    | iree is(   | )        |
| 0     | (A) 30 m             | ` '                         | (C) 10 m                 | `                               | D) 15 m              | of alayati | on       |
| 9.    | of the sun.          | tree is times the he        | agiit or the ti          | ice, men i                      | ind the angle        | oi cicvati | 1011     |
|       | (A) 30°              | (B) 45°                     | (C) 60°                  | (I                              | O) 90°               | (          | ,        |
| 10    |                      | tions of a building         | · /                      |                                 |                      | nd 16m a   | waw      |
| 10    |                      | e building are com          |                          |                                 |                      |            | way<br>) |
|       | (A) 18 m             | (B) 16 m                    | (C) 10 m                 | _                               | D) 12 m              | 15 15(     | ,        |
| 11    | ` /                  | casts a shadow 10 r         | ` /                      | `                               | ,                    | s elevatio | n is     |
|       | (A) $60^{\circ}$     | (B) 45°                     | $(C) 30^{\circ}$         | _                               | D) 90°               | (          | )        |
| 12    | · /                  | ation of the top of a       | ` /                      | (                               | ,                    | n the grou | nd       |
|       | -                    | e of the point from         | _                        | _                               | -                    | (          | )        |
|       | (A) 100 m            | (B) 50 m                    | (C) 45 m                 |                                 | O) 60 m              | `          |          |
| 13    | .A tree 6 m tall cas | ts a 4 m long shado         | w. At the sa             | me time a                       | pole casts a s       | shadow 10  | ) m      |
|       | long. The height o   | _                           |                          |                                 | -                    | (          | )        |
|       | (A) 40 m             | (B) 20 m                    | (C) 15 m                 | (I                              | O) 10 m              |            |          |
| 14    | _                    | by the line of sight        |                          | rizontal, w                     | then the point       | being vie  | ewed     |
|       |                      | ontal level is called       |                          |                                 |                      | (          | )        |
|       | (A) Vertical Angle   |                             | (B) Angle (              | -                               | sion                 |            | (C)      |
| Angle | Of Elevation         | (D) C                       | Obtuse Angle             | 2                               |                      |            |          |

15.If sun's elevation is 60°, then a pole of height 6 m will cast a shadow of length (A)  $6\sqrt{3}$ m (B) $\sqrt{3}$  m (C)  $2\sqrt{3}$ m (D)  $3\sqrt{2}$  m

## 4.Home Assignment

- 1. A tower stands vertically on the ground. From a point on the ground which is 60 m away from foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.?
- 2. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.?
- 3. A tower stands vertically on the ground. From a point on the ground which is 15 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.?
- 4. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree. ?
- 5. A kite is flying at a height of 90 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string assuming that there is no slack in the string.?
- 6. A player sitting on the top of a tower of height20 m observes the angle of depression of a balllying on the ground as 60°. Find the distancebetween the foot of the tower and the ball?
- 7. The shadow of a tower is 30 m long, when thesun's elevation is 30°. What is the length of theshadow, when sun's elevation is 60°?
- 8. The angle of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it are complementary. Prove that the height of tower is  $\sqrt{ab}$ ?
- 9. An aeroplane, when 300 m high, passes vertically above another plane at an instant when the angle of elevation of two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the two planes.?
- 10. The angle of elevation of a bird from a point 12 metres above a lake is 30° and the angle of depression of its reflection in the lake is 60°. Find the distance of the bird from the point of observation.?

#### 13.PROBABILITY

## 1.Concepts

- The science which measures the degree of uncertainty is called **probability**.
- There are two types of approaches to the study of probability. These are experimental or empirical approach and theoretical approach.
- In the experimental approach to probability, we find the probability of the occurrence of an event by actually performing the experiment a number of times and record the happening of an event.
- In the theoretical approach to probability, we predict the results without actually performing the experiment.
- The observations of an experiment are called its **outcomes**.
- An experiment in which all possible outcomes are known and the exact outcome cannot be predicted in advance, is called a **random experiment**.
- The word **unbiased** means each outcome is equally likely to occur. For example, an unbiased die indicates that each of the outcomes 1, 2, 3, 4, 5 or 6 has equal chances to occur. Throughout this chapter, we shall assume that all the experiments have equally likely outcomes.
- The theoretical probability of an event E, written as P(E) is defined as  $P(E) = \frac{Number\ of\ outcomes\ favourable\ to\ E}{Total\ number\ of\ all\ possible\ out\ comes\ of\ the\ experminant}$
- An event having only one outcome of the experiment is called an elementary event.
- The sum of the probabilities of all the elementary events of an experiment is 1. In general for any event E

$$P(E) = 1 - P(\text{not } E) = 1 - P(\bar{E})$$
  
or  $P(\bar{E}) = 1 - P(E)$ or  $P(E) + P(\bar{E}) = 1$ 

Here the event  $\bar{E}$ , representing not E, is called the compliment of the event E.

- The probability of the event which is impossible to occur is 0. Such an event is called an **impossible event**.
- The probability of an event which is sure (or certain) to occur is 1. Such an event is called a **sure** or a **certain event**
- For an event E, we have 0 < P(E) < 1.
- A die is a well balanced cube with its six facesmarked with numbers or dots 1 to 6. When wethrow a die we are interested in the number that occurs on the top face.
- The pack or deck of playing cards consists of 52 cards, 26 of red colour and 26 of black colour. There are four suits each of 13 cards namely hearts (♥), spades (♠), diamonds (♠) and clubs (♣). Each suit contains ace, king, queen, jack or knave, 10, 9, 8, 7, 6, 5, 4, 3, 2. There are 4 aces, 4 kings, 4 queens, 4 jacks, 4 tens, and so on in a pack. Kings, queens, and jacks are called face cards.

| 1.         | 1. If E is an event then $P(E) + P(\overline{E})$ ?                            |                           |           |
|------------|--------------------------------------------------------------------------------|---------------------------|-----------|
| 2.         | 2. Write the probability of a sure event. ?                                    |                           |           |
|            | 3. What is the probability of an impossible event. ?                           |                           |           |
|            | 4. When a dice is thrown, then find the probability of getting                 | an odd number less tha    | n 3.      |
|            | 5. Two coins are tossed simultaneously. Find the probabil                      |                           |           |
|            | head.?                                                                         |                           |           |
| 6.         | 6. A card is drawn from a well suffled deck of 52 cards. Fin an ace.?          | d the probability of ge   | tting     |
| 7.         | 7. Find the probability of getting the letter M in the word "MA                | ATHEMATICS".?             |           |
|            | 3. A die is rolled once. What is the probability of getting a pri              |                           |           |
|            | 9. Two coins are tossed simultaneously. What are all thepossis                 |                           |           |
|            | 10. If a letter of English alphabet is chosen at random, then fin              |                           | ie.       |
| 1 (        | letter is a consonant?                                                         | dine productinty that the |           |
|            |                                                                                | •                         |           |
|            | 3. Multiple Choice Questi                                                      | <u>ions</u>               |           |
| 1.         | If E is an event then $P(E) + P(E) = \dots$ ?                                  | (                         | )         |
| 2          |                                                                                | <b>D)</b> –1              | `         |
| 2.         | The probability of an event that is certain to happen is (A) 0 (B) 2 (C) 1 (I) | ) 1                       | )         |
| 3          | (A) 0 (B) 2 (C) 1 (I<br>. If P(E) is 0.65 what is P (Not E)?                   | D) -1                     | )         |
| ٦.         |                                                                                | 0) 0                      | ,         |
| 4.         | . A bag contains 9 Red and 7 blue marbles. A marble is taken                   | /                         | the       |
|            | P (red marble)?                                                                | (                         | )         |
|            | (A) $\frac{7}{16}$ (B) $\frac{9}{16}$ (C) $\frac{18}{16}$ (D) $\frac{14}{16}$  | `                         | ,         |
| 5          | The probability of an impossible event is                                      | (                         | )         |
| <i>J</i> . |                                                                                | ) ∝                       | ,         |
| 6          | . If a letter of English alphabet is chosen at random, then the                | ,                         | er is     |
| ••         | a consonant is                                                                 | (                         | )         |
|            | (A) $\frac{5}{26}$ (B) $\frac{21}{26}$ (C) $\frac{10}{13}$ (D) $\frac{11}{13}$ |                           | ,         |
| 7          | . If two coins are tossed simultaneously, then the probability                 | of getting at least one k | nead      |
| 1.         | is                                                                             | or getting at least one r | icau<br>) |
|            | 2 1 1                                                                          | 0) 1                      | ,         |
| 8.         | . Two dice are thrown simultaneously. Probability of getting                   | a prime number on bot     | h         |
|            | dice is                                                                        | (                         | )         |
|            | (A) $\frac{5}{18}$ (B) $\frac{2}{9}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$       |                           |           |
| 9.         | . Two coins are tossed together. The probability of getting he                 | ad on both is (           | )         |
| *          | 3 1 1                                                                          | D) 0                      | /         |
| 10         | 0. The probability that a leap year has 53 Sundays is                          | (                         | )         |
| 10.        |                                                                                | ) <sup>4</sup>            | J         |
|            | (A) $\frac{1}{7}$ (B) $\frac{2}{7}$ (C) $\frac{3}{7}$                          | $(0)\frac{4}{7}$          |           |

| 11. The probability             | or getting a number    | er between 3 and 10   | o which is divisible i                       | oy / 1s  |        |
|---------------------------------|------------------------|-----------------------|----------------------------------------------|----------|--------|
| $(A)\frac{1}{7}$                | (B) $\frac{29}{98}$    | $(C)^{\frac{25}{98}}$ | (D) $\frac{23}{98}$                          | (        | )      |
| 12.In a throw of a              | pair of dice, what is  | s the probability of  | getting a doublet ?                          | (        | )      |
| $(A)\frac{1}{3}$                | (B) $\frac{1}{6}$      | $(C)\frac{5}{12}$     | (D) $\frac{2}{3}$                            |          |        |
| 13.A bag contains               | cards which are nu     | mbered from 2 to 9    | 0. A card is drawn at                        | rando    | m      |
| from the bag. T                 | The probability that   | it bears a two digit  | number is                                    | (        | )      |
| (A) 88/92                       | (B) 88/90              | (C) 81/89             | (D) 89/90                                    |          |        |
| 14. Which of the fo             | ollowing cannot be     | the probability of a  | n event?                                     | (        | )      |
| (A) 0                           | (B) 1/5                | (C) 5/4               | (D) 1                                        |          |        |
| 15. From a pack of              | 52 playing cards, a    | card is drawn at ra   | ndom. The probabili                          | ty, that | the    |
| drawn card is n                 | ot a face card is      |                       |                                              | (        | )      |
| (A) $3/13$                      | (B) 9/13               | (C) 10/13             | (D) $\frac{3}{4}$                            |          |        |
| 16. The probability             | of getting a prime     | number in single th   | row of a dice is                             | (        | )      |
| (A) Zero                        | (B) 1/3                | $(C) \frac{1}{2}$     | (D) $\frac{1}{4}$                            |          |        |
| 17. The probability             | of drawing a green     | coloured ball from    | a bag containing 6 r                         | ed and   | . 5    |
| black balls is                  |                        |                       |                                              | (        | )      |
| (A) 0                           | (B) 1                  | (C)5/11               | (D) 6/11                                     |          |        |
| 18. The sum of pro              | bability of all the e  | vents of an experim   | ent is                                       | (        | )      |
| (A) $2/3$                       | (B) 3                  | (C) 1                 | (D) 2                                        |          |        |
| 19. The probability             | of guessing the con    | rrect answer to certa | ain question is $p/12$ .                     |          |        |
| If the probabili                | ty of not guessing the | he correct answer to  | same question is <sup>3</sup> / <sub>4</sub> | ,        |        |
| the value of $p$ is             | S                      |                       |                                              | (        | )      |
| (A) 3                           | (B) 4                  | (C) 2                 | (D) 1                                        |          |        |
| 20. Two coins are t             | tossed simultaneous    | sly. All the possible | outcomes are                                 | (        | )      |
| (A) H, T                        | (B) HH, TT             | (C) HT, TT            | (D) HH, HT, TH                               | I, TT    |        |
|                                 |                        |                       |                                              |          |        |
|                                 | 4 110                  | a Aggignoma           |                                              |          |        |
|                                 | <u>4.H0III</u>         | <u>ie Assignmen</u>   | <u>ll</u>                                    |          |        |
| 1. A die is thrown less than 6? | once. Find the pro     | bability of getting ( | a) a prime number (b                         | ) a nur  | nber   |
| 2. A game of char               | nce consists of spin   | ning an arrow which   | h comes to rest point                        | ing at o | one of |
| •                               | -                      | _                     | likely outcomes. Wh                          | _        |        |
|                                 | t it will point at (a) |                       |                                              |          |        |
|                                 | what is the probabili  | •                     |                                              |          |        |
|                                 | •                      | •                     | 2 heads (ii) 2 tails (iii                    | i) 3 hea | ads.?  |
|                                 |                        | • , ,                 | balls. One ball is tak                       |          |        |

the box at random. What is the probability that ball is (i) red; (ii) white; (iii) Not green.

### 14.STATISTICS

## 1.Concepts

- 1. The mean for grouped data can be found by
  - (i) The direct method  $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
  - (ii) The assumed mean method  $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$ , where  $d_i = x_i a$
  - (iii) The step deviation method  $\bar{x} = a + (\frac{\sum f_i u_i}{\sum f_i}) \times h$ , where  $u_i = \frac{x_i a}{h}$
- 2. The mode for the grouped data can be found by using the formula

Mode = 
$$l + (\frac{f_1 - f_0}{2f_1 - f_0 - f_2}) \times h$$
, where

l = lower limit of the modal class.

 $f_1$  = frequency of the modal class.

 $f_0$  = frequency of the proceeding class of the modal class.

 $f_2$  = frequency of the succeeding class of the modal class.

h = size of the class interval.

Modal class - class interval with highest frequency.

3. The median for the grouped data can be found by using the formula

Median = 
$$l + (\frac{\frac{n}{2} - cf}{f}) \times h$$
, where

l = lower limit of the median class.

n = number of observations.

Cf= cumulative frequency of class interval proceeding the median class.

f = frequency of median class.

h = class size.

4. Empirical Formula : Mode = 3 median - 2 mean

$$3 \text{ Median} = \text{Mode} + 2 \text{ Mean}$$

- 5. Cumulative frequency curve or an Ogive :
  - (i) Ogive is the graphical representation of the cumulative frequency distribution.
  - (ii) Less than type Ogive:
    - Construct a cumulative frequency table.
    - Mark the upper class limit on the x = axis.
  - (iii) More than type Ogive :
    - Construct a frequency table.
    - Mark the lower class limit on the *x*-axis.
  - (iv) To obtain the median of frequency distribution from the graph:
    - Locate point of intersection of less than type Ogive and more than type Ogive
    - Draw a perpendicular from this point on x-axis.
    - The point at which it cuts the *x*-axis gives us the median.

|    | <b>2.0</b> 1                                            | al Questions                |                              |         |       |
|----|---------------------------------------------------------|-----------------------------|------------------------------|---------|-------|
| 1. | Mode is                                                 |                             |                              |         |       |
| 2. | The correct formula for finding the m                   | node of a grouped frequen   | ey distributi                | on is   |       |
|    | The formula for median of a grouped                     |                             |                              |         |       |
| 4. | Ogive is the graph of                                   | • • •                       |                              |         |       |
| 5. | The curve 'less than ogive' is always                   |                             |                              |         |       |
|    | The empirical relationship among the                    |                             | n of a data is               | }       |       |
|    | The class mark of a class interval is                   |                             |                              |         |       |
|    | The mean for grouped data can be fo                     |                             |                              | •       |       |
|    | The mean for grouped data can be for                    |                             |                              |         |       |
|    | The mean for grouped data can be fo                     |                             |                              |         |       |
|    | The mode for the grouped data can be                    |                             |                              |         |       |
|    | Mean is                                                 | , ,                         |                              |         |       |
|    | Median is                                               |                             |                              |         |       |
|    | Measure of central tendency is repres                   | sented by the abscissa of t | he point who                 | ere the | 'less |
|    | than ogive' and 'more than ogive' int                   |                             | 1                            |         |       |
| 15 | The mode of first n natural numbers.                    |                             |                              |         |       |
| _  |                                                         |                             |                              |         |       |
|    | 3 Multiple                                              | e Choice Question           | ng                           |         |       |
|    |                                                         | e Choice Question           | 115                          | ,       | `     |
| Ι. | Mean of first 10 natural numbers is                     | (C) 5 5                     | (D) ( 5                      | (       | )     |
| _  | (A) 5 (B) 6                                             | (C) 5.5                     | (D) 6.5                      | ,       | ,     |
| 2. | If mean of 4, 6, 8, 10, x, 14, 16 is 10                 |                             | (T)                          | (       | )     |
| _  | (A) 11 (B) 12                                           |                             | (D) 9                        |         |       |
| 3. | The mean of $x$ , $x + 1$ , $x + 2$ , $x + 3$ , $x + 3$ |                             | (D) 0                        | (       | )     |
|    | $(A) x \qquad (B) x + 3$                                |                             | (D) 3                        |         |       |
| 4. | The median of 2, 3, 2, 5, 6, 9, 10, 12                  |                             |                              | (       | )     |
|    | (A) 9 (B) 20                                            |                             | (D) 9.5                      |         |       |
| 5. | The median of 2, 3, 6, 0, 1, 4, 8, 2, 5                 |                             |                              | (       | )     |
|    | (A) 1 (B) 3                                             | (C) 4                       | (D) 2                        |         |       |
| 6. | Mode of 1, 0, 2, 2, 3, 1, 4, 5, 1, 0 is                 |                             |                              | (       | )     |
|    | (A) $5$ (B) $0$                                         | (C) 1                       | (D) 2                        |         |       |
| 7. | If the mode of 2, 3, 5, 4, 2, 6, 3, 5, 5                |                             | $e 	ext{ of } 'x' 	ext{ is}$ | (       | )     |
|    | (A) $2$ (B) $3$                                         | (C) 4                       | (D) 5                        |         |       |
| 8. | The modal class of the following dis                    |                             |                              | (       | )     |
|    | Class Interval 10–15 15–2                               | 20 20–25 25–30 30–35        |                              |         |       |
|    | Frequency 4 7 12 8                                      | 2                           |                              |         |       |
|    |                                                         |                             |                              |         |       |
|    | (A) 30–35 (B) 20–25                                     | (C) 25-30                   | (D) 15–20                    |         |       |
| 9. | A teacher ask the students to find the                  | e average marks obtained    | by the class s               | studen  | ts in |
|    | Maths the student will find                             |                             |                              | (       | )     |
|    | (A) Mean (B) Median                                     | (C) Mode                    | (D) Sum                      |         |       |
| 10 | .The empirical relationship between                     | the three measures of cent  | tral tendency                | is(     | )     |
|    | (A) $3 \text{ Mean} = \text{Mode} + 2 \text{ Median}$   |                             | -                            | •       |       |
|    | (C) $3 \text{ Mode} = \text{Mean} + 2 \text{ Median}$   |                             |                              |         |       |

| 11. Class mark of the class $19.5 - 29.5$ is                                        | ( )         |
|-------------------------------------------------------------------------------------|-------------|
| (A) 10 (B) 49 (C) 24.5 (D) 25                                                       | · · · · · · |
| 12. Measure of central tendency is represented by the abscissa of the point when    | e the 'less |
| than ogive' and 'more than ogive' intersect, is                                     | ( )         |
| (A) Mean (B) Median (C) Mode (D) None O                                             | These       |
| 13. The median class of the following distribution is                               | ( )         |
| Class Interval : 0–1010–20 20–30 30–40 40–50 50–60 60–70                            |             |
| Frequency: 4 4 8 10 12 8 4                                                          |             |
| (A) 20–30 (B) 40–50 (C) 30–40 (D) 50–60                                             |             |
| 14. The mean of 20 numbers is 17, if 3 is added to each number, then the new n      | nean is     |
| (A) 20 (B) 21 (C) 22 (D) 24                                                         | ( )         |
| 15. The mean of 5 numbers is 18. If one number is excluded then their mean is       | 6 then      |
| the excluded number is                                                              | ( )         |
| (A) 23 (B) 24 (C) 25 (D) 26                                                         | ( )         |
| 16. The mean of first 5 prime numbers is                                            | ( )         |
| (A) 5.5 (B) 5.6 (C) 5.7 (D) 5                                                       | ( )         |
| 17. The sum of deviations of the values 3, 4, 6, 8, 14 from their mean is           | ( )         |
| (A) 0 (B) 1 (C) 2 (D) 3                                                             | ( )         |
| 18.If median = 15 and mean = 16, then mode is                                       | ( )         |
| (A) 10 (B) 11 (C) 12 (D) 13                                                         | ,           |
| 19. The mean of 11 observations is 50. If the mean of first six observations is 49. | and that    |
| of last six observations is 52, then the sixth observation is                       | ( )         |
| (A) 56 (B) 55 (C) 54 (D) 53                                                         | ( )         |
| 20. Which of the following is not a measure of central tendency?                    | ( )         |
| (A) Mean (B) Median (C) Range (D) Mode                                              | ,           |
| 4.Home Assignment                                                                   |             |
|                                                                                     |             |
| 21. Find the mean, median and mode of the following                                 |             |
| Class Interval 0-10 10-20 20-30 30-40 40-50 50-60 60-70                             | )           |
| Frequency 6 8 10 15 5 4 2                                                           |             |
| 22.Draw 'less than' and 'more than' ogives for the following distribution           |             |
| Marks 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-                            | .90 90–100  |
| No. of Students 5 6 8 10 15 9 8 7 7                                                 | 5           |
| Also find median from graph.?                                                       |             |
| 23. The mean of 40 observations was 160. It was detected on rechecking that the     | e value of  |
| 165 was wrongly copied as 125 for computing the mean. Find the correct m            |             |

- 24. Find 'x' if the median of the observations in ascending order 24, 25, 26, x + 2, x + 3, 30, 31, 34 is 27.5.?
- 25. Will the median class and modal class of a grouped data always be different? Justify your answer.?

## 15.PROJECTS

➤ PROJECT WORK: Creative mathematics project ideas

### **General guidelines:**

• Each student is required to make a handwritten project report according to the project allotted. Please note down your project number according to your roll number.

| <u> </u>    | <i>C</i> ,     |
|-------------|----------------|
| Roll number | Project number |
| 1-5         | 1              |
| 6-10        | 2              |
| 11-15       | 3              |
| 16-20       | 4              |
| 21-25       | 1              |
| 26-30       | 2              |
| 31-35       | 3              |
| 36-40       | 4              |

- A project has a specific starting date and an end date.
- It has specific objectives.
- List the sources of the information collected.

• General lay- out of the project report has following format.

| Page number | Content                                            |
|-------------|----------------------------------------------------|
| Cover page  | Your Name, Class, Roll No, Title Of The Project    |
| 1           | Table Of Contents- Page Titles                     |
| 2           | Brief description of project ,How would you        |
|             | proceed?                                           |
| 3-10        | Procedure (with picture)                           |
| 11          | Mathematics used / involved                        |
| 12          | Conclusion / Result                                |
| 13          | List of resources (List of encyclopedia, websites, |
|             | reference books, journals, etc)                    |
| 14          | Acknowledgement                                    |

• The weightage of 8 marks for project work could be further split up as under

❖ Identification and statement of the project : 01 mark
 ❖ Procedure/processes adopted : 02 marks
 ❖ Write-up of the project : 02 marks
 ❖ Interpretation of the result : 01 mark
 ❖ Viva : 02 marks

# **PROJECTS:**

| Project | Objectives             | Description                                                                                   |
|---------|------------------------|-----------------------------------------------------------------------------------------------|
| No<br>1 | Exploring Mathematics  | 1.Look around yourself                                                                        |
| 1       | around us              | • In the house                                                                                |
|         | around as              | • In the garden                                                                               |
|         |                        | • In the market                                                                               |
|         |                        | • In the bank                                                                                 |
|         |                        | • In the nature                                                                               |
|         |                        | 2.Click photographs using a digital camera/ mobile and explore                                |
|         |                        | the hidden mathematics                                                                        |
|         |                        | 3.Click minimum 20 photographs                                                                |
| 2       | Geometry in Daily Life | In this project we try to find situations in daily life where                                 |
|         |                        | geometrical notions can be effectively used. In particular, in the                            |
|         |                        | following examples the student discovers situations in which                                  |
| _       |                        | properties of similar triangles learnt in the classroom are useful.                           |
| 3       | History of $\pi(Pie)$  | 1. What is the number pi?                                                                     |
|         |                        | 2. Some uses of pi                                                                            |
|         |                        | <ul><li>3. Early history of pi</li><li>4. A discovery of Archimedes</li></ul>                 |
|         |                        | 5. Computation of pi                                                                          |
|         |                        | 6. Further uses of pi                                                                         |
|         |                        | 7. Recap                                                                                      |
|         |                        | , , , , , , , , , , , , , , , , , , ,                                                         |
| 4       | Pythagoras Theorem and | 1.Three questions from real life                                                              |
|         | its Extension          | 2. Discovering the Theorem of Pythagoras                                                      |
|         |                        | 3. Geometric interpretation                                                                   |
|         |                        | 4. Pythagoras                                                                                 |
|         |                        | 5. Applying the Theorem of Pythagoras                                                         |
|         |                        | 6. Pythagorean triples                                                                        |
|         |                        | 7. The Chinese proof 8. Euclid's elements                                                     |
|         |                        | 8. Euclid's ciclicitis                                                                        |
| 5       | Similarity             | 1. Shape and size                                                                             |
|         |                        | 2. Similar triangles                                                                          |
|         |                        | 3. Applications of similarity                                                                 |
|         |                        | 4. Similar polygons and solids                                                                |
|         |                        | 5. Internal ratios of similar figures                                                         |
|         |                        | 6. Perimeters of similar figures                                                              |
|         |                        | 7. Areas of similar figures                                                                   |
| 6       | History of Indian      | 8. Volumes of similar figures This project is meant to develop the student's awareness of the |
| 0       | History of Indian      | history of mathematics.                                                                       |
|         | Mathematicians         | The student should give an outline of the Indian mathematics                                  |
| 7       | Early History of       | This project is meant to develop the student's awareness of the                               |
|         | Mathematics            | history of mathematics.                                                                       |
|         | 1.14411011144105       | The student should give an outline of the major milestones in                                 |
|         |                        | mathematics from Euclid to say Euler.                                                         |
|         |                        | 1. Introduction                                                                               |
|         |                        | 2. From Euclid to the Seventeenth Century                                                     |

|    |                           | 2 F C 1 M. 1 1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    |                           | 3. From Scratch Marks to Number Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                           | 4. From Numerology to Number Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                           | 5. The Pythagorean Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|    |                           | 6. A Shocking Discovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                           | 7. Pi Through the Ages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    |                           | 8. From Astronomy to Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                           | 9. From Archimedes to Fermat and Descartes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|    |                           | 10. The Race for the Calculus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| 8  | Analysis of test results  | After the half yearly or annual examination, the marks of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | and interpretation        | students may be tabulated as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                           | follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|    |                           | Range of Tally Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|    |                           | marks marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    |                           | 1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |                           | (Take the size of class interval = 5 preferably)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|    |                           | Now, present the data in the form of a histogram and a pie chart.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                           | This tabulation can be done for marks in individual subjects as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |                           | well as for aggregate marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                           | Interpret the data in different ways (e.g. how many children need                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                           | special guidance in say mathematics, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 9  | Experiment on             | 1. The teacher may ask the students to either work individually or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|    | probability               | at most in groups of two.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|    | 1                         | 2. They will collect the following data by visiting any (say)10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |                           | classrooms in the school.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|    |                           | 3. They will obtain the fraction of number of children having their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                           | birthday in the month of January, February, December from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|    |                           | the data given in the table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                           | 4. They will make a pie-diagram from the recorded data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                           | 5. They will investigate if the fraction actually obtained in step 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|    |                           | tallies with the calculated probability obtained for each month.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|    |                           | e.g.: If total number of children whose birthday falls in the month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                           | of January is 38 and the total number of students is 500,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|    |                           | the actual fraction of children born in January = 38/500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|    |                           | Probability for a child to have birthday in January = 31/365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                           | 6. The students may increase their sample size, i.e. increase the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                           | number of observations and study if the actual fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                           | approaches the calculated probability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    |                           | They should use a random sample for this purpose.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 10 | Frequency of letters/     | 1. The teacher may ask the students to work individually or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    | words in a language text. | groups of two.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |                           | 2. Students will select any paragraph containing approximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |                           | 250 words from any source. e.g. newspaper, magazine, textbook,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |                           | etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|    |                           | 3. They will read every word and obtain a frequency table for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                           | each letter of the alphabet as follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    |                           | letters Tally marks Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |                           | ATTING THE STATE OF THE STATE O |  |  |  |  |  |  |  |
|    |                           | 4. They will note down the number of two-letter words, three-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                           | letter words, so on and obtain a frequency table as follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |

| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Words with letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tally marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frequency                                                                                                                                                                                                                          |                                   |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                   |
| 2 letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                   |
| 3letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                   |
| 5. Select 10 different greater than 1. Give their frequency. Obtate Follows  Selected word  6. Investigate the fold From table 1 a) What is the most of the comparent the frequency of the comparent the frequency of the comparent the frequency of the comparent the given text. From table 2 a) Compare the percent the given text. From table 2 a) Comparent the frequency of the comparent the comparent the c | Frequency lowing frequently occurring frequency of two least frequency of the vowels a, e, the will thus have 6 frequency of two letters of two let | rank  rank  rank  ng letter?  ng letter?  ed?  y?  i, o, u, and remaining sectors.)  with that of consons  r words, three letter ing patterns.  of a word to its range and reciprocal of we any interesting pattext from any other | ng ants in words, k. vord attern? |

#### 16.ACTIVITIES

- 1. To obtain the conditions for consistency of a system of linear equations in two variables by graphical method.
- 2. To verify that the given sequence is an arithmetic progression by paper cutting and pasting method.
- 3. To verify that the sum of first n natural numbers is n(n+1)/2, that is  $\Sigma n = n(n+1)/2$ , by graphical method.
- 4. To verify the Basic Proportionality Theorem using parallel line board and triangle cutouts.
- 5. To verify the Pythagoras Theorem by the method of paper folding, cutting and pasting
- 6. To verify that the angle subtended by an arc at the centre of a circle is twice the angle subtended by the same arc at any other point on the remaining part of the circle, using the method of paper cutting, pasting and folding.
- 7. To verify that the angles in the same segment of a circle are equal, using the method of paper cutting, pasting and folding.
- 8. To verify, using the method of paper cutting, pasting and folding that
  - a. the angle in a semicircle is a right angle,
  - b. the angle in a major segment is acute,
  - c. the angle in a minor segment is obtuse.
- 9. To verify, using the method of paper cutting, pasting and folding that
  - a. the sum of either pair of opposite angles of a cyclic quadrilateral is  $180^{\circ}$ .
  - b. in a cyclic quadrilateral the exterior angle is equal to the interior oppositeangle.

- 10. To verify using the method of paper cutting, pasting and folding that the lengths of tangents drawn from an external point are equal.
- 11. To verify the Alternate Segment Theorem by paper cutting, pasting and folding.
- 12. To make a right circular cylinder of given height and circumference of base
- 13. To determine the area of a given cylinder. To obtain the formula for the lateral surface area of a right circular cylinder in terms of the radius (r) of its base and height (h).
- 14. To give a suggestive demonstration of the formula for the volume of a right circular cylinder in terms of its height (h) and radius (r) of the base circle.
- 15. To make a cone of given slant length (l) and base circumference (2pr).
- 16. To give a suggestive demonstration of the formula for the lateral surface area of a cone.
- 17. To give a suggestive demonstration of the formula for the volume of a right circular cone.
- 18. To give a suggestive demonstration of the formula for the surface area of a sphere in terms of its radius.
- 19. To give a suggestive demonstration of the formula for the volume of a sphere in terms of its radius.
- 20. To get familiar with the idea of probability of an event through a double colour card experiment.
- 21. To make a clinometer and use it to measure the height of an object.

# Puzzle No.1 (Real numbers & Sets)

|   |    |    | 1  | 2 |    |    |   |   |   |    |    |    |   |  |
|---|----|----|----|---|----|----|---|---|---|----|----|----|---|--|
|   |    |    | ,  |   |    |    |   |   |   | 1  |    |    |   |  |
| 3 |    |    |    |   |    |    |   |   |   |    |    |    |   |  |
|   |    |    |    |   |    |    |   |   |   |    | •  |    |   |  |
|   |    |    |    | 4 |    |    |   |   |   | 5  |    |    |   |  |
|   |    |    |    |   |    |    |   |   |   |    |    |    |   |  |
|   | 6  | 7  |    |   |    |    |   | 8 |   |    |    |    | 9 |  |
|   |    |    |    |   | ,  | ī  | 1 |   |   |    |    |    |   |  |
|   |    |    |    |   |    | 10 |   |   |   | 1  |    |    |   |  |
|   | 11 |    |    |   |    |    |   |   |   |    | 12 |    |   |  |
|   |    |    |    |   |    | 13 |   |   |   |    |    |    |   |  |
|   | 14 |    |    |   |    |    |   |   | 1 |    |    |    |   |  |
|   |    |    |    |   |    | 15 |   |   |   |    |    |    |   |  |
|   |    |    |    |   |    |    |   | 1 |   | ı  |    |    |   |  |
|   |    |    |    |   | 16 |    |   |   |   |    | 17 | 18 |   |  |
|   |    |    |    | r |    |    |   | 1 |   |    |    |    |   |  |
|   |    |    | 19 |   |    |    |   |   |   |    |    |    |   |  |
|   |    |    |    |   |    |    |   |   |   | 20 |    |    |   |  |
|   |    |    | T  | r |    |    |   |   |   |    |    |    |   |  |
|   |    | 21 |    |   |    |    |   |   |   |    |    |    |   |  |

| Cross:                                                     | 20.1,3,5,7, are numbers(3)           |
|------------------------------------------------------------|--------------------------------------|
| 1.zero, positive and negative numbers together are         | 21.AUB Is read as A B (5)            |
| called(8)                                                  |                                      |
| 3. Non terminating and non recurring numbers(11)           | Down:                                |
| 4. The numbers in the form of $\frac{p}{q}$ (q \neq 0) (9) | 2.1,2,3,4, arenumbers (7)            |
| 6. Natural numbers with 0 (5)                              | 5.Least common multiple (3)          |
|                                                            | 7. Highest common factor (3)         |
| 8.2,3,5,7, are numbers (5)                                 | 8. $\ln 2x^5$ , 5 is                 |
| $13.\frac{3}{5}$ isdecimal (11)                            | 9.Indian mathematician (9)           |
| 14. The set of vowels isset (6)                            | 10.One of the operation in sets (12) |
| 15.Rational and irrational are together are (4)            | 11. The set of integers isset (8)    |
| 16.A is well defined collection of objects (3)             | 12. In $2x^5$ , x is                 |
| 17.0,2,4,6,8, numbers (4)                                  | 18.empty set (4)                     |
| 19.Øis set (5)                                             |                                      |

## Puzzle No.2 (Geometry & Mensuration)

|    |    |    |    |   |    |    | 1  |   |   |    | 2 |
|----|----|----|----|---|----|----|----|---|---|----|---|
| 3  |    |    | 4  |   |    | 5  |    |   |   |    |   |
|    |    |    |    |   |    |    |    |   | 6 |    |   |
|    |    | 7  |    | 8 |    |    |    |   |   |    |   |
|    |    |    | 9  |   |    |    |    |   |   |    |   |
|    |    | 10 |    |   |    |    |    |   |   |    |   |
|    |    |    | 11 |   |    |    | 12 |   |   |    | _ |
|    |    | 13 |    |   |    | 14 |    |   |   | 15 |   |
|    |    |    |    |   |    |    |    | _ |   |    |   |
| 16 |    |    |    |   |    |    |    |   |   |    |   |
|    |    |    |    |   |    |    |    |   |   |    |   |
|    |    |    |    |   | 17 | 18 |    |   |   |    |   |
| 19 |    |    |    |   |    |    |    |   |   |    |   |
|    |    |    |    |   |    |    |    |   |   |    |   |
|    | 20 |    |    |   |    |    |    |   |   |    |   |

| <b>C</b> |   |
|----------|---|
| Cross    | • |
| CIUSS.   | • |

- 1.A chord can divide the circle into two segments.

  One of them is major, other one is....(5)
- 4. A .....to a circle intersects it in two points.(6)
- 6.It is a irrational number. (1)
- 7.Rational numbers are denoted by...(1)
- $9.(Hypotenuse)^2 = (side)^2 + (side)^2$  is ..theorem.(10)
- 10.Natural numbers are denoted by...(1)
- 11. Joker cap is an example for .....(4)
- 13.Integer are denoted by.....(1)
- 14. Basic proportionality theorem is .....theorem.(6)
- 16. Total surface area of ...... is  $2\pi rh$  (8)
- 20. Famous Indian mathematician (9)

#### Down:

- 1.A chord can divide the circle into two segments.

  One of them is major, other one is....(5)
- 2. Diameter of a circle is twice of its ......(6)
- 3. Tangent to a circle is ......to its radius.((13)
- 5.A .....to a circle intersects it in one point.(7)
- 8.Longest side in the right triangle.(10)
- 12. The tangents to a circle at the end points of a diameter are ......(8)
- 15. Any two congruent figures are .....(7)
- 17.Universal set (1)
- 18. Empty set (1)

#### Puzzle No.3

A trader was moving along a road selling eggs. An idler who didn't have much work to do, started to get the trader into a wordy duel. This grew into a fight, he pulled the basket with eggs and dashed it on the floor. The eggs broke. The trader requested the Panchayat to ask the idler to pay for the broken eggs. The Panchayat asked the trader how many eggs were broken. He gave the following response:

If he counted in pairs ,one will remain,

If he counted in three ,two will remain,

If he counted in four ,three will remain,

If he counted in five, four will remain,

If he counted in six, five will remain,

If he counted in seven ,nothing will remain,


My basket cannot accommodate more than 150 eggs. So, how many eggs were there?

#### Puzzle No.4

Three cartons contain stationery items, one has pens, one has pencil while the third has pens and pencils. These cartons are labelled as 'pens' 'pencils' and pens and pencils, but none of the labels is on the correct carton. You are allowed to select only one item from one carton and then tell which label should go on which carton.

#### Puzzle No.5

A merchant has nine gold coins which look identical but in fact one of the coins is an underweight fake. Investigate how the merchant can use only a balance to find the fake coin in just two weighings.

