doc2vec(paragraph vector)

September 17, 2016

1 Introduction

Distributed memory(DM) version of doc2vec using hierarchical softmax. The document and word vectors are averaged here to calculate the hidden layer h .

Hierarchical softmax uses a binary tree model, all V words are leafs of the tree. The unique path to the target word is used to estimate the probability of the word. Assume that $n(w, j)$ is the j-th node on the unique path from the root to word w , and that $L(w)$ is the length of this path, then $n(w, 1)$ represents the root node and $n(w, L(w))$ the leaf node w. For any inner node n, $\operatorname{ch}(n)$ denotes an arbitrary fixed child of n, for example always the left child node. $\llbracket x \rrbracket$ is 1 if x is true and -1 otherwise. $v_{w_{t-k, j}}$ are used to calculate the hidden layer and are also called input vectors of words, $v_{n\left(w_{t, j}, l\right)}^{\prime}$ are used to calculate the probability of a word in hierarchical softmax, they are also called output vectors of words.
J is the number of documents, N_{j} the number of words in document j, h is the hidden layer. C_{p} is the number of word vectors that contribute to the hidden layer $\left(2^{*} \mathrm{k}\right.$ (context words)) +1 (for the document vector).

2 Math

$$
\begin{gather*}
L=\frac{1}{J} \sum_{j=1}^{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \log p\left(w_{t, j} \mid w_{t-k, j}, \ldots, w_{t+k, j}, d_{j}\right) \tag{1}\\
=\frac{1}{J} \sum_{j=1}^{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1} \log \sigma\left(\llbracket n\left(w_{t, j}, l+1\right)=\operatorname{ch}\left(n\left(w_{t, j}, l\right)\right) \rrbracket \cdot v_{n\left(w_{t, j}, l\right)}^{T} h\right) \tag{2}
\end{gather*}
$$

h in case of averaging of the word and document vectors, $v_{d_{j}} \equiv \theta_{j}$

$$
\begin{gather*}
=\frac{1}{J} \sum_{j=1}^{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1} \log \sigma\left(\llbracket n\left(w_{t, j}, l+1\right)=\operatorname{ch}\left(n\left(w_{t, j}, l\right)\right) \rrbracket \cdot v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}\left(v_{w_{t-k, j}}+\ldots+v_{w_{t+k, j}}+v_{d_{j}}\right)\right) \tag{3}\\
\frac{\partial L}{\partial v_{d_{j}}}=\frac{1}{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1}\left(1-\sigma\left(\llbracket n\left(w_{t, j}, l+1\right)=\operatorname{ch}\left(n\left(w_{t, j}, l\right)\right) \rrbracket \cdot v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}\left(v_{w_{t-k, j}}+\ldots+v_{w_{t+k, j}}+v_{d_{j}}\right)\right)\right) \\
\cdot \llbracket n\left(w_{t, j}, l+1\right)=\operatorname{ch}\left(n\left(w_{t, j}, l\right)\right) \rrbracket v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}
\end{gather*}
$$

$$
\begin{equation*}
=\frac{1}{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1}\left(y_{t, l}-\sigma\left(v_{n\left(w_{t, j}, l\right)}^{\prime}{ }^{T} \frac{1}{C_{p}}\left(v_{w_{t-k, j}}+\ldots+v_{w_{t+k, j}}+v_{d_{j}}\right)\right)\right) \cdot v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}} \tag{4}
\end{equation*}
$$

,where $y_{t, l}$ is 1 if $\llbracket n\left(w_{t, j}, l+1\right)=\operatorname{ch}\left(n\left(w_{t, j}, l\right)\right) \rrbracket=1$ and 0 otherwise.
$=\frac{1}{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1}\left(y_{t, l}-\frac{1}{\left.1+\exp \left(-v_{n\left(w_{t, j}, l\right)}^{\prime}\right)^{\left.\frac{1}{C_{p}}\left(v_{w_{t-k, j}}+\ldots+v_{w_{t+k, j}}+v_{d_{j}}\right)\right)}\right) \cdot v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}}\right.$
Update of $v_{d_{j}}$ by gradient ascent:

$$
\begin{aligned}
& v_{d_{j}}^{\tau+1}=v_{d_{j}}^{\tau}+ \\
& \eta \cdot\left(\frac{1}{J} \frac{1}{N_{j}-2 k} \sum_{t=k}^{N_{j}-k} \sum_{l=1}^{L\left(w_{t, j}\right)-1}\left(y_{t, l}-\frac{1}{1+\exp \left(-v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}\left(v_{w_{t-k, j}}+\ldots+v_{w_{t+k, j}}+v_{d_{j}}^{(\tau)}\right)\right)}\right) \cdot v_{n\left(w_{t, j}, l\right)}^{\prime} \frac{1}{C_{p}}\right)
\end{aligned}
$$

,where η is the learning rates and τ describes the time points

