go oracle: user manual

Alan Donovan
adonovan@google.com
August 25, 2013

The go oracle is a prototype source analysis tool that answers questions about Go programs.
This document explains how to use it.

There is also a design document.

How it helps
Caveats
Building it
Command syntax
Analysis scope
Warnings
Editor bindings
Emacs
Queries
Notation for examples
callees
callers
callgraph
callstack
describe
freevars

implements
peers

The oracle may be invoked directly from the command line, or indirectly via an editor that
provides the tool with the current cursor position/selection plus the kind of query you wish to
perform.

How it helps

The oracle is designed to fully automate the answering many of the questions about elements of
your program that come up all the time during a typical day of programming. Questions such as:

What is the type of this expression? What are its methods?
What'’s the value of this constant expression?

Where is the definition of this identifier?

What are the exported members of this imported package?

mailto:adonovan@google.com
http://drive.google.com/a/google.com/open?id=1kFsml0o_uIcFmj0VPprAe6u6LdZhwVWnxIVnFsRDehY
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.s7ejjpkj5fn5
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.zbuidn5qtdss
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.p2505ia0jz9v
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.jz8ovpaaaipx
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.nwso96pj07q8
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.5q513c3w5tqy
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.tz3rmd3mijcp
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.al4fto2r6wvs
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.ma7ugf4w0azp
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.c6r6m057zrc2
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.cm4qz2k4tuom
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.kzoj07bq93sq
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.9ou5j2tw3fxi
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.17o3zm2sqrjq
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.re7ifmz33xbj
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.doa5wqsaooky
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.15us5y9rxrbh
https://docs.google.com/a/google.com/document/d/s6Cz9V6R_TKfrCRrwRc0cFg/headless/print#heading=h.ay3tzb8lka2h

What are the free variables of the selected block of code?
What interfaces does this type satisfy?
Which concrete types implement this interface?
And:
What are the possible concrete types of this interface value?
What are the possible callees of this dynamic call?
What are the possible callers of this function?
What objects might this pointer point to?
Where will a value sent on this channel be received?
Which statements could update this field/local/global/map/array/etc?
Which functions might be called indirectly from this one?

In many cases, using the oracle is as simple as selecting a region of source code, pressing a
button, and receiving a precise answer to the query almost immediately.

The first set of questions above can be answered using only local, modular reasoning by looking
at the syntax tree, the types, or the members of a single package, but queries in the second set
depend, in general, upon global properties of your application requiring more analytical
effort---human or robot---to deduce.

Caveats

The oracle is a prototype. Its user interface has many rough edges and will almost certainly
need major changes. The analysis libraries may contain bugs. Configuration is trickier and less
flexible than it ought to be. Analysis is an order of magnitude slower than our goal. Nonetheless,
the oracle offers some analytical services that advance the state of the art in code
comprehension tools---for any language---and adventurous users may find it useful today.
Please report bugs directly to the author for now.

Building it
Run the following command to build the oracle:

% go get code.google.com/p/go.tools/cmd/oracle
This will cause an executable named oracle to appear in your $§GOPATH/bin directory.

Command syntax

Running the oracle with no arguments prints a summary of the command syntax.
Here’s an example command invoking the oracle:
% oracle -mode=describe -pos=src/pkg/net/http/triv.go:#1042,#1050 -format=json \
src/pkg/net/http/triv.go

There are four inputs of interest:

e The mode of the query, -mode=describe in this example.
Each supported query is described in its own section below.

e The position of the cursor or selected syntax, as a flag of the form
-pos=file:#start, #end where [start, end) forms a half-open interval of byte
indices within file, starting at zero.

e The desired output format. Supported formats include:

o plain, a human-readable format resembling typical compiler diagnostic output
o json, a structured data format specified at go.tools/oracle/json/json.go

e The scope of the analysis. In the simplest case, this is just the ‘main’ package of your
program. In this example, it's a package containing only the single file
src/pkg/net/http/triv.go. This conceptis expanded in the next section.

Analysis scope

For global queries (explained above), the oracle needs to know which package defines your
application’s main function, and it needs source code for all packages that are transitively
imported from it---it cannot analyse isolated libraries. We call this the scope of the analysis.

The scope may consist of several programs, such as a client and a server, or all the programs
you routinely work on, or a set of libraries and their tests. Bigger scopes are better because they
cause the analysis to visit more code. If a library function is not reachable in a given scope, the
analysis can’t answer any questions about it---as if it's not there. This is analogous to the way a
linker works: library functions that cannot be called in a given executable are discarded.

Example scopes:

1. fmt
the import path of a library defining one or more Test* functions

2. code.google.com/p/go.tools/cmd/oracle
the import path of a package with a main entry point.

3. src/pkg/net/http/triv.go
an ad-hoc main package consisting of a single file.
(Multiple files in the same package should be separated with commas.)

All three of these may be specified in the same command. However, due to a current limitation
of the type checker, only the first of the import-path style arguments will contribute any tests to
the pointer analysis scope.

Warnings

If the static analysis must make an assumption that it cannot prove (e.g. about the behaviour of
native code that it cannot see or unsafe.Pointer conversions it cannot understand) it will print a

https://code.google.com/p/go/source/browse/oracle/json/json.go?repo=tools

warning after its results. Currently the standard libraries cause the oracle to print many
warnings, so the output can be rather noisy. These will diminish over time as gaps in the
analysis are filled.

Editor integration

The oracle may be invoked from any editor capable of running an external tool (such as a
compiler) and displaying its output. Since many editors treat file names appearing in compiler
diagnostics as hyperlinks to the location of the error, the oracle prints its answer using a similar
syntax when invoked with -format=plain.

Currently the only editor for which bindings exist is Emacs, though we hope to add support for
others based on demand. Please contact the author if you'd like to help connect the oracle to
another editor such as Vim, Acme or Eclipse.

Emacs

Emacs expects to find the oracle executable in $§GOROOT/bin, not where go get places it (i.e.
P/bin where P is the first directory named by $GOPATH), so build it using the go get command
above and then move it:

% mv S$SGOPATH/bin/oracle $GOROOT/bin/
(This command assumes your GOPATH consists of exactly one directory; adjust accordingly if
yours has several.)

Within Emacs, load the oracle.el file using a command such as this:
M-x load-file $GOPATH/src/code.google.com/p/go.tools/cmd/oracle/oracle.el
Typically, users will add this command to their ~/.emacs startup configuration.

Before you can run the oracle, you must tell Emacs the analysis scope, which is done using the
command:

M-x go-oracle-set-scope
This command prompts you for the analysis scope, described above, with words separated by
spaces. The effect of go-oracle-set-scope persists across all oracle invocations until it is
called again with a different value.

To invoke the oracle, position the cursor on (or select) the syntax of interest and call the Emacs
command go-oracle-xxx where xxx is the mode of the query. For example:
M-x go-oracle-callees

The most commonly used query, describe, is bound to the shortcut key <F4> . To test your
configuration, load a file within your analysis scope, select an expression, and hit <F4>. After a
moment a window should appear with the results, looking something like this:

Go Oracle

> reference to var result string
> defined here
Queries

This section describes the set of oracle queries. See the Table of Contents for the complete list.

Notation for examples

In the examples, source code is shown in grey, user-selected source code is highlighted in
yellow, and -format=plain tool output is colored blue. In the actual tool output, each line is
preceded by the source location most relevant to it, but to avoid distracting detail in the
examples, the file names have been rendered as a » symbol. In some cases, location markers
such as L1 have been added to make the source/results correspondence clear.

For brevity, the —-format=7json output is not shown, but it contains essentially all the same
information as the plain output, broken down into a tree of structured data for ease of parsing.
Read the go.tools/oracle/json documentation for more details.

callees

The callees query shows the possible call targets of the selected function call site. The cursor
or selection must be within a function call expression.

Example: a callees query on the main dispatcher of net /http’s trivial webserver reveals all the
handlers that are registered by the application.

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}

this dynamic function call dispatches to:
net/http.NotFound
main.FlagServer
main.ArgServer
expvar.expvarHandler
main.DateServer
main.HelloServer
main.Logger

vV vV vV vV vV v Vv Y

https://code.google.com/p/go/source/browse/oracle/json/json.go?repo=tools

> func@1247.21

(The last one is an anonymous function.)

Example: a callees query on an interface method call (itself in an anonymous callback) reveals
the sole target of the call.

func StripPrefix(prefix string, h Handler) Handler {
if prefix =="" {
return h
}
return HandlerFunc(func(w ResponseWriter, r *Request) {
if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {

r.URL.Path =p
h.ServeHTTP(w, r)

} else {
NotFound(w, r)

}

b
}
> this dynamic method call dispatches to:

> (*http.fileHandler).ServeHTTP

callers

The callers query shows the possible callers of the function containing the selection.

Example: FlagServer is an HTTP handler function in the trivial webserver in net /http. A
callers query on that function reveals where the webserver dispatches requests to it.

func FlagServer(w http.ResponseWriter, req *http.Request) {
w.Header().Set("Content-Type", "text/plain; charset=utf-8")

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r “Request) {

f(w, r) // L1
> main.FlagServer is called from these 1 sites:
> L1 dynamic function call from (http.HandlerFunc).ServeHTTP

Example: a second callers query, this time on ServeHTTP:
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {

h, _:= mux.Handler(r)

h.ServeHTTP(w, r) // L2
}
> (http.HandlerFunc).ServeHTTP is called from these 1 sites:

» L2 dynamic method call from (*http.ServeMux).ServeHTTP

callgraph

The callgraph query shows the call graph of the entire program, which may have many
thousands of nodes and edges. The selection is ignored.

Example: here is an excerpt of the call graph of a program that uses the fmt package.

278 log.Fatalf

>

> 279 fmt.Sprintf

> 280 fmt.newPrinter

> 281 (*fmt.cache).get

> (*sync.Mutex).Lock (52)

> (*sync.Mutex).Unlock (56)
> 282 func@161.23

> 283 (*fmt.fmt).init

> 284 (*fmt.fmt).clearflags

> 285 (*fmt.pp).doPrintf

The graph is rendered as a spanning tree, using indentation to show parent/child relationships.
When a node appears for the first time, it is prefaced by a fresh number (e.g. 278 for log.Fatalf)
and when it appears again, the number is shown after (e.g. 52 for (*sync.Mutex).Lock).

A function may have multiple nodes in the call graph if the analysis decides to treat it context
sensitively: in effect it makes two distinct copies of the function based on where it is called from.
This can often improve the precision of the analysis. Look at the numbers if in doubt.

callstack

The callstack query shows an arbitrary path from the root of the callgraph to the function
containing the selection. This may be useful to understand how the function is reached in a
given program.

Example: the result of a callstack query from the ServeHTTP function in net /http.

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ctr.mu.Lock()

}

Found a call path from root to (*main.Counter).ServeHTTP
(*main.Counter).ServeHTTP
dynamic method call from (*http.ServeMux).ServeHTTP
dynamic method call from (http.serverHandler).ServeHTTP
static method call from (*http.conn).serve
static method call from (*http.Server).Serve
static method call from (*http.Server).ListenAndServe
static method call from net/http.ListenAndServe
static function call from main.main

vV V. vV vV vV v vV VY

The precision and usefulness of callstack information varies considerably, especially if the call
path contains a greater degree of dynamic calls. The chosen callstack might be infeasible, i.e.
never occurring during any execution.

describe

The describe query shows various properties of the selected syntax: its syntactic kind, type,
method set, constant value, point of definition, points-to set, etc, as appropriate. Almost any
piece of syntax may be described, and the oracle will try to print all the useful information it can.
Example: a describe query on a field selection expression in the net /http package.

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {

i0.Copy(buf, req.Body)

}
> reference to var Body io.ReadCloser
> defined here

v

interface may contain these concrete types:

*struct{*strings.Reader; io.Closer}, may point to:
complit

*http.body, may point to:
complit
complit
complit

*http.expectContinueReader, may point to:
complit

vV V. vV vV v v Y

The response to this query contains the type of the expression, the location of the definition of
the struct field, the list of concrete types that it (an interface) may contain, and for each of those
concrete types, all of which are pointers, the set of objects to which it may point, with source
locations where available. (complit indicates the object allocated by a composite literal.)

Example: from package net.

func (h *dnsHeader) Walk(f func(v interface{}, name, tag string) bool) bool {
return f(&h.ld, "1d", ") && ...

func (dns *dnsMsg) Pack() (msg [Jbyte, ok bool) {
var dh dnsHeader // L1

func (dns *dnsMsg) Unpack(msg [Jbyte) bool {
var dh dnsHeader // L2

»

>

> L1
> L2

The syntax “dh.ld” denotes the .1d field of the object created by the identifier dh. In fact there are

unary & operation of type *uint16
value may point to these labels:

dh.ld
dh.ld

two distinct local variables, both called dh, into which this expression may point.

Example: an excerpt of a describe query on a package name. Essentially the same results are

obtained when the selection is the import path or when it is the package identifier.

|
>
|
>
|
>
|
>
|
>
|
>
|
>

The description of a package includes all its exported members, their types, methods, and
values (for constants). If the current package is described (by selecting the package declaration

import "net/url"
var uurl. URL

import of package "net/url"

type
type

func
func
func
func
func

type

Error struct{...}

method (*url.Error) Error() string
EscapeError string

method (url.EscapeError) Error() string
Parse func(rawurl string) (url *url.URL, err error)
ParseQuery func(query string) (m url.Values, err error)
ParseRequestURI func(rawurl string) (url *url.URL, err error)
QueryEscape func(s string) string
QueryUnescape func(s string) (string, error)
URL struct{...}

method (*url.URL) IsAbs() bool
method (*url. URL) Parse(ref string) (*url.URL, error)
method (*url.URL) Query() url.Values

package p), the description includes the non-exported members too.

freevars

The freevars query enumerates the free variables of the selection. “Free variables” is a
technical term meaning the set of variables that are referenced but not defined within the
selection, or loosely speaking, its inputs.

This information is useful if you’re considering whether to refactor the selection into a function of
its own, as the free variables would be the necessary parameters of that function. It's also
useful when you want to understand what the inputs are to a complex block of code even if you
don’t plan to change it.

To make the results more useful, the output of the query differs slightly from the textbook
definition of free variables:

the output does not report any names defined at package level, since they would not
need to be passed as parameters to a function;

for each free struct variable, the output reports each distinct access path (e.g. s.x.y) as a
free variable.

the output also reports references to free constants and types.

Example: the free variables of the body of a loop in the strings package.

vV V. v v VY

/I Second pass: find repeats of pattern's suffix starting from the front.
fori:=0;i<last; i++{
lenSuffix := longestCommonSuffix(pattern, pattern[1:i+1])
if pattern[i-lenSuffix] != pattern[last-lenSuffix] {
/I (last-i) is the shift, and lenSuffix is len(suffix).
f.goodSuffixSkip[last-lenSuffix] = lenSuffix + last - i

}

Free identifiers:

variint

var last int

var pattern string

var f.goodSuffixSkip []int

implements

The implements query shows the implements relation for all interfaces and concrete types
defined in this package. The selection is ignored.

Example: an excerpt of the implements relation of the io package.

Interface io.Writer:
*io.PipeWriter
*io.multiWriter

Interface io.Seeker:
*io.SectionReader

Interface io.Closer:
*io.PipeReader
*io.PipeWriter

vV V. v vV vV v v VY

peers

The peers query shows the set of possible sends/receives on the channel operand of the
selected send or receive operation; the selection must be a <- token.

Example: a peers query on a receive operation in the net /http package.
var textprotoReaderCache = make(chan *textproto.Reader, 4) // L1

func newTextprotoReader(br *bufio.Reader) *textproto.Reader {
select {
case r ;= <-textprotoReaderCache: // L3
r.-R=br
return r
default:
return textproto.NewReader(br)

}

func putTextprotoReader(r *textproto.Reader) {
r.R =nil
select {
case textprotoReaderCache <-r: // L2
default:

}
}

> This channel of type chan *textproto.Reader may be:
» L1 allocated here

» L2 sent to, here

» L3 received from, here

referrers

The referrers query shows the set of identifiers that refer to the same object as does the
selected identifier, within any package in the analysis scope.

Example: find all references to a function parameter in the fmt package.

func (p *pp) fmtUint64(v uint64, verb rune, goSyntax bool) {
switch verb {
case 'b"
p.fmt.integer(int64(v), 2, unsigned, Idigits) // L1
case 'c"
p.fmtC(int64(v)) // L2
case 'd"
p.fmt.integer(int64(v), 10, unsigned, Idigits) // L3

> defined here as var v uint64
» L1 referenced here
» L2 referenced here
» L3 referenced here

Troubleshooting

e The oracle says that function F is reachable, but | know that it’s not.
The oracle says that pointer P can point to label L, but | know that it cannot.

This class of errors arise from “false positives” or imprecision in the pointer analysis. A sound
pointer analysis may make conservative approximations when it isn’t capable of fully capturing
the behaviour of your program. These kinds of false reports are mostly not considered bugs,
although of course if they are too numerous, the usefulness of the tool may be diminished.

e The oracle says that function F is dead code, but | know that it’s not.
The oracle says that pointer P may not point to label L, but | know that it can.

This class of errors arise from “false negatives” or unsoundness of the pointer analysis, and
they generally indicate a bug. Reflection is not currently supported, leading to unsound results
(missing edges in the call graph and underestimates of points-to sets); this will be fixed in due
course. unsafe.Pointer conversions are also not supported, and may never be.

Don’t forget that the pointer analysis only looks at code reachable in the analysis scope that you
specified, e.g. the entire program whose ‘main’ package was named on the command line.

Even a large Go program might use only small parts of some of the libraries it depends upon, so
pointer analysis queries about the unused parts will return null results. This is correct, and the
expected behaviour. Specifying a larger scope (more main packages and tests) can improve
the analytical coverage of your libraries.

