
GNOME Do: an Ontology-Informed, Search-Driven

Command Interface for the GNU/Linux Desktop

David Siegel Douglass Colkitt Faculty Advisor:

djsiegel@seas.upenn.edu colkitt@seas.upenn.edu Kostas Daniilidis

University of Pennsylvania

Abstract

The typical computer user interacts with a number of different resources on her

computer. These resources are accessed via many interfaces, including menus,

location bars, icons, file browsers, and shortcut keys. We plan to consolidate

these interfaces by creating an application that indexes items found in the user's

desktop environment (e.g. documents, contacts, applications, multimedia) and lets

the user search for these items, and perform common actions on these items (e.g.

open, run, email, play). Our goal is to optimize our search using, among other

techniques, information about items considered as members of type �ontologies�

and as individual entities.

Of special note, our project will be free and open source, which means that all

specifications, source code, documentation, and other project resources will be

publicly available on the Internet for anyone to scrutinize at any stage in our

development process. We will publicize our project and encourage others to

participate by contributing bug reports, code, documentation, etc.

1 Introduction

A general observation can be made that experienced computer users often utilize

keyboard-driven interfaces such as shortcut keys and command terminals, while less experienced

users are often more comfortable with cursor-driven interfaces such as menus and buttons.

Keyboard-driven interfaces allow the user to execute common tasks quickly; however, these

interfaces tend to confuse inexperienced users due to a dearth of graphical representations. For

example, in the case of shortcut keys, there is no graphical representation to accompany the

pressing of key combinations. This may make it difficult for novice users to learn new shortcut

keys or to have confidence that the key combinations they enter are correct. Keyboard-driven

interfaces also intimidate novice users due to poor semantic associations between keyboard

commands and names that the user is familiar with. For example, the keyboard shortcut for

�paste� is Control-V, and the command-line program to �delete� or �trash� an item can be either

rm or rmdir.

Our intent is to create an interface that takes advantage of the precision and

expressiveness of the keyboard, while remaining intuitive enough to appeal to novice users. We

will accomplish this by creating an application that indexes the items found in one's desktop

environment, including documents, contacts, bookmarks, applications, notes, multimedia and

more. We will then present graphical representations of these items to the user, allowing the user

to search through and interact with these items using an interface that is keyboard-driven and

graphical. In addition to user interface challenges, principle technical challenges facing this

project include indexing and responsive searching of items in a user's desktop environment, and

implementing appropriate techniques for dealing with items of changing relevancy to the user.

An additional goal is to develop our project as a free and open source application. This

will require us to become familiar with tools, engineering practices, organizational techniques,

and management skills that are completely new to us. We hope to build a strong community of

contributers and users around our application so that, unlike the majority of completed senior

theses that are relegated to trash cans or dusty filing cabinets, our work will continue to flourish,

providing enduring value to perhaps millions of people. We also hope to get Penn underclassmen

interested in using GNOME Do as the basis for future senior projects!

2.1 Related Work: Quicksilver

Quicksilver, a program produced by Blacktree Software, is the primary inspiration for our

application; in fact, we have mimicked Quicksilver's user interface because we are familiar with

Quicksilver and believe it is an excellent starting point. Quicksilver consists of an interface with

two (optionally three) large icons: the first icon represents and item that the user has searched for,

the second icon represents the action the user has selected to perform on that item, and the third

icon represents an optional �indirect item,� which, if present, modifies the behavior of the action.

Quicksilver also has a plug-in architecture that allows the application to be extended with new

items and actions.

Our project differs from Quicksilver in that we will take a more thorough approach to

maintaining working sets of searchable items, and to arranging the contents of these sets to

account for changing item relevancies (see �Technical Approach�). Judging from a casual review

of Quicksilver's source code1 (note that Quicksilver's source code is undocumented, and contains

years of antiquated code preserved in comments, so discerning exactly what is happening in any

section of the code is difficult), Quicksilver simply maintains a list of all items, which gets

filtered and sorted when searches are executed by the user. This results in an asymptotic running

time of O(n log n) in the typical usage case, where n is equal to the total number of items

indexed. In order to guarantee an upper bound on search time and thereby provide responsive

search for the user, we will apply different indexing techniques (see �Technical Approach�).

Also, Quicksilver allows the user to manually specify �mnemonics� for items; for

example, one might choose the mnemonic �thesis� for a file named �Pre-Execution via

Speculative Data-Driven Multithreading.tex.� This way, one could simply type �thesis� to locate

this item. From our experience, this feature is underutilized due to obscurity, cumbersomeness,

and poor integration into Quicksilver's ranking algorithm. We hope to address this issue by

creating an �alias� command that operates on items within the normal workflow of our

application, and by capturing the relevancy information discussed in our �Technical Approach�

section.

1 http://blacktree-alchemy.googlecode.com/svn/trunk/Quicksilver/Framework/Code/QSitemRanker.m,

QSLibrarian.m

Quicksilver has an extensive configuration interface through which the user can

customize the behavior of the application. For example, one can benefit greatly from configuring

Quicksilver to index the contents of one's Documents folder. This is done by opening the

Quicksilver preferences window, navigating to the �Catalog� configuration section, then

navigating to a subsection of that section, and clicking on a small button on the bottom edge of

the window. This button reveals a menu containing the option to add a �File & Folder Scanner,�

which allows the user to navigate to her Documents folder in another window and finally choose

Figure 1: Quicksilver's �Bezel� interface

Figure 2: GNOME Do's �Classic� interface

that folder for �scanning.� After this, the user must navigate to a pane (a separate window

attached to the side of the Quicksilver preferences window) and check a box indicating that the

user would like to index the contents of her Documents folder. Next, the user is presented with a

slider, with values ranging from 1 to infinity, which the user slides to indicate the depth to which

she would like the contents of her Documents folder to be indexed (infinity indicates no depth

limit). Obviously, requiring the user to complete this task adds tremendous complexity to

Quicksilver, precluding all but technically savvy users from deriving even moderate benefit from

the application. We will avoid this poor design by allowing users to browse for items not included

in our index within GNOME Do's main application interface, and by applying the work of

another group (see �Collaboration�) to intelligently determine which items need to be added to

the index. In the ideal case, GNOME Do will use information derived from diverse sources (e.g.

recently-opened documents lists, open files) to decide that a user is highly likely to be interested

in the contents of her Documents folder, so GNOME Do will simply index those files

automatically.

 Finally, GNOME Do will be designed for GNU/Linux instead of Mac OS X, and the

source for GNOME Do will be made freely available under the GNU General Public License

(GPLv3). Quicksilver lacks documentation and until recently was not open source, which means

that writing plugins for Quicksilver has been unnecessarily difficult. Presumably, this is

improving now that Quicksilver's source code is freely available. Our system will provide third

parties with complete source code and documentation from the beginning; in fact, we have

already accepted fully implemented new features, patches, and plugins from around twenty

contributors.

2.2 Related Work: GNOME Launch Box

GNOME Launch Box (GLB), developed by Imendio, is a Quicksilver-like launcher for

GNU/Linux. Our original intent was to use GLB as a base for our application; however, the

maintainers of GLB were unresponsive to patches we submitted, and they made an explicit

statement that they were uninterested in developing GLB beyond its current form as a crude

application launcher. Also, GLB is written in C, which we felt would bog us down in technical

details, preventing us from making enough progress on GNOME Do during this academic-year-

long project.

Our project will make up for GLB's shortcomings by using managed code in a common

language runtime (CLR) which will give contributors greater flexibility in extending our

application by allowing them to write plugins in any language supported by the CLR. We will

develop our code using Mono, a free and open source implementation of Microsoft's .NET

platform. Mono provides a C# compiler, a large collection of libraries, and a virtual machine for

executing bytecode compiled from any supported language. Using these high-level tools, we will

be able to focus more on the more interesting problems of search and user experience, and less on

the nitty-gritty �gotchas� that we would encounter if we were to use C.

Another important difference between GNOME Do and GLB is the difference in indexing

techniques. GLB has no indexing; instead, it queries each one of its �modules� (equivalent to

what we call �plugins�) with the user's input, concatenates the results returned by each module in

response to the query, and presents the results to the user. Deskbar Applet is another popular

GNU/Linux search tool that takes this naïve approach. Our plugin API, on the other hand,

Figure 3: GNOME Launch Box

requires that plugins publish searchable items up front so that GNOME Do can take full

responsibility for searching and ranking items for the user.

2.3 Related Work: Entity Resolution

We encountered an interesting, unforeseen problem while working with multiple sources

of contact data for items in GNOME Do: what should we do when we have duplicate contact

items representing the same individual? How can we identify and merge these contact items into

single identities? We learned from a Standford University paper entitled, �Generic Entity

Resolution in the SERF Project,� that this problem is referred to as �Entity Resolution� (ER) or

�deduplication.� Many of the techniques discussed in the paper, such as techniques for

distributing large-scale matching and consolidation computations across multiple processors,

were not directly applicable to our small datasets; however, this paper helped us frame our

problem of deduplicating contact records.

Our match criteria consist of contact attributes which, if identical, relate two contact

records as duplicates of each other. These attributes include full names and email addresses. Due

to our relatively small datasets, we are able to match duplicate contact records by hashing contact

attributes and looking for collisions. To consolidate duplicates, we simply merge colliding

records into a single, representative record.

3 Technical Approach

Our application maintains a type �ontology� modeling the resources users most

frequently interact with: applications, bookmarks, documents, contacts, multimedia, etc. A

separate ontology models the actions users perform on these items: launch, run, open, email,

chat, etc. Each action contains information about the types of items it can be performed on. We

have created a plugin system which allows our application to be extended with new items and

new commands.

To address the problem of providing responsive search, we set out to learn appropriate

indexing and caching techniques for presenting the user with a search interface that feels instantly

responsive. GNOME Do can index a virtually unbounded number of items, and we would like

GNOME Do to be portable enough to work in environments of varying requirements and

capabilities, including personal computers as well as low-power mobile devices such as the

OpenMoko phone platform. Our research revealed that in many applications similar to ours, the

the limiting factor on search responsiveness is memory or cache technique-related (Xiao, Zhang,

Kubricht); also, different sorting techniques have different performance depending on the

working set size, memory architecture, and processor speed (Ibid). When using a prefix tree, it

was found that sorting the data beyond a certain depth led to a tradeoff between greater speed,

but less space efficiency and more cache misses (Sinha, Ring, Zobel). The prefix tree that our

program uses to prepare results goes to a depth of one, mapping single character keypresses (e.g.

'a', 'g') to sorted lists of items.

In our experience, users will not tolerate much more than twenty milliseconds of sluggish

search behavior before developing an unfavorable opinion about the performance or usefulness of

a desktop search tool, so we formulated our searching strategy to have an upper limit on response

time that is independent of the number of items indexed. Our sorting technique also takes into

account the relevance of individual items to the user. This allows to prepare results that are most

likely to be relevant to the user before the user initiates a search.

Figure 4: The most relevant results for 'F', 'M', and 'K'.

When GNOME Do is started, it creates a 1-tier prefix tree that maps 26 letters of the

English alphabet as found on a standard QWERTY keyboard to a list of items sorted by

relevance, with a maximum sorted list length of 1000 items. When the user types the first letter

in a search, GNOME Do retrieves the list of results predetermined to be most relevant for that

keystroke (Figure 4). When subsequent letters are typed, the search algorithm takes the previous

list of results and re-sorts the items by relevance with respect to the updated query, excluding

items whose relevance drops to zero. Since the lists of prepared search results are capped at 1000

items, the number of items being searched and sorted is never greater than 1000, no matter how

many items the program indexes.

GNOME Do's plugin architecture allows any item to have children. For example, a folder

item has all the files contained in the folder as its children. This makes it possible for an item's

children to exist outside the indexed �universe.� For example, if a folder were only indexed 1-

level deep, then a file contained in a subfolder of that folder would be an item that the user can

discover outside of GNOME Do's searchable index. We use this capability to discover important

features of the user's environment to index.

We have made some significant assumptions about how people use and refer to named

resources on their computers. First of all, our search implementation relies on the assumption that

people know the name of the item they are looking for. Our string scoring algorithm (we

currently use Quicksilver's scoring algorithm for easy comparison with Quicksilver) takes

advantage of this assumption, placing a higher weight on letters that appear in the beginning of

the name or the beginning of words in the name. Also, by limiting the number of search results

returned for any query to a maximum of 1000 items, we assume that users cannot name more

than 1000 items in their desktop environment for any given character on their keyboard. We have

found that these assumptions require slight changes in user behavior. For example, many users

are quick to configure GNOME Do to index tens of thousands of files on their computer. We

often have to explain to users that they are not actually interested in instant access to most of

those files, and we suggest that they limit the index to files they open at least once a year�this is

under a couple hundred files for most users, and fewer than a couple thousand files for even the

most avid users. Also, many users have been trained by other search tools to search by content

rather than by name, so they feel that searching by name is strange. We argue that searching by

name makes sense for small datasets where the majority of the content is originated and therefore

named by the user (e.g. contacts, documents, bookmarks). We encourage users to think more

carefully about the names they assign to resources on their desktop. This makes it easier for users

to find what they are looking for using GNOME Do, and has the nice side effect of making

people more cognizant of and proactive about the organization of their desktop.

To address the issue of item relevancy, we had planned to implement a scoring system

that does type-based, global prioritization of items considered as members of our type

�ontology,� and token-based, local prioritization of items considered as individual entities. By

�global,� we mean across all sets in the prefix tree. By �local,� we mean specific to a single set in

the prefix tree. The figure below illustrates the type heirarchy for ImageFileItem, a type

representing an image file in the user's filesystem. Suppose one were to search with the query

�por� for the item �Family Portrait.jpg,� and perform the action �Rotate 90° Counterclockwise�

on that item. GNOME Do will increase the relevance of each type on the path from

ImageFileItem to the root of the item type hierarchy, IItem. This results in global, type-based

prioritization because these type-based relevance scores are used to rank all items in the prefix

tree. The relevance for the �Rotate 90° Counterclockwise� action will also be increased. If the

next search is for �face� and the user has two items with equal string similarity for the query,

such as a bookmark for �face.com� and an ImageFileItem for �face.jpg�, the type-based

prioritization will ensure that the image is considered more relevant than the bookmark.

As far as token-based, local prioritization goes, the �Family Portrait.jpg� item will have

its individual relevance increased in addition to the relevance increase it accrues from being a

member of the ImageFileItem type; however, this token-based relevance will only be considered

for searches beginning with �p�, as this was the initial keypress in the search resulting in the

change in token relevance. Constraining the domain of token-based prioritization to individual

working sets in the prefix tree increases differentiation among all working sets, thus increasing

the number of distinct items indexed. For example, �Family Portrait.jpg� could easily find itself

among the most relevant items in the sets F, A, M, P, O, R, etc., contending with other items for

occupancy even though the user may never visit any set but P when searching for this item. The

next time the user searches for �Family Portrait.jpg,� she may only have to type �p� (or �po�)

because of the item's increased relevance along that search path.

Figure 5: GNOME Do's type information about ImageFileItem

We had counted on work from another group that would give us relevance scores to

implement these features with (see �Collaboration�). For unknown reasons, this work was either

never completed or we were not told about it, so for the time being we have implemented a much

simpler relevance scoring system that maintains two global histograms, one for items and one for

actions. Every time an item or action is deemed relevant by some user action, the appropriate

histogram is updated to reflect the increase in relevance. These histograms decay over time to

allow new items and actions to become more relevant than old items and actions. Although this

implementation is the simplest we could conceive of, we have received a large amount of positive

feedback about the relevance predictions that GNOME Do is able make. This has led us to

suppose that the type/token relevance implementation may not yield enough noticeable advantage

to merit the increased complexity. In any event, we have created a modular ranking pattern that

allows us alter GNOME Do's relevance algorithms by simply subclassing a single class, so it

would be easy to experiment with alternate relevance scoring strategies.

Two great challenges we faced were learning to use the necessary tools and libraries (see

�Resources Required�), and coordinating our efforts with the community in order to make this a

successful open source project (see �Open Source Methodology�). To help bring us up to speed

with these aspects of our project, Sean Egan, the lead developer of Pidgin Internet Messenger,

has agreed to mentor us. Pidgin is an extremely successful open source project.

4 Open Source Methodology

An important aspect of our technical approach is the methodology by which we planned,

organized, and developed our application. GNOME Do is an open source project, which means

that all specifications, source code, documentation, and other project resources are available on

the Internet for anyone to read or compile at any stage in our development process. This allowed

us to collect feedback such as feature suggestions and bug reports from members of the

community. This approach has been a double-edged sword, however: by inviting people to

scrutinize and interact with us and our work, the quality and thoroughness of our project was

made higher, but managing community interaction added a large, organizational dimension to our

project that most senior design projects do not have to deal with. This is why we asked Sean Egan

to mentor us. We hosted our project on Launchpad.net, a popular site for open source projects

emphasizing community participation and collaboration. Our development page is

http://launchpad.net/do. This page contains a detailed account of all of the planning and work

that has gone into our project. Our project homepage is http://do.davebsd.com.

Here are some details about community participation for the seven-month duration of our

project: at the end of the first semester spent working on the project, we had committed 100

revisions accounting for 9,000 lines of code. Four months later, we now have committed 335

revisions accounting for 24,000 lines of code. 162 bugs have been reported. We have received

approximately twenty patches from external contributors, the first of which was contributed by

Miguel de Icaza, VP of Developer Platform at Novell. Miguel founded the GNOME and Mono

projects, and is one of the most influential members of the GNU/Linux desktop community.

Miguel expressed great enthusiasm about our project in an email exchange and a post on his

personal blog. GNOME Do was blogged about a few times by Jorge Castro on

http://planet.ubuntu.com, a popular aggregation of blogs of Ubuntu developers. We have 182

people on our mailing list (up from 30 last semester). Chris Halse Rogers joined our project as

our official Ubuntu package maintainer. Chris oversees an online repository containing binary

packages of our project, keeping users updated with our newest releases. Our most recent release

was 0.4.2, released on April 15, 2008. GNOME Do now has packages in every major

GNU/Linux distribution, and is even installed by default in Foresight Linux and a few others.

Shuttle, a boutique PC retailer, is now selling a line of low-cost Linux PCs that have GNOME Do

running on them by default. Judging from our interactions with users and contributors, we are

fairly certain that we have around 50,000 users at this point (up from a couple hundred last

semester). We consider GNOME Do a remarkable success for seven months into our first open

source project, after just recently switching to Linux and learning to use C#, Mono, and GNOME

as we went along. This is a testament to the liveness and receptiveness of the free software

community, and the flexibility and ease of use of tools like Bazaar, Launchpad, and most notably

Mono.

5 Collaboration

As of last semester, we had barely begun to collaborate with Ian Cohen and James

Walker's project for scoring items for relevance. We provided them with our project source code

and enough information for them to start sharing data between their application and ours, but no

significant collaborative efforts had taken place at that point. Ian and James had planned to

develop, by the end of last semester, the item type ontologies which we would use in GNOME

Do, but unfortunately they never delivered these. As discussed earlier, we were still able to

implement historical relevance scoring. We understand that Ian and James were not obligated to

work on a project as large in scale as ours, but we are utterly disappointed that they failed to

collaborate in any sense whatsoever. They may have changed the direction of their project, but

they never informed us of these changes and they failed to respond to emails sent to them in this

regard.

6 Resources Required

We implemented GNOME Do on two Apple MacBooks running Ubuntu 7.10 �Gutsy

Gibbon.� Software and services required for this project include: Mono (C# compiler, libraries,

virtual machine), MonoDevelop (Mono IDE), autotools, Launchpad.net (project management),

Bazaar (source code management), and assorted libraries (GTK+, GNOME, DBus). All of these

components are free and open source software, so their greatest cost was the time it took to learn

to use them.

7 Timetable

By the end of the fall semester, we planned to have accomplished:

� the symbolic application interface (like Quicksilver, GNOME Launch Box)

Completed. Two additional symbolic interfaces have been created thanks to Jason

Smith, an undergrad at the Western Michigan University. Jason has been the most

prolific outside contributor.

� indexing and search of items and commands

Completed.

� pre-fetching search results for apparently instantaneous search

Completed.

� a version �0.5� public release, packaged for Ubuntu 7.10 and available as source for other

GNU/Linux distributions

Completed above and beyond our original expectations (online package

repositories, volunteers maintaining packages). UPDATE: GNOME Do is now

packaged for Debian, Fedora, OpenSUSE, Foresight Linux, Gentoo, and all other

major GNU/Linux distributions.

� plugin API with thorough online documentation so that third parties can add items and

commands to our application

Completed. Tens of useful plugins have been contributed up to this point:

https://wiki.ubuntu.com/GnomeDo/Plugins

� choose a free software license for our source code and explain our rationale for choosing

that license

Completed; we have chosen the GPLv3 as our open source license. This license is

endorsed by the majority of GNU/Linux projects.

By the end of the spring semester, we planned to have accomplished:

� the natural language interface, which will allow users to manipulate items and commands

with a more free-form command grammar

We feel that the natural language problem that we originally conceived and

thought we would address is contrived. With command interfaces like the one we

developed, it seems that a non-natural �command grammar� is preferred by

computers and humans. We feel that this task would also make our project too

wide in scope, as we have our hands full with the search, relevance scoring, and

other features.

� improve upon search techniques and responsiveness developed earlier

Completed.

� a core set of plugins providing access to applications, files and directories, web browser

bookmarks, and address book contacts

Completed with many additional plugins.

� conduct a usability study with both novice and advanced users to gather information for

comparing the interfaces have developed

Not completed. Our request to have CETS install the required software on lab

computers was completely ignored.

� a version �1.0� public release, packaged for Ubuntu and available in source code for other

GNU/Linux distributions

Our current stable release is 0.4.0.1, and our next stable release, 0.8, will add

online plugin repositories and superior plugin management via the Mono.Addins

framework; graphical configuration options for plugins; and a lineup of fancy

new plugins. We expect to finish 0.8 sometime this summer.

� consider package submission to the Ubuntu project so that our application will be

included in Ubuntu repositories

GNOME Do is included in Ubuntu 8.04's universe (community maintained)

repository. This means that Ubuntu users can very easily install GNOME Do.

� work with Kostas Daniilidis to determine feasibility of porting project to a cell phone

(Status as of last semester is unchanged) Due to two significant delays, we do not

know when a stable release of the OpenMoko (GNU/Linux-based cell phone)

platform will be available. Since it seems like we won't get our hands on the phone

for at least another month, and once we get the phone we have to learn an entirely

new toolchain for porting and developing GNOME Do, the feasibility of running

GNOME Do on a cell phone by the end of the spring semester is low.

8 References and Works Cited

Source code of Banshee Media Player (2007) GNOME Subversion source code repository.

Retrieved 01 Nov. 2007 <http://svn.gnome.org/viewvc/banshee/trunk/

banshee/src/Core/Banshee.Core/>.

Reading the source code to Banshee helped answer a lot of our early questions about

writing and organizing our Mono application. We borrowed parts of our logging and

namespace design from Banshee. Banshee is perhaps the most high-profile Mono

application, with many strong developers working on it, so we found the code to be of

unparalleled quality.

Benjelloun, O., Garcia-Molina, H., Kawai, H., Eliott Larson, T., Menestrina, D., Su, Q., et al.

(2007) Generic Entitiy Resolution in the SERF Project. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering.

This article granted us exceptional insight into the problem of entity resolution,

which we encountered for the first time when confronted with the task of

deduplicating contact resources in a user's desktop environment. The article is clearly

recent, and the bulletin in which it is published stands in high regard.

"GNOME Launch Box Architecture." (2007) Imendio Developer Pages. Retrieved 24 Sept. 2007

<http://developer.imendio.com/projects/gnome-launch-box/architecture>.

In addition to reading the entire C source of GNOME Launch Box, this document

provided a brief, high-level overview of the relevant application architecture. We

found this document to be a bit speculative, in that it alluded to features of GNOME

Launch Box that have not yet been implemented; nevertheless, this source helped us

determine the shape our project would take (and would not take) early on. This

source was also a bit dated, although GNOME Launch Box is a stagnant project so

we expected this would be the case.

Jitkoff, Nicholas. "Quicksilver: Universal Access and Action." (2007) Google Video. Retrieved

24 Sept. 2007 <http://video.google.com/videoplay?

docid=8493378861634507068&q=google+tech+talk&total=668&start=0&num=10&so=0

&type=search&plindex=8>.

An excellent presentation of the �philosophy� behind Quicksilver. This talk

motivated much of the attention we payed to user behavior. Jitkoff talks a lot about

the merits of universal resource access, and he also touches on the possbility of

applying more advanced machine learning techniques to Quicksilver. We had hoped

to explore some of these more advanced learning techniques through collaboration

with Ian and James (see �Collaboration�).

"Quicksilver Documentation." (2007) Blacktree Software. Retrieved 22 Sept. 2007

<http://docs.blacktree.com/>.

Extremely useful in giving us a broad understanding of the requirements of our

plugin system. This documentation also provided us with the string scoring

implementation (which we ported from Objective-C). Although this source was

authoritative since it originated from the author of Quicksilver, it is extremely rough

and incomplete.

Xiao, L., Zhang, X., And Kubricht, S. A. (2000) Improving Memory Performance of Sorting

Algorithms. ACM Jour. of Experimental Algorithmics 5, 3.

Exposed us to an excellent discussion on the memory-performance trade-offs that we

would have to make throughout the development of our application. Well composed.

Reputable source.

