
Changes and Additions to ggplot2-0.9.0

ggplot2 Development Team

February 10, 2012

Contents

1 Overview 1

1.1 Visible changes 2

1.2 Not so visible changes 3

2 Legend and colorbar guides 4

2.1 guide_legend() 5

2.2 guide_colorbar() 7

3 New geoms 10

3.1 geom_map() 10

3.2 geom_raster() 13

3.3 geom_dotplot() 14

3.4 geom_violin() 19

4 Improvements in facet_grid() 20

5 scales package 23

5.1 Functions to manage breaks, axis
labels and strip labels 24

5.2 Transformation functions 25

5.3 Palette functions 26

6 Scaling x- and y-axes 26

6.1 Dates and datetimes 27

6.2 Continuous variables 29

6.3 Scale and coordinate transformations 34

7 Summary 36

8 References 37

1 Overview

Version 0.9.0 of the ggplot2 package contains a number of changes that provide a user with
more flexibility and greater ease of use in the construction of a ggplot. The two most evident
improvements from a user’s perspective are: (i) the help pages have been expanded consid-
erably, with many new examples; and (ii) the computing time has been reduced significantly.
Several new geoms are introduced, as well as a few new stat_ functions. These will be de-
scribed in the sections to follow.

This version marks the inception of a renovation project designed to off-load groups of
related functions into separate packages and streamlining the code to produce a more consistent
user interface across those sets of functions. The scales package is the first evidence of this
process, but others will follow in due course. Another important decision made in this process
is to gradually rewrite the core code of the package in S3, which is anticipated to have two

important effects: (i) faster execution of code; (ii) greater participation from ggplot2 users
in the development of the package. Moreover, steps have been taken to initiate rigorous unit
testing to ensure that new and/or revised code is performing as expected, with the aim of
reducing the probability of bugs in the future and faster response time in fixing bugs should
they occur. This redesign is part of an effort to transition from a single-developer project to a
user community project.

This document is an extension of the NEWS files in the ggplot2 and scales packages, de-
scribing the changes and new features in some detail, in the hope that it will ease the transition
for existing ggplot2 users. The changes that will most directly affect users in this version have
to do with guides–specifically, positional axes, text annotation and legends.

1.1 Visible changes

• The help files are now fully documented with many new examples in addition to those
already in the on-line help pages. Notably, the help page of opts() lists all of the avail-
able theme options with an extensive set of examples and several help pages are devoted
to the comparison of qplot() with base, lattice and gpl graphics.

• ggplot2 now has a NAMESPACE, which is required in all R packages as of version 2.14.0.
This means, for example, that plyr and reshape will no longer be autoloaded with
ggplot2, so you will need to write an Rprofile function, either at the site level (in
RHOME/etc) or in a project directory, if you want to continue loading plyr, reshape[2]
or other packages at startup. Otherwise, packages must be loaded from the command
line.

• Thanks to the efforts of Kohske Takahashi, two new functions named guide_legend()
and guide_colorbar() greatly extend the capability of users to tailor legends in a
ggplot. The help pages of each have an extensive set of examples, a few of which will be
illustrated in section 2.

• scale_ functions now have a more consistent set of arguments; for example, they all
now have arguments breaks, values, limits, labels and name. Moreover, argu-
ments breaks, limits and labels now accept a function as its value. The positional
guide functions scale_continuous and scale_discrete have an additional argu-
ment trans that also accepts a function as its value while the attribute scale functions
(e.g., , scale_fill_discrete() or scale_colour_manual()) have a new argument
guide = , which can assume one of the values "none" or "legend"; for continuous
fill and color scales, another option is "colorbar". Examples of these are present in the
help files; others will be shown in section 6. This is a significant change in the package
that may affect existing user code.

• Several new geoms are introduced in this package: geom_map(), geom_raster(),
geom_dotplot() and geom_violin(). The latter pair of geoms were developed by
Winston Chang. These will be discussed in section 3, but see their individual help files
for more detailed description and examples.

2

• A new set of fortify methods has been written for objects of class multcomp. See the help
page of fortify.multcomp() for further details.

• Four new stat_ functions make their debut:

– stat_summary2d(), which applies a function over a 2D grid of bins;

– stat_summary_hex(), which applies a function over a collection of hexagonal
bins;

– stat_bindot(), a stat_ function that accompanies geom_dotplot();

– stat_ydensity(), a stat_ function that accompanies geom_violin().

Each of these has its own help page with accompanying examples.

• Users no longer have to worry about the variable name/aesthetic name buglet that plagued
earlier versions, which was a particular problem when a faceting variable was the name
of an aesthetic (e.g., colour or size). You can now expect that code like the following will
work: «code0,eval=FALSE»= ggplot(df, aes(x, y, group = group, colour = color)) @

• The problem with axis titles being too close to axis labels at the default font size has been
fixed in 0.9.0. In addition, axis titles are now centered with respect to the panels rather
than the overall graphics region.

• An expanded collection of possible linetypes is introduced in this version. See the help
page of aes_linetype_size_shape() for some examples, and for a brief description,
the help page of scale_linetype().

• The facet_grid() function has a couple of new features. The scales = argument
now supports values free_x and free_y, which allow a user to adjust the spatial scal-
ing of facets in either the horizontal or vertical direction. Moreover, the labeller =
argument now accepts a function as its value and the margins = argument now works
again. A number of examples are given on the help page of facet_grid, but some
examples incorporating these changes will be shown in section 4.

• geom_boxplot() is now capable of rendering notched boxplots. In addition, the new
default is for the center line of a boxplot to be thicker than the box and whiskers, using
the new argument fatten = , which defaults to 2. If you want the old behavior, set
fatten = 1 in a geom_boxplot() call.

• A new function ggmissing() visualizes missing data to investigate the plausibility of the
‘missing at random’ assumption. Two other new functions are ggorder(), which plots
data in the order in which they were recorded, and ggstructure(), which is designed
to highlight structural anomalies in numeric multivariate data should they exist.

1.2 Not so visible changes

As noted in the intro, the package is being reorganized and partially rewritten for a number
of reasons. These changes don’t necessarily affect users per se, but they do affect current and
future co-developers. Some of the changes in progress include the following:

3

1. The roxygen2 package is now being used exclusively for documentation of functions in
ggplot2. The practical advantage of roxygen2 is that it encourages self-documentation
of a function as it is being developed.

2. A start has been made in applying unit testing to functions in ggplot2 and its derivative
packages using the testthat package. As more people contribute to the project, testing
code in advance becomes increasingly important. It is also a way of making sure that
past bugs are fixed and a means of preventing future bugs. This should make code more
reliable even as the functionality of the package grows over time.

3. In a major design change, the core code of the package is gradually being rewritten in S3
as a replacement for the proto package, which, quite frankly, few R programmers know
well. This decision is expected to encourage more developers to join the project and,
incidentally, to make the code run a bit faster.

4. Another major design decision which will have more visible impact in the future is that of
disaggregating the code in ggplot2 into packages of related functions, so that eventually,
ggplot2 will be more like a control center of sorts that picks up necessary pieces from
satellite packages and organizes them into a graphic in ggplot2. The goal, however, is
more ambitious: certain satellite packages should also work with other graphics engines,
including base graphics and the lattice package. The scales package, for example, falls
in this category.

2 Legend and colorbar guides

Control over legends is greatly expanded in version 0.9.0, largely due to the efforts of Kohske
Takahashi. The two functions discussed in this section are guide_legend() and guide_colorbar().
We discuss these first because they will be used extensively in the sections to follow.

In the grammar of graphics, there are two types of guides: scale guides and annotation
guides1. In the former group lie positional guides, discussed in section 6, and legends, discussed
herein. Legends are associated with aesthetics corresponding to plot attributes such as color, fill
color, size, line type or plotting character shape. One can still use the scale_*() functions as
before (e.g.,scale_fill_manual() or scale_colour_brewer()), but the new functions
provide a user with more control over aspects of the legend display. Both functions have nu-
merous examples in their respective help pages that illustrate each argument at least once. We
will show a few that may occur commonly in practice in the following two subsections. Bear
in mind that legend guides are meant to be associated with discrete-valued aesthetics while
colorbar guides are meant to correspond to continuous-valued aesthetics.

Each guide function has a number of arguments. The following table lists those that are
common to both legend guides and colorbar guides:

1These include main titles, embedded text in the graphics region using annotate() or geom_text() and other
annotations such as the North arrow in a spatial plot.

4

Category Argument Notes

title

title legend title
title.position "left", "right", "top", "bottom"
title.theme uses theme_text()
title.hjust horizontal justification
title.vjust vertical justification

label

label TRUE −→ labels drawn
label.position "left", "right", "top", "bottom"
label.theme uses theme_text()
label.hjust horizontal justification
label.vjust vertical justification

key
options

default.unit measurement unit
direction "horizontal" or "vertical"

The titles and labels of guides can be manipulated in similar ways since both have the same set
of arguments. The title/label.theme argument allows one to adjust the properties of titles
and/or labels that are covered by the theme_text() function.

2.1 guide_legend()

This function provides a user with several options to control features of a legend guide, in-
cluding titles, labels, the height and width of legend keys, the direction of the legend and
several other options that are useful when a large number of categories exist. We will see that
guide_legend() is not used as a primary function, but rather as the ‘value’ of an argument in-
side another function, much like the various functions from the scales package to be discussed
in section 5.

The arguments that are unique to guide_legend() are:

keywidth width of legend key item
keylength length of legend key item
override.aes (values of) aesthetics to be reset
nrow number of rows in the legend
ncol number of columns in the legend
byrow TRUE −→ order key items by row
bycol TRUE −→ order key items by column

In a legend guide, one can manipulate the size of individual legend keys and specify the way
they are arranged in a legend through the set of arguments above.

There are several ways to call guide_legend() One way to invoke it is in conjunction
with the new guides() function. In the following example using the diamonds data, the
factor clarity is the fill aesthetic for which a legend is to be built. The call to guide_legend()
is the value of the fill = argument of guides(). This syntax allows you to adjust one or
multiple legends in a single call. Think of guides() as analogous to the function labs(); we
will elaborate on this analogy a bit more in the next section.

The code below creates four rows of legend keys, increases the font size of the legend title
and emboldens it:

5

Base plot
q <- ggplot(diamonds, aes(x = table, fill = clarity)) +

geom_histogram() +
scale_y_continuous(labels = comma_format(digits = 5))

Create two columns of legend labels and increase the
size of the legend title font

q + theme_bw() +
guides(fill = guide_legend(nrow = 4, title.hjust = 0.4,

title.theme = theme_text(size = 12, face = "bold"))) +
scale_fill_grey(start = 0.1, end = 0.9) +
xlim(45, 75)

0

5,000

10,000

15,000

45 50 55 60 65 70 75
table

co
un

t

clarity
I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

The same graph can be made by replacing the guides() call with one to scale_fill_discrete(),
where the new guide = argument is used to make the legend using a guide_legend() func-
tion call as its value. The guide = argument is specific to scale functions for aesthetics, just
as trans = is specific to positional scale functions2.

q + theme_bw() + scale_fill_discrete(
guide = guide_legend(nrow = 4, title.hjust = 0.4,
title.theme = theme_text(size = 12, face = "bold"))) +

scale_fill_grey(start = 0.1, end = 0.9) +
xlim(45, 75)

2See section 6.

6

0

5,000

10,000

15,000

45 50 55 60 65 70 75
table

co
un

t

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

The following example concerns an application that comes up occasionally on the ggplot2
list: overriding the alpha transparency value in the legend so that the values of an aesthetic
are visible in the legend key. The relevant argument is override.aes: in the left side plot,
the very low alpha value makes it impossible to see the legend key items, but override.aes
resets the alpha value in the legend to make them visible in the right hand plot.

(p3 <- qplot(carat, price, data = diamonds, colour = color,
alpha = I(0.01)) +

scale_y_continuous(labels = dollar))
p3 + guides(colour = guide_legend(override.aes = list(alpha = 1)))

2.2 guide_colorbar()

The new function guide_colorbar() is designed for continuous ranges of (fill) colors—as its
name implies, it outputs a rectangle over which the color gradient varies, while providing more
flexibility to the user in terms of the labeling and positioning of guide elements. At this time,
it is applicable only to the scale_fill_continuous() and scale_colour_continuous()
functions; in particular, it does not work with size.

7

The following table lists the set of arguments unique to guide_colorbar():

barwidth width of the colorbar
barheight height of the colorbar
nbin number of bins to use in the colorbar
raster draw colorbar as a raster image? (Default: TRUE)
ticks should tick marks be drawn? (Default: TRUE)
draw.llim should lower limit tick marks be visible? (Default: FALSE)
draw.ulim should upper limit tick marks be visible? (Default: FALSE)

Whereas legend guides could tinker with the length and height of individual legend keys, a
colorbar guide can control the width and height of a colorbar, as well as the number of ticks
and whether or not the upper and lower limits of a colorbar should be drawn.

The examples on the guide_colorbar() help page show how the function works with
geom_tile(), so an immediate application of this function is to heatmaps. Here is a simple
example from the help page:

df2 <- melt(outer(1:4, 1:4), varnames = c("X1", "X2"))
(p1 <- ggplot(df2, aes(X1, X2)) + geom_tile(aes(fill = value)) +

geom_point(aes(size = value)))

1

2

3

4

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

1 2 3 4
X1

X
2

value

●

●

●

5

10

15

Three equivalent ways to invoke the colorbar are given below. The first simply specifies the
guide name; this is sufficient if you want to use the default arguments. Either of the other two
should be used when you want to change one or more of the default arguments.

p1 + scale_fill_continuous(guide = "colorbar")
p1 + scale_fill_continuous(guide = guide_colorbar())
p1 + guides(fill = guide_colorbar())

The following figure illustrates the first and third methods, respectively:

8

p1 + scale_fill_continuous(guide = "colorbar")
p1 + guides(fill = guide_colorbar(barwidth = 0.5, barheight = 10))

1

2

3

4

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

1 2 3 4
X1

X
2 5

10

15

value

value

●

●

●

5

10

15
1

2

3

4

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

1 2 3 4
X1

X
2

5

10

15

value

value

●

●

●

5

10

15

The examples above indicate that if the fill and size aesthetics are both associated with the
same variable and both produce a legend, the legends can be merged into one, ae we saw with
the plot of p1 at the top of this subsection. However, if one aesthetic uses a legend guide and
another uses a colorbar guide, the two cannot be merged, even if both aesthetics correspond to
the same variable. This is seen in the two plots above.

Equivalent ways of calling the left and right side plots above, respectively, are

p1 + guides(fill = "colorbar", size = "legend")
p1 + scale_fill_continuous(guide = guide_colorbar(barwidth = 0.5,

barheight = 10))

Let’s return to the analogy between the labs() function and the guides() function. Re-
call that one can use xlab() and ylab() individually in a ggplot() call; moreover, one
can redefine legend titles with the name argument in the appropriate scale_aesthetic_*()
function. The labs() function allows one to define titles for any positional axis or legend in
one call, where the aesthetic is the argument name and the title is its value; e.g.,

labs(x = "My x-axis", y = "My y-axis", colour = "Category")

The guides() function is analogous to labs() in the sense that one can define a legend or
colorbar guide for each aesthetic that generates a guide. The call can be as simple as defining
the type of guide for each aesthetic, as in

p1 + guides(fill = "colorbar", size = "legend")

or it can be a more complete specification for each guide, e.g.,

9

p1 + guides(fill = guide_colorbar(nbin = 6, ticks = FALSE),
colour = guide_legend(label.position = "left"))

As in labs(), the aesthetic is the argument and the guide_*() function is its value. Al-
ternatively, one can use a scale function with a guide = argument just as one can use a scale
function and specify a legend title with the name = argument. The difference is that the value
of the guide = argument can be a text string that specifies the guide (assuming its default
arguments) or it can be a call to one of guide_legend() or guide_colorbar() wherein one
or more default arguments can be modified.

Colorbars can also be used with a continuous color aesthetic; here is an example from the
built-in data frame mpg:

ggplot(mtcars, aes(x = disp, y = mpg, colour = wt)) +
geom_point() +
scale_colour_gradient(low = "blue", high = "orange",

guide = "colorbar")

10

15

20

25

30

35

●●
●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

100 200 300 400
disp

m
pg

2

3

4

5

wt

In this case, we wanted to use the colour_gradientn() scale function to determine the
color range. The guide = argument in any of the scale_colour_*() functions allows one
to specify a colorbar in place of a legend. If no legend or colorbar is desired, you can substitute
guide = "none" instead.

3 New geoms

This version of ggplot2 introduces several new geoms: geom_map(), geom_raster(), geom_dotplot()
and geom_violin(), the latter two of which were developed by Winston Chang.

3.1 geom_map()

geom_map() is a special case of geom_polygon(), specifically designed to simplify the con-
struction of choropleth maps in ggplot2. The example below comes from the help page, which

10

requires the maps package to produce the states_map data frame using the helper function
map_data().

crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
states_map <- map_data("state")
ggplot(crimes, aes(map_id = state)) +

geom_map(aes(fill = Murder), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat) +
guides(fill = guide_colorbar(colours = topo.colors(10))) +
opts(legend.position = "top")

25

30

35

40

45

50

−120 −110 −100 −90 −80 −70
x

y

5 10 15
Murder

In this choropleth map, the initial ggplot() call invokes the data frame crimes with variable
state as the ID variable to be associated with the map. In geom_map(), the fill aesthetic is
the murder rate of a given state, where the map data is found in the object states_map.

The next example is one that imports a map file from one source and a data file from
another. The following is an adaptation of an example posted by Tom Hopper on the ggplot2
list in 2010, whose solution was posted here with respect to version 0.8.9. The code takes some
time to run, so I wouldn’t suggest running it yourself unless you are really, really curious, but
links to the data and code are given below in case you want to try it. Click here for the world
map borders data and here for a sanitized file of electricity generation data. The zip file should
be unpacked first in a directory and it’s probably a good idea to keep the csv file in the same
directory. The rgdal package needs to be loaded to run readOGR(); the first argument of the
function is the directory that holds the unzipped world borders file.

11

http://groups.google.com/group/ggplot2/msg/de3c60c1833ea4a6
http://dl.dropbox.com/u/57587928/TM_WORLD_BORDERS-0.3.zip
http://dl.dropbox.com/u/57587928/TM_WORLD_BORDERS-0.3.zip
http://dl.dropbox.com/u/57587928/Total_Electricity_Net_Generation.csv

replace this with the directory that holds the world borders
shapefiles and the electricity generation data
setwd("/path/to/shapefiles")
world.map <- readOGR(layer="TM_WORLD_BORDERS-0.3")
a good idea if you want to reuse the map data
save(world.map, file = "worldmap.Rdata")
Aside: to read it back in later,
library("maptools")
gpclibPermit()
load("worldmap.Rdata")
gpclibPermit()
Convert map data to data frame using fortify() for spatial objects
world.ggmap <- fortify(world.map, region = "NAME")
Read in the global electricity generation data
Assumes the working directory holds this data file - if not,
modify the path
elect.gen.tot <- read.csv(

"Total_Electricity_Net_Generation.csv", sep = ",", dec = ".")
names(elect.gen.tot) <- c("id", "y2004", "y2005", "y2006", "y2007", "y2008")
Plot the choropleth map
ggplot(elect.gen.tot, aes(map_id = id)) +

geom_map(aes(fill = log(y2007)), map = world.ggmap) +
expand_limits(x = world.ggmap$long, y = world.ggmap$lat) +
scale_fill_gradient(low = "orange", high = "blue",

guide = "colorbar") +
opts(panel.background = theme_rect(fill = "skyblue"))

There are some holes in the map due to missing data from a couple of countries in south central
Africa and the Republic of Moldova in Eastern Europe.

Another common source of map files is gadb.org, which contains administrative map files
in .Rdata format. Not all of these maps are up to date, however, so you need to check the
validity of any map downloaded. Here is some code for plotting regions of Japan from a recent
question on the ggplot2 list, courtesy of Charlotte Wickham, adapted to 0.9.0 for use with
geom_map(). Her code for 0.8.9 is shown in this message. Once again, the code is not run, but
you can copy and paste it into your R session—just be willing to wait a few minutes for all of it
to process, since this is a detailed administrative map.

load(url("http://gadm.org/data/rda/JPN_adm2.RData"))
gpclibPermit()
convert to a structure ggplot2 can handle...takes a while
japan_map <- fortify(gadm, region = "ID_2")
manufacture a fake data frame of values to use in geom_map()
vals <- data.frame(id = unique(japan_map$id), val = rpois(1811, 5))
ggplot(vals, aes(map_id = id)) + geom_map(aes(fill = val), map = japan_map) +

12

gadb.org
http://groups.google.com/group/ggplot2/msg/7a62718b5f98b12e

expand_limits(x = japan_map$long, y = japan_map$lat) +
scale_fill_continuous(low = "navy", high = "yellow", guide = "colorbar")

3.2 geom_raster()

This function is a more efficient version of geom_tile(), meant to be used when all of the
tiles are the same size. Here is an example, slightly modified from its help page; the left plot
uses a continuous color legend, while the one on the right uses a colorbar instead.

pp <- function (n,r=4) {
x <- seq(-r*pi, r*pi, len=n)
df <- expand.grid(x=x, y=x)
df$r <- sqrt(df$x^2 + df$y^2)
df$z <- cos(df$r^2)*exp(-df$r/6)
df

}
base <- ggplot(pp(200), aes(x, y, fill = z))
base + geom_raster()
base + geom_raster() +

scale_fill_gradientn(colours = terrain.colors(10), guide = "colorbar")

−10

−5

0

5

10

−10 −5 0 5 10
x

y

z

−0.5

0.0

0.5

−10

−5

0

5

10

−10 −5 0 5 10
x

y

−0.5

0.0

0.5

z

The following code uses geom_raster() to plot a correlation matrix:

Create a random matrix of 10 columns (variables)
m <- matrix(rnorm(1000), nrow = 100,

dimnames = list(NULL, paste("X", 1:10, sep = "")))
Compute the correlation matrix
cmat <- cor(m)
Melt it into a data frame
cmatm <- melt(cmat)
Create two new numeric variables by stripping off the X’s in the
two factor variables Var1 and Var2:

13

cm1 <- mutate(cmatm, X1 = as.numeric(gsub("^X", "", cmatm$Var1)),
X2 = as.numeric(gsub("^X", "", cmatm$Var2)))

Two different ways of producing a correlation plot are shown below. As in the previous plot,
the one on the left produces a legend while the one on the right uses a colorbar.

ggplot(cm1, aes(X1, X2, fill = value)) + geom_raster() + scale_y_reverse()
last_plot() + scale_fill_continuous(low = "black", high = "pink", guide = "colorbar")

0

2

4

6

8

10

0 2 4 6 8 10
X1

X
2

value

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

0 2 4 6 8 10
X1

X
2

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

value

3.3 geom_dotplot()

This function is an implementation of Wilkinson dot plots (Wilkinson, 1999), a generalization
of the basic dot plot used to represent the distribution of a continuous variate when the sample
size is small. The help page of this function has an extensive set of examples covering all of its
basic features, a selected sample of which is included here for illustration.

Two basic algorithms exist for producing a dot plot: dot density, which uses a kernel den-
sity estimation algorithm to position dots (described in the Wilkinson paper), and histodot, a
histogram whose bars are drawn as stacks of dots with the same bin width. A ‘histodot’ plot
is distinguished by regular horizontal spacing between stacks (i.e., fixed positions and fixed
widths), whereas in a ‘dot-density’ plot, the bin positions are determined by the data and the
selected binwidth, which in this case represents the maximum binwidth. Most of the time a dot
density plot is preferred, which is why it is the default method used by the geom.

A dot plot can be viewed as a 1D horizontal scatterplot in which (nearly) tied values are
perturbed or displaced vertically. There are three basic ways in which points in a graphic can be
displaced: (i) jitter; (ii) textured dot strips (Tukey and Tukey, 1990); and (iii) dot plots, where
the points are displaced in increments of one dot width. The advantage of these approaches
over the ‘histodot’ method is that outliers are positioned where they should be rather than
assigned to a midpoint value defined by fixed binning (Wilkinson, 1999).

Dots can be manipulated in certain ways:

(i) The size of a dot can vary depending on the sample size and number of bins, or it can be
set in a geom_dotplot() call with the dotsize = argument.

14

(ii) Dots can be stacked in various ways using the stackdir = argument.

(iii) The stackratio argument specifies how closely to stack the dots within a stack; values
smaller than the default 1 move stacks closer together and create overlapping points,
whereas values larger than 1 place dots further apart from one another.

(iv) The binaxis = argument specifies the axis along which to bin ("x" or "y").

The following example shows the subtle difference between the ‘dotdensity’ and ‘histodot’
methods when the binwidth is specified:

default dotdensity method (left)
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5)
histodot method (right)
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(method="histodot", binwidth = 1.5)

0.0

0.2

0.4

0.6

0.8

1.0

●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●

●
●

● ●
●

●
●

●●

10 15 20 25 30 35
mpg

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

●
●

●●
●
●

●
●
●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●●● ●
●

●●

10 15 20 25 30 35
mpg

co
un

t

The stacks are slightly different in the two plots, but the stacks are closer together in the histodot
method because the dot size is set to the bin width. The dot size appears to be slightly larger in
the left plot (which uses the ‘dotdensity’ algorithm).

The next example shows several ways to stack dots in a 1D dot plot in the horizontal direc-
tion using the default binwidth (range/30):

default stack method (up)
ggplot(mtcars, aes(x = mpg)) + geom_dotplot()
alternate stack method (down)
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(stackdir = "down")
alternate stack method (center)
ggplot(mtcars, aes(x = mpg)) +

15

geom_dotplot(stackdir = "center")
alternate stack method (centerwhole)
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(stackdir = "centerwhole")

0.0

0.2

0.4

0.6

0.8

1.0

●
●

● ●
●
●

●
●
●
●

● ●
●
●

●
●
●

● ●
●
●
●
●

●
●

● ● ● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 ●
●

● ●
●
●

●
●
●
●

● ●
●
●

●
●
●

● ●
●
●
●
●

●
●

● ● ● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t

−0.4

−0.2

0.0

0.2

0.4

●
● ●

●
●
●

●
●
●
●

●
●
●
●

●
●
●

●

●
●
●
●
●

●
● ● ● ● ●

● ● ●

10 15 20 25 30 35
mpg

co
un

t

−0.4

−0.2

0.0

0.2

0.4

●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●

●

●
●
●
●
●

●
●

● ● ● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t

Similarly, one can stack dots in the vertical direction. To do this for a single dot plot, one needs
to set x = 1 and make the variable the y in the aes() argument. Observe that these are
essentially reflections of the preceding set of plots rotated 90◦.

default stack method (up)
ggplot(mtcars, aes(x = 1, y = mpg)) + geom_dotplot(binaxis = "y")
alternate stack method (down)
ggplot(mtcars, aes(x = 1, y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "down")
alternate stack method (center)
ggplot(mtcars, aes(x = 1, y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center")
alternate stack method (centerwhole)
ggplot(mtcars, aes(x = 1, y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center")

10

15

20

25

30

35

●●

●
●●●
●●●●
●
●●●
●●●
●

●●●●●

●●

●

●
●

●●

●

●

1.0 1.2 1.4 1.6 1.8
1

m
pg

10

15

20

25

30

35

●●

●
●●●
●●●●
●
●●●
●●●
●

●●●●●

●●

●

●
●

●●

●

●

0.2 0.4 0.6 0.8 1.0
1

m
pg

10

15

20

25

30

35

●●

●
●●●

●●●●
●

●●●
●●●

●

●●●●●

●●

●

●
●

●●

●

●

0.6 0.8 1.0 1.2 1.4
1

m
pg

10

15

20

25

30

35

●●

●
●●●

●●●●
●

●●●
●●●

●

●●●●●

●●

●

●
●

●●

●

●

0.6 0.8 1.0 1.2 1.4
1

m
pg

Here are a few examples using the dotsize and stackratio arguments:

base plot
ggplot(mtcars, aes(x = mpg)) + geom_dotplot()
increase the dot size

16

ggplot(mtcars, aes(x = mpg)) + geom_dotplot(dotsize = 1.25)
overlap dots within stacks:
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(stackratio = 0.7)

0.0

0.2

0.4

0.6

0.8

1.0

●
●

● ●
●
●

●
●
●
●

● ●
●
●

●
●
●

● ●
●
●
●
●

●
●

● ● ● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

●
●

●●
●
●

●
●
●
●

●●
●
●

●
●
●

● ●
●
●
●
●

●
●

● ●● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t
0.0

0.2

0.4

0.6

0.8

1.0

●
●

● ●
●
●

●
●
●
●

● ●
●
●

●
●
●

● ●
●
●
●
●

●
●

● ● ● ●
●

● ●

10 15 20 25 30 35
mpg

co
un

t

As you may have noticed, there is a problem when rendering a 1D dot plot: the dot axis
scaling is essentially meaningless since it is difficult to scale the y-axis relative to dot size. It is
also why 1D dot plots have a lot of empty space in most applications. One option is to remove
the vertical axis ticks altogether by adding the following code snippet to a ggplot() call:

scale_y_continuous(name = "", breaks = NA)
or if the dot plot is vertical,
scale_x_continuous(name = "", breaks = NA)

Much like a box plot, a dot plot is a more interesting graphical device when used to compare
the distributions of several related groups. In this context, dot plots are a better organized
method of handling overlapping points than jittering. The following pair of plots illustrate this
idea.

ggplot(mtcars, aes(x = factor(vs), y = mpg)) +
theme_bw() + geom_boxplot(aes(fill = factor(vs)),

alpha = 0.3, outlier.color = NA) +
geom_point(position = position_jitter(width = 0.05),

colour = "blue", fill = "blue") +
labs(x = "vs", y = "mpg", fill = "vs") +
scale_fill_grey(start = 0.6, end = 0.8)

ggplot(mtcars, aes(x = factor(vs), y = mpg)) +
theme_bw() + geom_boxplot(aes(fill = factor(vs)),

alpha = 0.3, outlier.color = NA) +
geom_dotplot(binaxis = "y", stackdir = "center",

position = "dodge", colour = "blue", fill = "blue") +
labs(x = "vs", y = "mpg", fill = "vs") +
scale_fill_grey(start = 0.6, end = 0.8)

17

10

15

20

25

30

35

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0 1
vs

m
pg

vs

0

1

10

15

20

25

30

35

●

●●

●
●●●

●●●●
●
●

●●
●

●●

●

●●
●

●●●
●●

●

●

●●

●

●

0 1
vs

m
pg

vs

0

1

Whenever a factor is used as an aesthetic in a dot plot, the rule is that the dot plot for each
level will be dodged; this is also the case when multiple factors are at play. For example, if A
and B are two factors such that the levels of A map to the horizontal axis, then dotplots of each
level of B are dodged within individual levels of A. The following plot shows two different ways
of handling this situation. The left plot dodges the dot plots by number of cylinders within each
level of vs, whereas the right plot uses facet_grid() as an alternative mode of display. In
this particular example, the faceted plot makes it easier to see that there are no cars with eight
cylinders when vs = 1. Note that in the faceted plot, the labeller function label_both() is
used to indicate both the factor name and its level in each panel strip.

ggplot(mtcars, aes(x = factor(vs), fill = factor(cyl), y = mpg)) +
theme_bw() + geom_dotplot(binaxis = "y", stackdir = "center",

position = "dodge") +
labs(x = "vs", y = "mpg", fill = "cyl") +
scale_fill_grey(start = 0.2, end = 0.9) +
opts(legend.position = "top")

ggplot(mtcars, aes(x = factor(cyl), fill = factor(cyl), y = mpg)) +
theme_bw() + geom_dotplot(binaxis = "y", stackdir = "center") +
labs(x = "No. cylinders", y = "mpg", fill = "cyl") +
facet_grid(. ~ vs, labeller = label_both) +
scale_fill_grey(start = 0.2, end = 0.9) +
opts(legend.position = "top")

18

10

15

20

25

30

35

●

●
●●

●●

●
●●●

●●●●
●
●

●●

●●
●●

●

●

●●

●

●

●●
●

●

0 1
vs

m
pg

cyl ● ● ●4 6 8

vs: 0 vs: 1

10

15

20

25

30

35

●

●
●●

●●

●
●●●

●●●●
●
●

●●

●●
●●

●

●

●●

●

●

●●
●

●

4 6 8 4 6 8
No. cylinders

m
pg

cyl ● ● ●4 6 8

3.4 geom_violin()

This function generates violin plots in ggplot2, a way to plot one or more continuous density
estimates that is particularly useful when comparing multiple groups. A violin plot is a combi-
nation of a box plot and a kernel density estimate, the latter of which is rotated to run alongside
the box plot symmetrically on each side. The examples below come from the function’s help
page.

In geom_violin(), violins are automatically dodged when any aesthetic is a factor. By
default, the maximum width is scaled to be proportional to the sample size. In the plot on the
far right below, the bandwidth of the kernel density estimator is reduced from the default 1,
which makes for a less smooth density estimate and hence a less smooth violin plot.

p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_violin() # default scale is "count"
p + geom_violin(aes(fill = factor(cyl), colour = factor(cyl))) +

scale_fill_grey(start = 0.2, end = 0.8) +
scale_colour_grey(start = 0.2, end = 0.8)

p + geom_violin(adjust = 0.5)

10

15

20

25

30

35

4 6 8
factor(cyl)

m
pg

10

15

20

25

30

35

4 6 8
factor(cyl)

m
pg

factor(cyl)

4

6

8

10

15

20

25

30

35

4 6 8
factor(cyl)

m
pg

19

The next set of plots simply play around with a few extra features. The plot on the left adds
a strip plot to the violin for each group. The central plot adds fill color and alpha transparency
to the violins and is augmented with boxplots. The plot on the far right adds a dot plot around
the center of each violin, which is useful in that the dot plot resembles the shape of the violin
(as it should since each estimates the underlying true density in its own way).

set.seed(110)
dat <- data.frame(x=LETTERS[1:3], y=round(rnorm(90), 2))
ggplot(dat, aes(x=x, y=y)) + geom_violin() + geom_point(shape=21) +

xlab("cyl")
ggplot(dat, aes(x = x, y = y)) +

geom_violin(aes(fill = x, colour = x), alpha = 0.3, width = 0.5) +
geom_boxplot(aes(fill = x), width = 0.2, outlier.colour = NA) +
labs(x = "cyl", fill = "cyl", colour = "cyl") +
scale_fill_grey(start = 0.4, end = 0.8) +
scale_colour_grey(start = 0.4, end = 0.8) +
guides(fill = guide_legend(override.aes = list(alpha = 1)))

ggplot(dat, aes(x = x, y = y)) +
geom_violin() +
geom_dotplot(binaxis = "y", stackdir = "center") +
xlab("cyl")

−3

−2

−1

0

1

2

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

A B C
cyl

y

−3

−2

−1

0

1

2

A B C
cyl

y

cyl

A

B

C

−3

−2

−1

0

1

2

●●●
●●

●●●

●●

●●●

●●●●●
●●●

●●●
●●

●●

●●

●

●

●

●●●●
●●●●

●●
●●
●

●●●●●
●●
●

●●

●●●

●

●

●

●●

●●
●●

●●●
●●●●●

●●●

●●●●
●●●●●

●

●

A B C
cyl

y

4 Improvements in facet_grid()

Several improvements have been made to facet_grid(), as noted in the NEWS file for this
version of the package and in section 1.1. Below are some examples taken from the function’s
help page.

The first plot illustrates a one-dimensional grid with free scales—the x scales vary and the
panel widths are the same:

20

m <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) + geom_point()
m + facet_grid(. ~ cyl, scales = "free") + labs(colour = "cyl")

4 6 8

2

3

4

5

●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●
●

●

●●

●
● ●

●
●

● ●

●

●

22 24 26 28 30 32 34 18 19 20 21 10 12 14 16 18
mpg

w
t

cyl

●

●

●

4

6

8

Next, we show a set of plots with two-dimensional grids. The first is a basic 2D grid with
free scales in both dimensions—in this case, each panel has separate x and y scales. The plot
on the right shows that margins = TRUE is once again a viable option in facet_grid().

m + facet_grid(vs ~ am, scales = "free") + labs(colour = "cyl") +
opts(legend.position = "top")

m + facet_grid(vs ~ am, margins = TRUE) + labs(colour = "cyl") +
opts(legend.position = "top")

0 1

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

1.5

2.0

2.5

3.0

3.5

●●

●
●●

●
● ●

●●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

0
1

10 12 14 16 18 20 22 24 15 20 25 30
mpg

w
t

cyl ● ● ●4 6 8

0 1 (all)

2
3
4
5

2
3
4
5

2
3
4
5

●●
●
●●

●● ●

●●
● ●

●●
●●

●●

●

●●●●
●●

●●
●
●●

●● ●

●

●●
● ●

●●

●

●
●

●

● ●
● ●●
●

●

●●
● ●

● ●●●
●

●
●

●

●

●●
●●

●
●●

●● ●

●●
● ●

●

●
●

●

●

●●
●●

●●

●
● ●

●
●

●

●

●●
●

●●●●
●●

●●
●
●●

●● ●

●
● ●

●

●●
● ●

●●
●

●
●

●

●

0
1

(all)

10 15 20 25 30 3510 15 20 25 30 3510 15 20 25 30 35
mpg

w
t

cyl ● ● ●4 6 8

21

One of the new features, due to the efforts of Willem Hilgenberg, is to allow free scales in
one direction only. The left plot below produces different x scales in the columns while the plot
on the right produces different y scales:

m + facet_grid(vs ~ am, scales = "free_x") + labs(colour = "cyl") +
opts(legend.position = "top")

Add labeller to distinguish levels of vs
from those of am:
m + facet_grid(vs ~ am, scales = "free_y", labeller = label_both) +

labs(colour = "cyl") +
opts(legend.position = "top")

0 1

2

3

4

5

2

3

4

5

●●

●
●●

●
● ●

●●

● ●

●
●

●●
●●

●

●
●

●

●

●

●

● ●

●
●●

●

●

0
1

10 12 14 16 18 20 22 24 15 20 25 30
mpg

w
t

cyl ● ● ●4 6 8

am: 0 am: 1

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

1.5

2.0

2.5

3.0

3.5

●
●

●

●●

●
● ●

●●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

vs: 0
vs: 1

10 15 20 25 30 3510 15 20 25 30 35
mpg

w
t

cyl ● ● ●4 6 8

The following plots, which are not shown here, combine free scales with free space:

m + facet_grid(vs ~ am, scales = "free", space = "free")
m + facet_grid(vs ~ am, scales = "free", space = "free_x")
m + facet_grid(vs ~ am, scales = "free", space = "free_y")

The way strip labels are rendered in facet_grid() has changed in version 0.9.0. One now
uses the label_*() functions from the scales package in conjunction with the labeller =
argument of facet_grid(). A couple of examples using the label_both() were shown
above; the default labeller is label_value(). The following example from the facet_grid()
help page in 0.9.0 demonstrates the other built-in labeling functions:

mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha", "beta", "sqrt(x, y)"))
q <- qplot(mpg, wt, data = mtcars) + facet_grid(cyl ~ vs)
Recall that the levels of vs are 0 and 1:
q + facet_grid(. ~ vs, labeller = label_bquote(alpha^.(x)))

22

q + facet_grid(. ~ cyl2, labeller = label_parsed)

α0 α1

2

3

4

5

●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

10 15 20 25 30 3510 15 20 25 30 35
mpg

w
t

α β y
x

2

3

4

5

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

10 15 20 25 30 3510 15 20 25 30 3510 15 20 25 30 35
mpg

w
t

The labeller function label_bquote() takes a ‘bquoted’ expression as its input argu-
ment. In previous versions of ggplot2, one would define a function and then pass it to the
labeller = argument. With label_parsed(), one passes a vector of strings to facet_grid()
that are parsed into expressions and evaluated.

5 scales package

The first phase of reorganizing the ggplot2 package was to group functions that pertain to the
construction of guides—i.e., axes (or positional guides) and legends (aesthetic guides)—into
a single package. These functions are derived from ggplot2-0.8.9 but have been rewritten so
that they can be used in base graphics or lattice3.

The functions in the scales package fall broadly into the following categories:

*_breaks(): functions to manipulate axis breaks;

*_format(): functions that are used to modify axis labels, replacing the formatter = argu-
ment of a positional scale function in previous versions of ggplot2;

label_*(): functions to modify panel strips in faceted ggplots;

*_trans(): a collection of predefined scale transformation functions and their inverses, to be
used with the new trans = argument to positional scale functions;

*_pal(): a set of functions that correspond to attributes associated with legends.

3Tangible evidence of this feature is shown in the examples of the cscale() and dscale() functions in scales.

23

The scale_*() functions have been rewritten so that both the breaks and labels ar-
guments accept a function as its ‘value’. A new argument trans allows one to specify a
scale transformation in scale_continuous() or scale_discrete(); this new argument
streamlines the number of continuous axis scaling functions in 0.9.0—the only ones that re-
main are scale_continuous(), scale_discrete(), scale_reverse(), scale_sqrt()
and scale_log10().

An important characteristic of the functions in the scales package is that they are second-
order R functions. This means a given function, e.g.,comma_format(), returns a function,
so it needs two sets of arguments to be evaluated. To illustrate, comma_format() has an
argument digits which can be used to avoid potential ugliness in axis breaks:

Call with default digits argument
comma_format()(seq(0, 10000, by = 2000))

[1] "0" "2,000" "4,000" "6,000" "8,000" "1e+04"

Set digits = number of digits in the maximum value among the axis breaks
comma_format(digits = 5)(seq(0, 10000, by = 2000))

[1] "0" "2,000" "4,000" "6,000" "8,000" "10,000"

Don’t forget there are two sets of arguments:
comma_format(seq(0, 10000, by = 1000))

function (x)
comma(x, ...)
<environment: 0x000000000b8695b0>

The first set of arguments in a second-order R function correspond to those you want to
change in the original function; the second set of arguments call the function returned by the
original function.

The purpose of converting to functions and repackaging them is to provide a user with more
tools to manage axis ticks, axis labels and certain elements of legends. Except for the *_pal()
functions, these will normally be used inside a scale_*() function call; several examples are
given in section 6.

5.1 Functions to manage breaks, axis labels and strip labels

The following table summarizes the set of functions associated with axis breaks, axis labels and
strip labels (in faceted ggplots):

24

Breaks Formats Labels
date_breaks() comma_format() label_both()
log_breaks() dollar_format() label_bquote()
pretty_breaks() percent_format() label_parsed()
trans_breaks() scientific_format() label_value()

date_format()
parse_format()
math_format()
format_format()
trans_format()

Just as one could write a formatter function in previous versions of ggplot2, one can define a
function inside math_format() to pass as the labels = argument of the appropriate scale
function.

5.2 Transformation functions

The table below summarizes the available transformation functions in the scales package to
be used in conjunction with the coord_trans() function or the trans = argument in a
positional scale function.

asn_trans() identity_trans() probit_trans()
atanh_trans() log1p_trans() reciprocal_trans()
boxcox_trans() log_trans() reverse_trans()
date_trans() logit_trans() sqrt_trans()
exp_trans() probability_trans() time_trans()

Nearly all of these functions derive from ggplot2, rewritten to have a consistent format so that
it will be easier for users to define their own transformation functions. The simplest pattern for
a transformation function is

my_trans <- function()
trans_new("my", function(x) ..., function(x) ...)

where the first argument is the name of the transformation, the second argument is the function
corresponding to the transformation and the third argument is its inverse function. The ellipses
are placeholders for the function definitions. Two examples are illustrated below: the arcsine
transformation and the slightly more complicated logarithmic transformation:

asn_trans

function ()
{
trans_new("asn", function(x) 2 * asin(sqrt(x)), function(x) sin(x/2)^2)
}
<environment: namespace:scales>

25

log_trans

function (base = exp(1))
{
trans <- function(x) log(x, base)
inv <- function(x) base^x
trans_new(str_c("log-", format(base)), trans, inv, log_breaks(base = base),
domain = c(1e-100, Inf))
}
<environment: namespace:scales>

5.3 Palette functions

This set of functions in the scales package is primarily for use with scale functions correspond-
ing to plot attributes such as color, hue, linetype or character shape. The palette functions are
summarized in the table below:

Color and fill Other aesthetics
brewer_pal() area_pal()
dichromat_pal() identity_pal()
div_gradient_pal() linetype_pal()
grey_pal() rescale_pal()
hue_pal() shape_pal()
seq_gradient_pal()

Most of the time there is no need to use these functions with ggplot2 graphics since the
package already has built-in functions that incorporate these palettes. More often, one would
use them in conjunction with the cscale() and dscale() functions in the scales package
using base or Lattice graphics.

6 Scaling x- and y-axes

Axes are positional guides that contain a scale, a label, a rule and usually, a title. The funda-
mental difference between axes and legends is that axes are transformable whereas legends
are not (Wilkinson, 2005). As a result, the scale_continuous() and scale_discrete()
functions in ggplot2 now take a trans = argument, but scale functions for legends (e.g., ,
scale_colour_*() or scale_linetype()) do not. Conversely, scale functions for legends
have a guides = argument (see section 2) that positional axis functions do not.

The trans = argument in a discrete or continuous scale function corresponds to the scale
transformation to be applied to the variable of interest prior to any statistical transformation.
The examples in this section coordinate the new features of the scale_*() functions with the
functions in the scales package described in section 5.

26

The *_breaks() set of functions controls the values that define the rule, which may be
formatted by one of the *_format() functions introduced in section 5.1 to produce the labels.
In fact, you can think of the labels argument in 0.9.0 scale_*() functions as a merger of the
labels and formatter arguments from previous versions. For dates and/or times, one can
use the scale_date() or scale_datetime() functions, which also allow the breaks =
and labels = arguments to take functions as ‘values’. The most common applications for
_breaks functions are (i) specification of date intervals and (ii) breaks for a log scale of ar-
bitrary base. This section is divided into two parts: (a) date and datetime scales and (b)
continuous scales.

6.1 Dates and datetimes

Some ggplot2 users have found date formatting to be rather vexing in the past, so now there
are two functions in the scales package that should make it easier to specify date formats.
The date_breaks() function defines the time interval between adjacent breaks while the
date_format() function specifies how the dates should be displayed on the time axis. The
syntax for individual date elements such as years, days and months is described in ?strptime.
The following example comes from the economics data frame in ggplot2 where we use
date_breaks() and date_format() to tailor the date axis. The plot on the left is the default
plot whereas the one on the right modifies the date breaks and labels as well as expressing the
response as a percentage:

(qp <- qplot(date, psavert, data = economics, geom = "line") +
labs(x = "Year", y = "Personal savings rate"))

Divide savings rate by 100 to get the correct percentages
qplot(date, psavert/100, data = economics, geom = "line") +

labs(x = "Year", y = "Personal savings rate") +
scale_x_date(breaks = date_breaks("5 years"),

labels = date_format("%Y")) +
scale_y_continuous(labels = percent)

0

5

10

15

1970 1980 1990 2000
Year

P
er

so
na

l s
av

in
gs

 r
at

e

0%

5%

10%

15%

1967 1972 1977 1982 1987 1992 1997 2002 2007
Year

P
er

so
na

l s
av

in
gs

 r
at

e

Notice that since percent_format() has no arguments, we can simply use the kernel of the
function name as the argument of labels = in scale_y_continuous().

As a side note, the equivalent code in version 0.8.9 for the plot on the right would be

27

qplot(date, psavert/100, data = economics, geom = "line") +
labs(x = "Year", y = "Personal savings rate") +
scale_x_date(major = "5 years") +
scale_y_continuous(formatter = "percent")

Next, consider an example with datetime data. A small fake data frame is constructed to
produce a couple of plots using datetime axes.

df2 <- data.frame(times = seq(as.POSIXct("2011-10-20 00:00:00"),
as.POSIXct("2011-10-20 23:59:59"),
by = "30 min"), y = rnorm(48))

0.8.9 code:
ggplot(df2, aes(x = times, y = y)) + geom_path() +
scale_x_datetime(major = "4 hours", format = "%H:%M:%S")
0.9.0 code:
Labels with times only:
ggplot(df2, aes(x = times, y = y)) + geom_path() +

scale_x_datetime(breaks = date_breaks("4 hours"),
labels = date_format("%H:%M:%S"))

−2

−1

0

1

2

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 00:00:00
times

y

Labels with both day and time:
last_plot() + scale_x_datetime(breaks = date_breaks("6 hours"),

labels = date_format("%b %d\n%H:%M:%S"))

28

−2

−1

0

1

2

Oct 20
00:00:00

Oct 20
06:00:00

Oct 20
12:00:00

Oct 20
18:00:00

Oct 21
00:00:00

times

y

From these examples, one can see that the date_breaks() function replaces the depre-
cated argument major = in scale_date_x() and that date_format() replaces the old
argument format = .

6.2 Continuous variables

Several important changes have been made to the arguments of scale_continuous() which
will be illustrated in this subsection. Consider the problem of finding a histogram for a lognor-
mal pseudo-random sample, where the histogram is the ‘statistical transformation’ of interest.

The left graph below is a histogram in the original scale of measurement while its counter-
part on the right is computed from the natural logarithm of the original measurements.

DF <- data.frame(x = rlnorm(1000, m = 10, sd = 5))
on original scale, produces a spiked histogram
(p <- ggplot(DF, aes(x = x)) + geom_histogram())
Apply a scale transformation to x to get the histogram of ln(x):
p + scale_x_continuous(trans = "log")

0

200

400

600

800

1000

0.0e+002.0e+104.0e+106.0e+108.0e+101.0e+111.2e+11
x

co
un

t

0

20

40

60

80

100

4.540e−051.353e−014.034e+021.203e+063.585e+09
x

co
un

t

The right side graph would have been called with the following code in 0.8.9, with very different
axis labels:

29

p + scale_x_log()

Let’s suppose we want to label the horizontal axis so that the labels are of the form ex ,
where x is an integer, similar to what one gets from the 0.8.9 version. The simplest approach
is to transform x in the ggplot() call and use math_format() to get the desired labels. The
token .x is a placeholder for the value within math_format(), to which the breaks defined in
the qplot() call are (implicitly) passed.

q <- ggplot(DF, aes(x = log(x))) + geom_histogram()
q + scale_x_continuous(labels = math_format(e^.x)) + xlab("x")

0

20

40

60

80

100

e−10 e0 e10 e20 e30

x

co
un

t

The more formal way to do this, starting from the original histogram p, involves use of the
trans = argument with corresponding breaks and labels functions:

p + scale_x_continuous(trans = "log",
breaks = trans_breaks("log", "exp"),
labels = trans_format("log", math_format(e^.x)))

In this call, a (natural) log transformation is applied to the data using the trans = argu-
ment of scale_x_continuous(), the trans_breaks() function generates ‘pretty’ breaks in
the log scale and trans_format() uses those breaks to produce the labels using the format
given in math_format(). If you try the above call without math_format(), it will provide
pretty linear breaks in the log scale by default, which is a sensible scaling in natural log units.

Here’s a similar example that was discussed on the ggplot2 list recently, using the diamonds
data with the scale_x_log10() function:

dsmall <- diamonds[sample(nrow(diamonds), 1000),]
default x-axis log scaling

30

qplot(carat, price, data = dsmall, alpha = I(0.2)) +
scale_x_log10() +
scale_y_continuous(labels = dollar)

log-linear x-scaling with labels from math_format()
qplot(carat, price, data = dsmall, alpha = I(0.2)) +

scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x))) +

scale_y_continuous(labels = dollar)

$0

$5,000

$10,000

$15,000

0.5 1.0 1.5 2.0
carat

pr
ic

e

$0

$5,000

$10,000

$15,000

10−0.6 10−0.4 10−0.2 100 100.2

carat
pr

ic
e

Observe that the inverse function of log10 is defined as a function in trans_breaks().

There is a compelling argument to be made that the breaks in the left plot are more indica-
tive of the original carat values when the plot is rendered in the log10 scale. The default choice
of breaks clearly indicates that the variable on the horizontal axis has been transformed.

To define your own scale functions, you will likely need to use trans_breaks() and
trans_format() in some way or another. Here is an example using the msleep data from
MASS, where both brain weight and body weight require a log10 transformation. Suppose you
want the 0.8.9 behavior in both positional axis; here’s one way to do it.

Define ’old style’ behavior for log10 axes
scale_x_log10old <- function(...) {

scale_x_log10(breaks = trans_breaks(’log10’, function(x) 10^x),
labels = trans_format(’log10’, math_format(10^.x)), ...)

}
scale_y_log10old <- function(...) {

scale_y_log10(breaks = trans_breaks(’log10’, function(x) 10^x),
labels = trans_format(’log10’, math_format(10^.x)), ...)

}
standard 0.9.0 plot on a log10-log10 scale
ggplot(msleep, aes(x = bodywt, y = brainwt)) + geom_point() +

scale_x_log10() + scale_y_log10()

Warning message: Removed 27 rows containing missing values (geom_point).

31

old style axis labeling
ggplot(msleep, aes(x = bodywt, y = brainwt)) + geom_point() +

scale_x_log10old() + scale_y_log10old()

Warning message: Removed 27 rows containing missing values (geom_point).

1e−04

1e−02

1e+00

●

●

●

●
● ●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●●

1e−01 1e+01 1e+03
bodywt

br
ai

nw
t

10−4

10−3

10−2

10−1

100

●

●

●

●
● ●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●●

10−2 10−1 100 101 102 103 104

bodywt

br
ai

nw
t

Another example comes from the ggplot2 list, where someone wanted a ‘negative log 10’
y-scale. Here are a couple of alternatives to choose from; there are certainly others.

Define the negative log 10 function
neglog10 <- function(x) -log10(x)
Reverse scaling (zero on top)
scale_y_revneglog10 <- function(...) {

scale_y_reverse(
breaks = trans_breaks(’neglog10’, function(x) 10^(-x)),
labels = trans_format(’neglog10’, math_format(10^-.x)), ...)

}
Standard negative log 10 scale
scale_y_neglog10 <- function(...) {

scale_y_log10(
breaks = trans_breaks(’neglog10’, function(x) 10^(-x)),
labels = trans_format(’neglog10’, math_format(10^-.x)), ...)

}
Example:
DF <- data.frame(x = 1:10, y = 10^-(1:10))
ggplot(DF, aes(x, y)) + geom_point() + scale_y_revneglog10()
ggplot(DF, aes(x, y)) + geom_point() + scale_y_neglog10()

32

10−2
10−410−610−810−10

●

●

● ● ● ● ● ● ● ●

2 4 6 8 10
x

y

10−2

10−4

10−6

10−8

10−10

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10
x

y

The final example in this subsection illustrates a couple more uses of the math_format()
function to place mathematical expressions in axis labels.

d <- data.frame(x = 1:10, y = 1:10)
Math notation in labels
ggplot(d, aes(x, y)) + geom_point() +

scale_x_continuous(breaks = 1:10, labels = math_format(alpha + .x))
Define a vector of breaks manually:
lb <- seq(1, 9, by = 2)
last_plot() + scale_x_continuous(breaks = lb, labels = math_format(beta^.x))

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

α + 1 α + 2 α + 3 α + 4 α + 5 α + 6 α + 7 α + 8 α + 9α + 10
x

y

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

β1 β3 β5 β7 β9

x

y

In both cases, the second set of arguments of math_format() are implicit from the defined
set of breaks. An expression is passed as the argument to math_format(), which returns a
function with argument .x. The function call takes the defined breaks as input to create the
labels. We could also have called math_format() with two explicit sets of arguments as
follows:

ggplot(d, aes(x, y)) + geom_point() +
scale_x_continuous(breaks = 1:10, labels = math_format(alpha + .x)(1:10))

last_plot() + scale_x_continuous(breaks = lb, labels = math_format(beta^.x)(lb))

33

6.3 Scale and coordinate transformations

The distinction between scale and coordinate transformations is that scale transformations take
place before any statistics are computed, whereas coordinate transformations take place after-
ward. In the example below, there is no difference in appearance between apposing pairs of
plot calls because no statistical transformation takes place. However, when summary geoms
are plotted (e.g.,geom_histogram() or geom_density()), there will often be a difference
in appearance depending on when the transformation is applied.

y is a vector of proportions
df1 <- data.frame(x = 1:10, y = round(runif(10), 3))
qplot(x, y, data = df1)

0.2

0.4

0.6

0.8

●
●

●

●

●
●

●

● ●

●

2 4 6 8 10
x

y

Two ways of plotting the sin−1 transformation of y:

qplot(x, y, data = df1) + scale_y_continuous(trans = "asn")
qplot(x, y, data = df1) + coord_trans(ytrans = "asn")

0.2

0.4

0.6

0.8

●

●

●

●

●

●

●

● ●

●

2 4 6 8 10
x

y

0.2

0.4

0.6

0.8

●

●

●

●

●

●

●

● ●

●

2 4 6 8 10
x

y

The lognormal example from the previous section shows this game doesn’t always work.
Run this code in an R session—the second plot call throws an error:

34

p + scale_x_continuous(trans = "log")
p + coord_trans(xtrans = "log")

In other words, one needs to exercise some care when using scale transformations as op-
posed to coordinate transformations when statistical transforms of the data are involved.

Here is an example from the coord_trans() help page to illustrate the difference between
scale transformations prior to model fitting and coordinate transformations after a model fit.
This is one type of graphic that could not be produced easily prior to version 0.9.0.

d <- subset(diamonds, carat > 0.5)
Scale transformation prior to model fitting
qplot(carat, price, data = d, log="xy", alpha = I(0.05)) +

geom_smooth(method="lm", size = 1)
Coordinate transformation after model fitting
qplot(carat, price, data = d, alpha = I(0.05)) +

geom_smooth(method="lm", size = 1) +
coord_trans(x = "log10", y = "log10")

In the first graph above, the x and y axes were both log-transformed and then a linear
model was fit in the transformed scales. In the second graph, the linear model was fit to the
original data first and then the x and y axes were log-transformed. Mathematically, the fitted
linear model in the first graph has the formÖlog y = b0 + b1 log x , whereas the fitted model in
the second graph is log ŷ = log(b0 + b1 x), which happens to be a transform-both-sides model
(Carroll and Ruppert, 1988) since the same coordinate transformation was applied to both sides
of the fitted model.

Separate transformations for x and y are also possible:

qplot(carat, price, data = d, alpha = I(0.05)) +
geom_smooth(method="lm", size = 1) +
coord_trans(x = "log10", y = "sqrt") +
scale_y_continuous(labels = comma_format(digits = 5))

35

7 Summary

Several new features in ggplot2-0.9.0 have been introduced and illustrated by example. We
have seen that a useR now has more tools at one’s disposal with respect to producing leg-
ends and positional axis scales, some nice new features and improvements have taken place
in facet_grid() and several new geoms that extend the scope of graphics applications in
the package have been introduced with accompanying examples of their use. A number of in-
cremental improvements have been made both in design and execution; many of these were
described in section 1, but a more complete list is found in the NEWS file of the package.

Thanks to members of the ggplot2-dev list for comments on earlier drafts of this docu-
ment. The document was processed using the knitr package, developed by Yihui Xie http:
//yihui.github.com/knitr/. Special thanks to Yihui for patiently answering many ele-
mentary questions about the package.

The source code for this version is located at
https://github.com/djmurphy420/ggplot2-transition-guide
in the file ggplot2-0.9.0.Rnw. The README file has instructions on how to process the
.Rnw file for color or black-and-white printing.

We hope that this guide is helpful as you move from 0.8.9 to 0.9.0 and that the changes and
new facilities of the package aid you in making even better ggplots.

36

http://yihui.github.com/knitr/
http://yihui.github.com/knitr/
https://github.com/djmurphy420/ggplot2-transition-guide

8 References

Carroll, R. J. and D. Huppert (1988). Transformation and Weighting in Regression. New York:
Chapman and Hall.

Tukey, J. and P. Tukey (1990). Strips Displaying Empirical Distributions: I. Textured Dot Strips.
Technical Memorandum, Bellcore.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.

Wilkinson, L. (1999). Dot Plots. American Statistician, 53(3), 276–281.

Wilkinson, L. (2005). The Grammar of Graphics, 2nd ed. New York: Springer.

Xie, Y. (2012). knitr: A General-Purpose Tool for Dynamic Report Generation in R. http://
yihui.github.com/knitr/demo/manual/.

37

http://yihui.github.com/knitr/demo/manual/
http://yihui.github.com/knitr/demo/manual/

	1 Overview
	1.1 Visible changes
	1.2 Not so visible changes

	2 Legend and colorbar guides
	2.1 guide_legend()
	2.2 guide_colorbar()

	3 New geoms
	3.1 geom_map()
	3.2 geom_raster()
	3.3 geom_dotplot()
	3.4 geom_violin()

	4 Improvements in facet_grid()
	5 scales package
	5.1 Functions to manage breaks, axis labels and strip labels
	5.2 Transformation functions
	5.3 Palette functions

	6 Scaling x- and y-axes
	6.1 Dates and datetimes
	6.2 Continuous variables
	6.3 Scale and coordinate transformations

	7 Summary
	8 References

