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The decline of Arctic sea ice is one of the most visible signs of climate change over the past several 

decades. Arctic sea ice area shows large interannual variability due to the numerous factors, but on 

longer time scales the total sea ice area is approximately linearly related to Arctic surface air 

temperature in models and observations. Overall, models however strongly underestimate the recent 

sea ice decline. Here we show that this can be explained with two interlinked biases. Most climate 

models simulate a smaller sea ice area reduction per degree local surface warming. Arctic polar 

amplification, the ratio between Arctic and global temperature, is also underestimated but a number of 

models are within the uncertainty estimated from natural variability. A recalibration of an ensemble of 

global climate models using observations over 28 years provides a scenario independent relationship 

and yields about 2°C change in annual mean global surface temperature above present as the most 

likely global temperature threshold for September sea ice to disappear, but with substantial associated 

uncertainty. Natural variability in the Arctic is large and needs to be considered both for such 

recalibrations as well as for model evaluation, in particular when observed trends are relatively short. 



1. Introduction 

The September Arctic sea ice minimum in 2007 was widely portrayed as a visible sign of 

climate change happening more quickly than anticipated. A strong response to coupled effects 

of wind circulation and temperature led to the extraordinary minimum in sea ice extent 

[Comiso et al., 2008; Kauker et al., 2009; Parkinson and Kellogg, 1979; Stroeve et al., 2008]. 

Interannual variability plays an important role in controlling sea ice in any particular year, yet 

on longer time scales the annual ice loss in terms of area per degree warming is surprisingly 

constant in models and observations [Amstrup et al., 2010; Armour et al., 2011; Council, 

2010; Gregory et al., 2002; Ridley et al., 2007; Washington et al., 2009; Winton, 2006; 2011]. 

Figure 1 illustrates this linear dependency for global mean temperatures (a-b) and Arctic mean 

(north of 65°N) temperature (c-d) for annual means and September using the CMIP3 models 

(for model details see Section 2). The linearity is stronger when using only Arctic 

temperatures. In addition Table 1 lists the goodness-of-fit for all models for the linear 

approximation between annual global mean surface temperature and September sea ice area.  

For all models but one (INGV ECHAM) a linear fit is suitable to describe the relationship 

between the two quantities (for more information see auxiliary material). The mean 

correlation between Arctic surface temperature and annual Arctic sea ice area on average is -

0.98 across all A1B scenario runs based on 10-year running means (Fig. 1c), and -0.96 for the 

mean correlation of global mean surface temperature and September Arctic sea ice area (Fig. 

1b). The correlation in the observations is -0.97 for the time period 1980-2007 for the 

equivalent of Figure 1c and -0.96 for the equivalent of Figure 1b in the observations. When 

the sea ice area becomes very small, the ice loss per degree warming decreases in a number of 

models. Some models suggest that in a nearly ice-free Arctic in summer, sea ice will remain 

in some areas even if temperatures are increased further [Wang and Overland, 2009]. The 

reason for this behaviour could be that once the Arctic is seasonally ice-free or almost ice-

free, the maximum ice thickness decreases more slowly [Budyko, 1966] as a result of two 



processes. Sea ice with a very small thickness initially grows quickly at the beginning of the 

cold season compared to multi-year ice. Significant amounts of snow accumulate on multi-

year ice and insulate the ice from the cold atmosphere which slows down its growth [Notz, 

2009]. Furthermore, if the sea ice area becomes small a large fraction of the sea ice left is 

perennial which has a greater thickness than first-year sea ice, and takes longer to melt for the 

same area. The linear relationship is therefore analysed only for sea ice area greater than 1.0 

million km2. This threshold will be referred to as nearly ice-free throughout the paper, since 

the Arctic is largely ice free even though some ice remains north of Greenland and Canada 

(see Wang and Overland [2009]). The linearity between sea ice and temperature is supported 

by recent model results that find little evidence for tipping points and that simulate recovery 

of the sea ice within a few years even after strong perturbations [Amstrup et al., 2010; Armour 

et al., 2011; Notz, 2009; Sedlacek et al., 2011; Tietsche et al., 2011; Winton, 2006]. In this 

study we make use of this near linear relationship between warming and September sea ice 

loss to estimate when the Arctic will be ice-free in September. Similar relationships between 

past and future sea ice trends were used to constrain model results in the Arctic in earlier 

studies [Boe et al., 2010; Zhang, 2010].  

2. Data 

This study uses the twentieth century and the SRES emission scenario simulations of 21 

atmosphere ocean general circulation models (AOGCM) available from the World Climate 

Research Program (WCRP) Coupled Model Intercomparison Project Phase 3 (CMIP3) [Meehl 

et al., 2007; Randall et al., 2007]. The CMIP3 multi-model dataset is a collection of AOGCM 

simulations that were assessed in the Intergovernmental Panel on Climate Change (IPCC) 

Fourth Assessment Report (AR4) [Solomon et al., 2007]. No pre-selection of the models was 

applied. For comparisons between the different CMIP3 models always the first initial 

condition ensemble member is used. All simulations are regridded to a common T42 grid. The 



Arctic is defined in this study as the area north of 65°N. For sea ice observations the Met 

Office Hadley Centre’s sea ice and sea surface temperature data set (HadISST) [Rayner et al., 

2003] is used. Due to data coverage issues only the time period after 1979 is used. For 

illustration purposes in Figure 2 and 4 data onwards from 1970 are shown, but note that all 

analysis and results are based on data after 1979. In this study the sea ice area is defined as the 

total area of sea ice simulated/observed. For temperature the gridded data from NASA 

(GISTEMP [Hansen et al., 2006] and http://data.giss.nasa.gov/gistemp) are used. Note that 

for this dataset the central Arctic Ocean data coverage is low before 1980 and local 

interpolation uncertainties are substantial, but long-term trends averaged over the whole 

Arctic as used here are less affected by observational uncertainties. 

3. Recalibration of sea ice decline estimated by models 

All but one climate model show that the close to linear relationship between September sea 

ice area and global surface temperature is robust and persists throughout the 21st century. 

There is no fundamental reason why the relationship must be linear, so this is purely an 

empirical result. There might be some non-linearities that the models do not capture and have 

not been observed yet, but there is currently no evidence for that. So the approximation with 

linear trends is not perfect, but good enough for the purpose of this study. Observed trends are 

consistent with that linear relationship. Assuming that the linearity holds in the future as 

indicated by the models, the relationship can therefore be used in combination with the 

observed trend to estimate at what global temperature increase the Artic will be nearly ice-free 

in September. It is important to note that the method applied here is useful only for long time-

scale projections, as described here. The linearity does not hold on shorter time scales when 

interannual or decadal variability is included. Future September Arctic sea ice area SIf is given 

by 

 SIf = SI1980-1999 + (ΔSea ice/ΔTGlobal)·ΔT = SI1980-1999 + γ·ΔT,    (1) 



where SI1980-1999 is the observed September sea ice area (mean of 1980-1999) and ∆T is the 

global temperature increase relative to 1980-1999. ΔSea ice/ΔTGlobal is hereafter called γ and 

represents the observed change in September sea ice per degree global warming. γ is basically 

the slope shown in Figure 1b, but note that the models are only used to confirm that the 

relationship is in fact linear over the whole time period, and the slope itself is based on 

observations. For the time period 1980-2007 the observations give -2.62·106 km2/°C for γ. As 

γ is not exactly constant over time this number is multiplied by a factor of 0.92, which takes 

into account the decrease of γ over time as the observational period is short and climate 

variability large (see below). This correction factor is determined by how γ changes in the 

CMIP3 models on average (see section 3.2). The decrease of γ with time could be due to the 

fact that sea ice volume and sea ice area are not entirely linearly related. As sea ice volume 

decreases, the sea ice area decreases at a slower rate. However, as sea ice area becomes 

smaller, sea ice area and sea ice volume decrease at a similar rate (not shown). Therefore, the 

relationship between sea ice volume and surface temperature is not quite linear. The more 

important point, however, is that there is an uncertainty associated with γ. The observations 

provide only one estimate of γ, therefore climate models have to be used to estimate the 

contribution of internal variability to γ. Two different approaches are used to estimate the 

uncertainty, hereafter called γunc. The first approach is simply to look at the CMIP3 model 

spread of γ during the specific time period, and provides an estimate of the uncertainty of γ 

due to both internal variability as well as model uncertainty. The second approach uses four 

climate models that have at least four initial condition ensemble members, i.e. only models 

that have run at least four simulations over the specific time period. For each model the spread 

across the individual ensembles is estimated by calculating the standard deviation. γunc is the 

average across these four standard deviations (for details of the error propagation see Section 

4). This second method provides an uncertainty estimate for γ just based on internal variability 

in the climate system, but does not include model uncertainty. Figure 2 summarizes these 



findings by showing the predicted sea ice loss as a function of temperature. We find that a 

temperature increase of about 2°C above present (1980-1999 average) leads to a near ice-free 

Arctic. A temperature increase of 2°C will be reached in 2070 in an A1B scenario. Boe et al. 

[2009b] estimate an ice-free Arctic during September in 2070, supporting the results of the 

approximations shown. An early study by Parkinson and Kellogg [1979] suggest an ice-free 

Arctic in August and September at a global temperature increase of about 2°C (Arctic increase 

of 5°C) above 1950-1964, which would imply a temperature increase of about 1.4°C above 

present. This result however is based on only one model with prescribed surface temperatures. 

For comparison, the uncalibrated ensemble projects a near ice-free Arctic at 3-3.5°C. The 

internal variability (see Section 3.2 for details) is used to assess the lower bound of the 

uncertainty associated with the extrapolation (Fig. 2a). Alternatively, the uncertainty ranges of 

the extrapolation can be estimated using the model spread of γ as a basis of the error 

propagation (Fig. 2b), which results in larger uncertainty ranges. The two approaches based 

on internal variability and model spread can be interpreted as a lower and upper bound on the 

uncertainty. 

3.1 Understanding the biases in sea ice trends of climate models 

The above presented recalibration approach provides our best estimate of when sea ice is most 

likely to disappear based on the current understanding of the climate system and its 

implementation in models, as well as the assumption that the observed changes are largely 

attributable to external forcing. However, it provides no insight into why models differ, and 

why the ensemble as a whole underestimates the sea ice decline. The overall sensitivity of sea 

ice to global temperature γ can be decomposed into two quantities: Arctic polar amplification 

and local sea ice sensitivity. Note that these are linked and will be discussed in greater detail 

below. Future September sea ice area SIf  is then given by 

SIf = SI1980-1999 + ((∆Sea ice/∆TArctic)·(∆TArctic/∆TGlobal))·∆T= SI1980-1999 +(α·β)·∆T, (2) 



where SI1980-1999 is the observed September sea ice area (mean of 1980-1999) and ∆T is the 

global temperature increase relative to 1980-1999. ∆Sea ice/∆TArctic is hereafter called α and 

denotes the change in September sea ice area per degree Arctic warming. ∆TArctic/∆TGlobal is 

termed β and describes the well known Arctic polar amplification, the ratio between Arctic 

temperature increase and global temperature increase. The product α·β is the change in sea ice 

area per degree global warming γ. Figure 3 visualizes α and β and their uncertainties. The best 

estimate for α and β is calculated from observational data. The goal is to use the longest time 

period possible with high quality data. In the case of α, the longest time period is 28 years 

(1980-2007, see section 2). In the case of β only surface temperature is required and two time 

periods are used, first the same as for α and a second period that is extended to 50 years 

(1960-2009). The best estimates based on observations yield -9.86·105 km2/°C for α and 2.8 

and 2.16 for the 28yr and 50yr period for β, respectively. Those β values are additionally 

multiplied by a factor (0.94 and 0.88, respectively) that takes into account that β is not 

constant over time (see Section 3.2). α on the other hand can be expected to be reasonably 

constant over time, since Arctic and global temperatures are correlated in the future as 

suggested by models [Winton, 2006]. The uncertainty due to internal climate variability that is 

associated with α and β can only be characterised by initial condition ensemble members of 

climate models (grey ellipses in Fig. 3). The ensemble spread is based on the variability of α 

respective β of four climate models that have at least four initial condition ensemble members, 

as previously done for γ. The ensemble spread is again the standard deviation across ensemble 

members and is estimated for each model and then averaged. It provides an estimate of the 

uncertainty in the observations caused by internal variability (red ellipse in Fig. 3). The vast 

majority of models show a lower overall sea ice decline per unit global temperature (α·β) than 

the observations (see Fig. 3). Only a few models have a similar total slope (α·β) as the 

observations and are located close to the solid line, marking the isoline of the observed α·β. A 

few models are too sensitive, but clearly most of the models are not sensitive enough and are 



far to the right and below the solid line. Four of the six models closest to observations are 

identical to those selected by Wang and Overland [2009]. For the 28yr time period (Fig. 3a) 

the variability is considerably larger than for the 50yr time period (Fig. 3b) and a few models 

are consistent with the observations and produce results, which lie within the estimated 

variability. However, for the longer time period only one model (model 8 – GFDL CM2.5) is 

within the one standard deviation uncertainty range. Irrespective of the time period 

considered, all but two models (models 4 and 15: CNRM-CM3 and MIROC3.2(medres)) 

simulate a sensitivity of the sea ice to a temperature increase (α) that is too weak. But at least 

for some models the discrepancy with the observations might be due to natural variability 

[Stroeve et al., 2007; Winton, 2011] when considering a two standard deviation uncertainty 

range. Arctic Polar amplification (β) is remarkably insensitive to the scenario for a model 

average ([IPCC, 2007] Fig. 10.6a), but most models underestimate the Arctic polar 

amplification compared to observations, in particular for the shorter period. Two models 

(models 4 and 9: CNRM-CM3 and GISS-AOM) even feature a negative Arctic polar 

amplification over the past 28 years (Fig. 3). One of the reasons why most of the models 

underestimate α·β could be that the majority of the models simulate sea ice that is overly 

thick. The thickness of the sea ice in the unforced state is related to the sea ice extent in the 

future [Boe et al., 2010]. 

The separation of the sea ice decrease into the influence of local temperature on sea ice, as 

proxy for local feedbacks and energy budget, and the well-established Arctic polar 

amplification is convenient and helps to understand the differences between models and 

observations (see Fig. 3). However, the two quantities are clearly not independent; a low 

magnitude of α likely implies a low β (see below). A number of models strongly 

underestimate both the magnitude of α and β and their α·β is outside the two standard 

deviation range of variability estimated around the observations, confirming earlier claims 



that models underestimate the observed sea ice decrease [Boe et al., 2009b; Stroeve et al., 

2007; Wang and Overland, 2009]. However, natural variability of α and β estimated for the 

short observational period is large and hence some models are not inconsistent with 

observations. It is therefore essential that natural variability is carefully considered before 

models are being dismissed as being wrong, in particular for regional scales and short 

observational trends.  

While our results provide strong evidence for a tight coupling of surface temperature and 

Arctic sea ice area, it is not possible to argue that one quantity is driving the other because 

processes leading to Arctic polar amplification and the associated sea ice loss are complex and 

involve many feedbacks. It is likely that the ocean transport and warming play an important 

role in sea ice decline [Boe et al., 2009a; Mahlstein and Knutti, 2011; Polyakov et al., 2011; 

Ridley et al., 2007; Spielhagen et al., 2011] and therefore control to some extent Arctic polar 

amplification. Furthermore, it is known that sea ice plays a central role in Arctic temperature 

amplification [Screen and Simmonds, 2010b; Serreze and Barry, 2011]. Arctic sea ice loss 

and Arctic polar amplification are related through various physical processes that cannot 

easily be separated. A model which has a small absolute value for α (Arctic September sea ice 

loss per degree warming in the Arctic) likely features low β (Arctic polar amplification). A 

small magnitude of α leads to a smaller ice loss, which in turn leads to a smaller heat transfer 

into the ocean during summer season. Hence, in winter less energy is available that can be 

transferred into the atmosphere from the ocean through radiative cooling as well as latent and 

sensible heat fluxes [Screen and Simmonds, 2010a], thereby resulting in a lower Arctic polar 

amplification. The seasonal heat transfer of ocean heat into the atmosphere is central for 

Arctic temperature increase. It is important to note that β should not be considered as the 

driving process for sea ice loss. Temperature affects sea ice, and sea ice affects temperature, 

so it is impossible to separate cause and effect in this study. The Arctic polar amplification 



itself is both a result and a driver of ice loss. The separation into α and β in this study is 

simply a way to link the results to quantities like Arctic polar amplification that are commonly 

used in model evaluation and for example in paleoclimate studies [Miller et al., 2010]. 

Although we use α and β for the recalibration, it is not possible to attribute model biases to 

either α or β or specific physical processes, and we make no assumption of which of the two 

terms is the driving process or the response. Note also that our analysis does not allow to 

separate whether the Arctic polar amplification in models is biased as a result of an incorrect 

simulation of feedbacks or as a consequence of missing or underestimated forcing agents 

[Shindell and Faluvegi, 2009].  

The predicted end-of-summer sea ice loss as a function of global temperature as described in 

equation 2 is shown again in Figure 4 using several observationally calibrated regressions. 

The different linear approximations of the decline of September sea ice calibrated to 

observations for 28 and 50 years (see Section 4) are displayed. Unsurprisingly, the 

approximation based on 28 years also shows that most likely a global temperature increase of 

2°C above 1980-1999 leads to a near ice-free Arctic during September, as for the simpler 

calibration described in equation 1. Comparing the best estimates based on the two different 

time periods, the global temperature increase needed to melt the September sea ice is about 

0.5°C larger for the longer time period. This is solely due to the difference in β, as this is the 

only difference between the two estimates. The internal variability as shown in Figure 3 (see 

Section 3.2 for details) is again used to assess the lower bound of the uncertainty associated 

with the extrapolation (Fig. 4a). Alternatively, the uncertainty ranges of the extrapolation can 

be estimated using the model spread of α and β as a basis of the error propagation (Fig. 4b), 

which results in larger uncertainty ranges. In particular the upper end of the range is sensitive 

to how uncertainty is estimated. The second uncertainty estimate assumes that the current 

climate models span a plausible range of uncertainty and in our view is too pessimistic given 



that some models show rather unrealistic behaviour in both sea ice and Arctic polar 

amplification (see Fig. 3). As for γ the two approaches of uncertainty estimation represent a 

lower and an upper bound on the uncertainty. A detailed description of the uncertainty 

quantification is given in section 3.2. Compared to the uncertainty estimate based on γ the 

ranges derived from constraining α and β separately are significantly larger. This is not 

surprising since in the latter case the uncertainty is estimated for two terms that are treated 

independently but in reality are not. The uncertainty ranges presented in Figure 4 are therefore 

probably too pessimistic and should be interpreted as a sensitivity test. The uncertainty 

presented in Figure 2 is expected to be more realistic.  

3.2. Uncertainty estimation 

Equation 3 shows the error propagation with increasing temperature levels as follows: 

   SIf ± ΔSIf = SI1980-1999 + γ ·∆T (1± γ rel),   (3) 

where γrel is the absolute value of γunc/ γ. The uncertainty term is obtained by ensemble studies 

of different climate models or CMIP3 model spread. In case of the ensemble study, the idea is 

that the variability over a specific time period can be represented by the spread across 

members of one climate model. Therefore, four climate models which have multiple model 

members (NCAR CCSM3, CCCma CGCM3.1, MPI ECHAM5 and MRI CCM2.3.2a) are 

used to estimate the spread across the members. The ensemble spread is then averaged across 

models. To account for the change in γ over time, the mean γ across all CMIP3 models of the 

period 2010 - 2099 (γf) is divided by the mean γ of the time period 1980 - 2007 (γc). This 

scaling factor is then used to estimate the future sea ice loss per degree temperature increase 

(γ) from the observed estimate as shown in equation (4): 

   γ = γObs(1980-2007) · (γf/ γc)     (4) 



The scaling factor is close to one and therefore the results are not sensitive to this step. 

Furthermore, Winton [2011] shows that γ is reasonable constant over time based on annual sea 

ice. Fig. 1b/d suggests that this is also true for September sea ice, but with somewhat larger 

noise. 

In the same way the error propagation is computed for the approach taken in equation 2: 

 SIf ± ΔSIf = SI1980-1999 + α·β·∆T [1± (αrel + βrel)],  (5) 

where αrel is the absolute value of αunc/α and βrel is βunc/β. The uncertainty terms are again 

determined either by ensemble studies of different climate models or based on the model 

spread. The Arctic polar amplification β is similar for different scenarios but may change 

slightly over time. To account for this, the mean Arctic polar amplification across all models 

of the period 2010 – 2099 (βf) is divided by the mean Arctic polar amplification of the time 

period 1980 – 2007 (βc). This scaling factor is again used to estimate the future Arctic polar 

amplification from the observed estimate as shown in equation (6): 

    β = βObs(1980-2007) · (βf/ βc)    (6) 

This effect however is small, the scaling is close to one and the results are not sensitive to this 

step. 

However, there are multiple possibilities how to propagate uncertainty. Instead of quantifying 

the uncertainty around the observed value, one could argue that the observed value is rather at 

the upper end of the range of the forced sensitivity in the future [Kay et al., 2011]. This would 

imply that the state of an ice-free Arctic in September is reached at a slightly higher global 

temperature increase than suggested by our best estimate. 

3.3 Spatial representations of September sea ice cover 



The discussion so far has focussed on area-averaged quantities. An interesting question is the 

spatial distribution of Arctic sea ice, and how it evolves over time. The difficulty is that 

standard pattern scaling approaches fail for sea ice, since it is a retreating front rather than a 

spatial pattern that decreases in magnitude. A first order estimate, however, can be obtained 

based on the recalibrated sea ice extrapolation presented in Figure 2 and by sampling the 

ensemble along the extrapolation. A certain level of warming, e.g. 1°C above the reference 

period, corresponds to a best estimate of total September sea ice area based on the red line in 

Figure 2. We can now for each model find the 20yr time period matching that area, and 

aggregate those spatial distributions. In other words, model periods with equal September sea 

ice area are aggregated, even though their specific temperature increase is different. The four 

different cases 0.5°C, 1°C, 1.5°C and 2°C above present are shown in Figure 5 and show the 

percentage of models that have sea ice cover in a specific grid cell (note that grid cells with a 

sea ice fraction less than 15% are not shown in Fig. 5). The maps therefore represent the 

spatial distributions that correspond to a given warming and given sea ice area, based on the 

recalibrated ensemble. The 33% isoline is marked in red in Figure 5. The area outside of this 

isoline is “likely” (using IPCC terminology) to be ice-free as at least 66% of the models show 

ice-free conditions.  

Without applying the recalibration presented here, some models simulate a sea ice area that is 

too large, but when averaging across the multi model ensemble, the ice edge agrees 

reasonably well with the observations over recent decades, for March as well as September 

[Arzel et al., 2006]. Therefore, and also by comparing the two observed extreme minima in 

2007 and 2011 with Figure 5, the spatial September sea ice retreat simulated by the models 

appears to be reasonably consistent with observations. 

4. Summary and Conclusions 



In this study we find that current models indicate a near linear relationship between 

temperature and Arctic sea ice area that can be used to estimate at what global temperature 

increase the Arctic will be nearly ice-free during September based on observations. In contrast 

to earlier studies [Boe et al., 2009b; Wang and Overland, 2009], these projections are 

independent of the assumed emission scenario. A slower warming will simply delay but not 

avert the outcome. Overall the CMIP3 models underestimate the past and future sea ice 

decline for two interlinked reasons. They underestimate the loss of sea ice per degree local 

warming (α), and underestimate the Arctic polar amplification (β). However, we find a large 

natural variability in Arctic polar amplification and argue that at least half of the models 

simulate a plausible realization of Arctic polar amplification. In case of α at least some models 

simulate a realistic relationship between local temperature and sea ice [Hall and Qu, 2006]. 

A number of previous studies have evaluated and to some extent calibrated the CMIP3 models 

with observations [Huber et al., 2011; Knutti et al., 2006], but in many cases the relationships 

between observable quantities and projections are vague, and observations cannot clearly 

constrain the ensemble more tightly [Knutti, 2010; Knutti et al., 2010; Räisänen et al., 2010]. 

The majority of successful approaches are regionally limited to the Arctic system. Different 

approaches have been used, but most are based on the idea of finding a quantity that can be 

observed today that correlates with a quantity in the future across the multi-model dataset 

[Boe et al., 2009a; b; Hall and Qu, 2006; Mahlstein and Knutti, 2011], or defining a set of 

criteria for a model to be ‘acceptable’ [Wang and Overland, 2009]. Defining criteria for a 

subset of ‘better’ models is easy to communicate, but somewhat subjective, as every model 

can be ruled out if enough criteria are defined. This is particularly problematic if the number 

of models is small, and if the models are not independent, both of which is true for the CMIP 

ensemble [Masson and Knutti, 2011; Pirtle et al., 2010]. Selecting a subset also assumes that 

the ensemble is reasonable sample of the model uncertainty. This may or may not be true, but 



certainly the CMIP ensembles were never designed in any way to represent uncertainty. 

Rather they are an ensemble of opportunity. Recalibrating the ensemble as a whole using 

observations as done here is likely to be less sensitive to the sample of models, since only the 

relationship in the models or across models is used, but not individual models. The Arctic 

system including sea ice appears to be one of the few examples where model evaluation can 

successfully constrain or recalibrate projections, independent of the approach or variable that 

is used. The relationships are also well understood in terms of physical processes, correlations 

are unlikely to be spurious or a consequence of screening predictors [DelSole and Shukla, 

2009] and the model biases are much larger than the estimated variability, thus minimizing 

the chance of inappropriate weighting [Weigel et al., 2010]. The results from different 

approaches consistently show that the models are underestimating sea ice decline and Arctic 

polar amplification in the past, and very likely in the future as well. This study provides strong 

evidence supporting that conclusion. The calibrated sea ice extrapolation based on 

observations since 1980 suggests a most likely threshold for a near ice-free Arctic in 

September of about 2°C above present, about half of the model mean value estimated by 

CMIP3. Note that a large uncertainty is associated with this estimate due to large internal 

climate variability in the Arctic [Mahlstein et al., 2011]. A recent study claimed that ”the 

warming commitment associated with existing atmospheric greenhouse gas levels means it is 

very likely that in the coming decades the summer Arctic Ocean will become ice-free” 

[Allison et al., 2009]. The commitment warming from current total radiative forcing (about 

1.6 Wm-2) is about 0.5°C. The commitment warming from current greenhouse gas 

concentrations (about 2.9 Wm-2, assuming no aerosol forcing) would be about 2.4°C. That 

number is above the 2°C limit for near ice-free conditions estimated here, but the uncertainty 

range is large (1.6-3.5°C for a climate sensitivity range of 2-4.5°C). So the Arctic may be ice 

free with existing greenhouse gas concentrations, but current models and observational 

evidence do not support the “very likely” statement. The uncertainty caused by internal 



variability and models is simply too large. A more appropriate comparison however is to look 

at economically plausible emission scenarios. If emissions were to continue to increase 

strongly (e.g. as in an SRES A1B or A2 scenario), it appears likely that the Arctic will be 

nearly ice-free in summer at the end of this century. Yet, if global temperature increase was to 

be stabilized at 2°C above preindustrial (1.2°C above 1980-1999) [Washington et al., 2009] 

the Arctic could likely be prevented from becoming ice-free and about half of the current sea 

ice area could remain during summer.  
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Table 1. Goodness-of-fit for the linear approximation between annual global mean surface 

temperature and September Arctic sea ice area for the CMIP3 models 

Model Goodness-of-fit 

BCCR-BCM2.0 0.9599 

CCCma CGCM3.1 0.9502 

CCCma CGCM3.1 T63 0.9580 

CNRM-CM3 0.9256 

CSIRO Mk3.0 0.8817 

CSIRO Mk3.5 0.9633 

GFDL CM2.0 0.9651 

GFDL CM2.1 0.9497 

GISS-AOM 0.7596 

GISS-ER 0.9508 

INGV ECHAM 0.4576 

INMCM3.0 0.9832 

IPSL CM4 0.9408 

MIROC3.2 (hires) 0.9584 

MIROC3.2 (medres) 0.9556 

MIUB-ECHO-G 0.9726 

ECHAM5 0.9831 

MRI CGCM2.3.2a 0.9627 

CCSM3.0 0.9821 

UKMO HadCM3 0.9848 

UKMO HadGEM1 0.9928 

 



FIGURE 1: Linearity of Arctic sea ice and temperature of model data for the time period 

1980-2099. a) Annual mean sea ice area versus mean global temperature, b) September sea 

ice area versus mean global temperature, c) annual mean sea ice area versus mean Arctic 

temperature and d) September sea ice area versus mean Arctic temperature in an A1B 

scenario. The slope in panel d represents the value of α of the models. Each color indicates a 

different model from the CMIP3 ensemble (for details see Section 2). The numbers of each 

model in the legend can be used to identify the models in Figure 3. All results shown are 

based on 10-year running means. 

 

Figure 2: Predicted decline of Arctic September sea ice area with increasing global 

temperature. Shaded areas depict the uncertainty range (red based on observations from 1980-

2007). The models are calibrated to start at the current observational point (1980-2007) and 

show points for sea ice larger than 1.0 million km2. The difference between panel a) and b) is 

the method to calculate the uncertainty ranges: panel a) uses the internal variability from 

models whereas panel b) uses the model spread (one standard deviation). For more details of 

the uncertainty estimation see Section 3.2. Warming in 2090-2099 and associated 

uncertainties for three SRES non-intervention emission scenarios are indicated at the bottom 

[IPCC, 2007]. Models and observations are based on 10-year running means. Please note that 

for illustration purposes the observations are shown over the time period 1970-2007. 

 

Figure 3: Sea ice temperature sensitivity α versus Arctic polar amplification β for the CMIP3 

models (black dots; see Figure 1 for model numbers) and the observations (red). The grey 

shaded ellipses illustrate the internal variability (one standard deviation) of the four models 

with at least four ensembles (grey dots). The red shaded area is the mean spread of the above-



mentioned models’ internal variability centered at the observations; the dashed red curve 

shows two standard deviation of the variability. The lines indicate isolines of constant α·β (in 

million km2/°C). The solid isoline marks the observations. Panel a) shows the short time 

period of 28 years (1980-2007). Panel b) shows the 50-years time period (1960-2009). Note 

that αobs in b) is taken from the 28-year period as in panel a since sea ice observations used in 

this study start only in 1980. The estimated variability however is based on the model data 

and covers 50 years. The numbers for the models correspond to the legend of Figure 1.  

 

FIGURE 4: Predicted decline of Arctic September sea ice area with increasing global 

temperature as in Fig. 1. Shaded areas depict the uncertainty range (red based on observations 

from 1980-2007 and blue from 1960-2010). The time period in the legend indicates the time 

window that is used to estimate β. The models are calibrated to start at the current 

observational point (1980-2007) and show points for sea ice larger than 1.0 million km2. The 

difference between panel a) and b) is the method to calculate the uncertainty ranges: panel a) 

uses the internal variability from models whereas panel b) uses the model spread (one 

standard deviation). For more details of the uncertainty estimation see Section 3.2. Warming 

in 2090-2099 and associated uncertainties for three SRES non-intervention emission scenarios 

are indicated at the bottom [IPCC, 2007]. Models and observations are based on 10-year 

running means. Please note that for illustration purposes the observations are shown over the 

time period 1970-2007. 

 

FIGURE 5: Spatial development of predicted September sea ice decline. Shown is the 

percentage of climate models with sea ice in a specific grid cell for 0.5°C, 1°C, 1.5°C and 2°C 

above present (a-d, respectively). The number N denotes the number of models included. As a 



number of models simulate a sea ice area that is too large compared to observations, only 

those models were included which simulate a sea ice area indicated by the extrapolation. The 

red line shows the 33.3% isoline. The area outside the red line is therefore likely to be ice-free 

(see text). 
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