
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Stoic: Effects as Capabilities

ANONYMOUS AUTHOR(S)

It is well-known that careless use of side effects in programming results in brittle code and causes subtle bugs,

and an effect system can guard against abuse of effects. Unfortunately, effect systems introduce syntactic and

cognitive overhead. The verbosity of checked exceptions in Java and the complexity of monad transformers in

Haskell are two examples. To overcome such problems, we propose effects as capabilities as a paradigm for

minimizing the overhead introduced by effect systems. The capability-based approach depends crucially on

the fine-grained control over the capture of capabilities in higher-order functions. To this end, we propose a

new abstraction: stoic functions. We prove that stoic functions enjoy non-interference of memory effects in a

step-indexed model. Our system supports effect polymorphism with succinct syntax. Also, effect masking for

local mutational effects works automatically without any special syntax or typing rule.

Additional Key Words and Phrases: stoic function, effect polymorphism, effect masking, capability

1 INTRODUCTION
How do you write an effect-polymorphic function map in your favorite programming language?

Suppose the function map takes a function parameter f, a list l, and returns a list with f applied

on each element of list l. The effects of the function map depends on the effects of the function f

passed to it: if f is pure, then the call map f l is pure, and if f produces IO effects, then the call

map f l produces IO effects as well.

In Java, which has an effect system for checking exceptions, we can implement an effect-

polymorphic map as follows:

interface FunctionE<T, U, E extends Exception> {

public U apply(T t) throws E;

}

interface List<T> {

public <U, E extends Exception> List<U>

mapE(FunctionE<T, U, E> f) throws E;

}

This is a lot of syntax, and rarely used in practice. In Haskell, the syntax is more concise:

mapM :: Monad m => (a -> m b) -> List a -> m (List b)

mapPure :: (a -> b) -> List a -> List b

If we choose the monad m to be the identity monad, we obtain a pure instance of mapM:

mapPure f xs = runIdentity (mapM (\x -> return (f x)) xs)

However, it is unsatisfactory that programmers need to use a different map function depending

on whether the function f is pure or not. Lippmeier [2010] observes that Haskell has fractured into

monadic and non-monadic sub-languages. In Haskell, almost every general purpose higher-order

function needs both a monadic version and a non-monadic version.

In Koka [Leijn 2017], only one version of the function map is required. A polymorphic map has

the following signature:

map : (xs : list<a>, f : (a) -> e b) -> e list

Note that the effect variable e expresses that the effect of the function map is the same as the

effect of the parameter f. In functional programming, higher-order functions are ubiquitous, most

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

of them are effect-polymorphic. Introducing an additional effect variable makes the syntax less

palatable and renders the type signature more complex.

It is well-known that the careless use of effectful computation in programming results in brittle

code and causes subtle bugs. Effect systems track and restrict the use (and abuse) of computational

effects [Lucassen and Gifford 1988]. Unfortunately, effect systems introduce syntactic and cognitive

overhead. The verbosity of checked exceptions in Java and the complexity with monad transformers

in Haskell are two examples.

One major overhead in effect systems is related to effect-polymorphic functions, as in functional

programming most higher-order functions are effect-polymorphic. Can we write functions like map

in a simple way that work both for pure functions and functions with arbitrary effects? This paper

shows that with the ideas of effects as capabilities and stoic functions, this goal can be achieved; in a

Scala-like syntax, we can write an effect-polymorphic map simply as follows:

val map = // (Int => Int) -> List[Int] => List[Int]

(f: Int => Int) => (xs: List[Int]) =>

xs match {

case Nil => Nil

case x :: xs => f(x) :: map(f)(xs)

}

In our system the function map has the type (Int ⇒ Int) → List[Int] ⇒ List[Int]. The single
arrow (→) denotes a stoic function, while the double arrow (⇒) denotes a free function (Section

2.1). The function map accepts both a pure function and a function with arbitrary effects. There

are no effect variables in the definition or the type signature of map. We will explain why map is

effect-polymorphic in Section 2.2.

Contributions
The contributions of this paper are the following:

(1) We identify the concept of stoic functions as an abstraction for controlling and reasoning

about capabilities (Section 2.1). We formalize stoic functions in λcap, an extension of STLC

with stoic functions and mutations (Section 3.1).

(2) We study the meta-theory of λcap based on step-indexed models. We prove that stoic functions

enjoy non-interference of memory effects (section 3.2).

(3) We demonstrate that our system supports a common form of effect polymorphism with

succinct syntax. Also, effect masking for local mutational effects works automatically without

any special syntax or typing rule (Section 4).

The benefits of usability are achieved by sacrificing some precision but not soundness of the

effect system (Section 4.1).

2 EFFECTS AS CAPABILITIES
We follow a paradigm shift in designing effect systems as introduced in Marino and Millstein [2009];

Odersky [2015]; Osvald et al. [2016]: instead of saying that a computation may produce some side
effects, we say that some capabilities are required in order to carry out the computation. For example,

instead of saying that the function println produces input/output side effects, we say that println

takes an IO capability. Capabilities are modeled as values of some capability type, e.g. Undet for

non-determinism, IO for input/output,1 Ref T for mutations. The following is a list of example

primitive functions that require corresponding capabilities in order to produce side effect:

random : Undet -> Int

1
Not to be confused with Haskell’s IO side effects, since Haskell’s IO allows arbitrary effects.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Stoic: Effects as Capabilities 1:3

println : String -> IO -> Unit

read : Ref T -> T

write : (Ref T, T) -> Unit

ref : T -> Ref T

Note that there exists one primitive function, i.e. ref, for allocating new reference capabilities

(memory locations), while it is impossible to create capabilities for IO and Undet. This makes

mutational references more complex than other capabilities, thus our formalization will focus on

mutational references (Section 3). Strictly speaking, the types of memory operations (read/write/ref)

should be polymorphic. But as we will introduce them as keywords in the calculus and give proper

typing rules to them, we omit the universal type quantifier ∀T to simplify presentation.

Since capabilities are required to produce side effects, by tracking capabilities in the type system

we can track effects in the program.

However, there is one fundamental difference between the usual notions of capabilities and

effects: capabilities can be captured in closures. This means that a capability present at closure

construction time can be preserved and accessed when the closure is applied. Effects, on the other

hand, are temporal: it generally does make a difference whether an effect occurs when a closure is

constructed or when it is used. This is where stoic functions come into play.

2.1 Stoic and Free Functions
Intuitively, free functions can freely capture capabilities from the environment, while stoic functions
are more disciplined: they may only use capabilities or free functions provided to them explicitly as

function arguments; they never capture capabilities or free functions from the environment. This is
the capability discipline that all stoic functions must observe. In short, stoic functions are honest

about their effects.

We illustrate stoic and free functions with the following example:

val main = (io: IO) => { // IO -> Unit

val mult = (io: IO) => (a: Int) => (b: Int) => { // IO -> Int => Int => Int

println(a)(io)

a * b

}

val plus = (a: Int) => { // Int => Int

println(a)(io)

a + a

}

val double = (a: Int) => plus(a, a) // Int => Int

}

We present our examples in a Scala-like syntax. The syntax val x = exp defines a variable x

bound to the expression exp. Braces are used for code blocks; the result of a block is given by its

last expression. We write functions as (x: T)=> t. The types of stoic functions are represented by

T -> R, while the types of free functions are represented by T => R. Functions are inferred to be stoic

whenever possible.
2
To avoid cluttering the presentation, we show type signatures of functions as

comments instead of type annotations.

In the code above, the function mult is stoic, as it does not capture any capabilities or free

functions from the environment. Instead, the other functions nested in main (that is, plus and

2
While we expect such type inference to be unproblematic, we defer a formal study of decidability of type-checking to

future work.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

double) are non-stoic (or free). The function plus is non-stoic, as it captures the capability io. The

function double is non-stoic, as it captures the free function plus.

Stoic functions can produce free functions, as the following code shows:

val main = (io: IO) => { // IO -> Unit

val incStoic = (io: IO) => (a: Int) => { // IO -> Int => Int

println(a)(io)

a + 1

}

val incFree = incStoic(io) // Int => Int

}

The function incStoic has the type IO → Int ⇒ Int. It is not a surprise that the inner function is

non-stoic, as it captures the capability io from the environment. Thus the function call incStoic(io)

creates a free function from a stoic function.

A stoic function can also take a free function as parameter, as shown in the code below:

val twice = (f: Int => Int) => (x: Int) => f(f(x)) // (Int => Int) -> Int => Int

The function twice will accept, as its first argument, both a stoic function and a free function. If

we call twicewith a stoic function, no capabilities will be used directly or indirectly in the execution

of twice. In general, our type system enables using a stoic function in place of a free function.

2.2 Effect Polymorphism
Let’s look again at the function map:

val map = // (Int => Int) -> List[Int] => List[Int]

(f: Int => Int) => (xs: List[Int]) =>

xs match {

case Nil => Nil

case x :: xs => f(x) :: map(f)(xs)

}

The function map has the type signature (Int ⇒ Int) → List[Int] ⇒ List[Int]. The outer function
is stoic, as it does not capture capabilities nor free functions from the environment. The inner

function captures the free function f, thus it is non-stoic. In a function call map(f)(l), the inner

function may only use capabilities carried by f. The function f can be either a stoic function

(Int → Int) or a free function (Int ⇒ Int) that produces effects. In this sense, the function map is

effect-polymorphic. The following example demonstrates the usage:

val f = (xs: List[Int]) => { // List[Int] -> List[Int]

val sum = ref 0

map { x => sum := (read sum) + x; x * x } xs

map { x -> x * x } xs

}

Sometimes, when we partially apply the function mapwith a stoic function f of the type Int → Int,
we expect the result type to be List[Int] → List[Int]. This is achieved by η-expansion in our system

(Section 4.1), as the following code shows:

val mapEta = (xs: List[Int]) => map { x -> x * x } xs // List[Int] -> List[Int]

In the above snippet, the function mapEta is stoic because it captures from its environment

neither capabilities nor free functions. If map is instead applied to a free function f of the type

Int ⇒ Int, then neither map f nor its η-expansion (xs: List[Int])=> map f xs will be stoic, and

they will both have the type List[Int] ⇒ List[Int]. Similarly, if the function map had the signature

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Stoic: Effects as Capabilities 1:5

(Int ⇒ Int) ⇒ List[Int] ⇒ List[Int], the call map(f)(l) may use more capabilities than what is

provided by f, as the function map may capture capabilities from the environment itself. Trying to

call such a function map from a stoic function will result in a typing error, as it violates the capability

discipline of stoic functions.

2.3 Effect Propagation
If a function f calls another function g inside its body, the effects produced by the function g should

be propagated to the function f. In contrast to type-and-effect systems [Lucassen and Gifford 1988],

in capability-based effect systems capabilities propagate from the caller to the callee, which makes

sense because capabilities are permissions to perform effects.

However, there is another way to propagate effects in capability-based effect systems: capturing
capabilities. This can be demonstrated by the following example:

val complex = (x: Int) => (io: IO) => { // Int -> IO -> Int

val f = (a: Int) => { println(a)(io); a * a } // Int => Int

val g = (a: Int) => { println(a)(io); a + a } // Int => Int

f(x) + g(x)

}

The function complex is stoic, as it does not capture any capabilities except the explicitly given

capability io. However, the implementation of complex is based on the non-stoic functions f and g,

which capture io from the environment. Note that f and g cannot capture any capabilities beyond

those explicitly given to complex, otherwise complex could not be stoic. This saves boilerplate for

threading the capabilities through function calls. Otherwise, we would have to write this code more

verbosely:

val complex = (x: Int) => (io: IO) => { // Int -> IO -> Int

val f = (a: Int) => (io: IO) => { println(a)(io); a * a } // Int -> IO -> Int

val g = (a: Int) => (io: IO) => { println(a)(io); a + a } // Int -> IO -> Int

f(x)(io) + g(x)(io)

}

For programming languages that support Scala-like implicits or implicit function types [Odersky

et al. 2018], the syntax can be cut even further:

type IO[T] = implicit IO -> T

def complex(x: Int): IO[Int] = {

def f(a: Int): Int = { println(a); a * a }

def g(a: Int): Int = { println(a); a + a }

f(x) + g(x)

}

2.4 Combining Effects
Suppose we want to write a function to print the content of a memory reference. This task requires

combining two effects: memory access and I/O. By treating effects as capabilities, combining

multiple effects requires simply abstracting over multiple capabilities:

val inspect = (r: Ref[Int]) => (io: IO) => // Ref[Int] -> IO => Unit

print(read(r))(io)

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

2.5 Incremental Adoption
An effect system is like an armor that protects programmers from tricky bugs caused by abuse of

effects. However, the merits of such an armor does not justify that programmers should carry its

weight in all development scenarios, at all stages and for all components of a program. In a quick

prototype, programmers may choose to ignore checked effects completely. In a larger project, the

choice of which components should be effect-disciplined may evolve over time.

With both stoic and free functions, our system supports easily incremental adoption of effects. If

programmers decide to not track effects, they can just use free functions throughout in the program.

During software development, if programmers want to make more components effect-disciplined,

it suffices to change some free functions to stoic functions and making their effects explicit. We

believe enabling programmers to incrementally make code effect-disciplined is another key factor

in the adoption of effect systems.

3 CALCULUS
We formalize the concept of stoic functions in call-by-value simply typed lambda calculus extended

with mutation, taking heap references as capabilities. We study the meta-theory of the system

following a semantic approach based on step-indexed models as in Ahmed [2004].

On a first reading, readers can safely ignore the meta-theory based on step-indexed models and

come back to it later.

3.1 Definition
The calculus is presented in Figure 1; the syntax is mostly standard. Types are separated into two

groups: pure types (Tpu) and impure types (Tim). Impure types include capabilities (Ref T) and free

function types (T ⇒ T). All other types are pure, including unit type, naturals and stoic function

types (T → T).
The small-step semantics is presented using evaluation contexts. We let S range over stores,

which are finite maps from locations to values. We write one-step reduction as (S, t) −→ (S′, t′),
which means the term t with the store S takes one step to t′ with the updated store S′.

The typing judgments are of the form Γ ⊢ t : T, which means the term t can be typed as T under

the environment Γ. Instead of proving soundness through progress and preservation, we will take a

semantic approach to soundness: we define a semantics of types and typing judgements, and then

prove typing rules as theorems (Section 3.2). The semantic approach allows us to restrict source

programs to contain no locations, thus the typing judgments need not mention store typing and

we can omit the usual typing rule for locations [Pierce 2002, Chap. 13].

The most important change in typing rules is the introduction of the typing rule T-Stoic, which

assigns type to stoic functions. In contrast to the standard typing rule T-Abs for functions, it purifies

the environment in typing stoic functions. This is how the capability discipline is enforced in the

type system. The capability discipline is implemented with the helper function pure, which removes

all variables of impure types from the typing environment.

Note also that in the typing rule T-Stoic, we restrict the term to be a value, which can only be a

lambda in this context. This restriction is important, we will discuss it in Section 4.2.

The rule T-Degen says that a stoic function can be used as a free function, it is a dual of the rule

T-Stoic.

3.2 Semantic Typing
On a first reading, readers can jump to Section 4 and come back later.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Stoic: Effects as Capabilities 1:7

Syntax
t ::= terms:

x variable

λx:T. t abstraction

t t application

l locations

ref t new memory

t := t assignment

!t dereference

unit unit value

n naturals

v ::= values:

λx:T. t abstraction value

unit unit value

n naturals

l location values

Tpu ::= pure types:

Nat naturals

Unit unit type

T → T stoic funs

Tim ::= impure types:

Ref T references

T ⇒ T free funs

T ::= Tpu | Tim types

Evaluation (S, t) −→ (S, t′)

E ::= [·] | E t | v E | ref E |!E | E := t | v := E

t −→ t′

E[t] −→ E[t′]
(E-Context)

(λx:T. t1) v2 −→ [x 7→ v2]t1 (E-Beta)

l < dom(S)

(S, ref v) −→ (S[l 7→ v], l)
(E-Ref)

l ∈ dom(S)

(S, !l) −→ (S, S(l))
(E-Deref)

l ∈ dom(S)

(S, l := v) −→ (S[l 7→ v], unit)
(E-Assign)

Typing Γ ⊢ t : T

Γ ⊢ unit : Unit (T-Unit)

Γ ⊢ n : Nat (T-Nat)

x : T ∈ Γ

Γ ⊢ x : T
(T-Var)

Γ, x:T1 ⊢ t2 : T2
Γ ⊢ λx:T1. t2 : T1 ⇒ T2

(T-Abs)

Γ ⊢ t1 : T1 ⇒ T2 Γ ⊢ t2 : T1
Γ ⊢ t1 t2 : T2

(T-App)

Γ ⊢ t : T

Γ ⊢ ref t : Ref T
(T-Ref)

Γ ⊢ t1 : Ref T Γ ⊢ t2 : T

Γ ⊢ t1 := t2 : Unit
(T-Assign)

Γ ⊢ t : Ref T

Γ ⊢ !t : T
(T-Deref)

pure(Γ) ⊢ v : T1 ⇒ T2
Γ ⊢ v : T1 → T2

(T-Stoic)

Γ ⊢ t : T1 → T2
Γ ⊢ t : T2 ⇒ T2

(T-Degen)

Pure Environment

pure(�) = �

pure(Γ, x:Tim) = pure(Γ)
pure(Γ, x:Tpu) = pure(Γ), x:Tpu

Fig. 1. Syntax and Syntactic Typing for λcap

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

To prove soundness of the system, we follow the step-indexed approach as demonstrated in

Ahmed [2004]. Actually, we will reuse most of the definitions and proofs in section 3.3 of the thesis,

thanks to composability of semantic typing.

Step-indexes (written as j or k) are natural numbers used both to count evaluation steps and to

avoid circularities in the definition of store typings and semantic types.

Motivating step-indexed models. Step-indexed models interpret syntactic types T as semantic

types τ , which are predicates on values and store typings. In turn, store typings Ψ map locations to

semantic types. Roughly, semantic type JT1 ⇒ T2K is satisfied by ⟨v,Ψ⟩ if the value v, when run in

a store matching store typing Ψ, runs safely (without getting stuck) and maps argument values in

JT1K to result expressions in JT2K∗.
The definitions of semantic typings and store typings have a problematic circularity, so instead of

performing these definitions in one go, a semantic type is defined to be a step-indexed family of sets,

which serves as a sequence of approximations of the “correct” semantic type. When defining the k-th
approximation of a semantic type, any circularity can be resolved by referring to approximations

at step-indexes j smaller than k.
Moreover, general references allow constructing recursive functions v; showing that recursive

functions are safe also has circularity problems, because v can only be shown safe if recursive calls

to v are also safe. To fix this circularity, the k-th approximation of a semantic type only constrains

the behavior of a value when observed for up to k steps; to show a recursive function v safe for up
to k steps, we only need to assume recursive calls to v safe for fewer steps.

Step-indexed models. Because of the reasons explained, a semantic type τ is a set of triples ⟨k,Ψ, v⟩.
Roughly speaking, ⟨k,Ψ, v⟩ ∈ JTK means that, in any store that matches store typing Ψ, the value v
behaves as a value of type T, when tested for up to k evaluation steps. For example, if the value v
satisfies JT1 ⇒ T2K, then v must be a function value, and the result of applying this function value

to an input in JT1K must satisfy JT2K (up to a certain number of steps).

A key insight on the connection between step-indexed models and capabilities, alluded in the

footnote of [Ahmed 2004, P. 55], is that the store typing Ψ in the tuple ⟨k,Ψ, t⟩ can be read as the

resources (or capabilities from our perspective) that are sufficient for the safe evaluation of t for k
steps.

The semantic approach requires us to first give meanings to types and typing judgments, and

then prove that all typing rules hold semantically. For completeness, we first reproduce the basic

definitions from Ahmed [2004] below.
3
As a convention, we write ⟨k,Ψ, t⟩ as a short-hand for

⟨k, ⌊Ψ⌋k, t⟩ to simplify the presentation.

3.2.1 Basic Definitions.

Definition 3.1 (Safe). A state (S, t) is safe for k steps if for any reduction (S, t) −→j (S′, t′) of j < k
steps, either t′ is a value or another step is possible.

safen(k, S, t) ≜ ∀j, S′, t′.(j < k ∧ (S, t) −→j (S′, t′)) =⇒ (val(t′) ∨ ∃S′′, t′′.(S′, t′) −→ (S′′, t′′))

A state (S, t) is called safe if it is safe for any step count.

safe(S, t) ≜ ∀k.safen(k, S, t)
Definition 3.2 (Approx). The k-approximation of a semantic type is the subset of its elements

whose index is less than k. This concept is extended point-wise to store typings:

⌊τ ⌋k ≜ { ⟨j,Ψ, v⟩ | j < k ∧ ⟨j,Ψ, v⟩ ∈ τ }
⌊Ψ⌋k ≜ { (l 7→ ⌊τ ⌋k) | Ψ(l) = τ }

3
With minor adaptations.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Stoic: Effects as Capabilities 1:9

Definition 3.3 (State Extension). A valid state extension is defined as follows:

(k,Ψ) ⊑ (j,Ψ′) ≜ j ≤ k ∧ ∀l ∈ dom(Ψ).⌊Ψ′⌋j(l) = ⌊Ψ⌋j(l)

Definition 3.4 (Extensibility). A set τ of tuples of the form ⟨k,Ψ, v⟩, where v is a value, k is a

nonnegative integer, and Ψ is a store typing, is extensible if τ is closed under state extension; that is,

extensible(τ) ≜ ∀k, j,Ψ,Ψ′, v.⟨k,Ψ, v⟩ ∈ τ ∧ (k,Ψ) ⊑ (j,Ψ′) =⇒ ⟨j,Ψ′, v⟩ ∈ τ

In the type definitions that follow, when we universally quantify over a store typing Ψ, we
implicitly require that ∀l ∈ dom(Ψ).extensible(Ψ(l)). When we shrink the approximation index of

store typings, this invariant is preserved due to the following facts:

• All store typings and types in store typings are step-indexed (explicitly or implicitly), i.e. of

the form ⌊Ψ⌋k and ⌊τ ⌋k.
• If extensible(⌊τ ⌋k) and j < k, then extensible(⌊τ ⌋j) (Lemma Extensibility Weakening).

Definition 3.5 (Well-typed Store). A store S is well-typed to approximation k with respect to a

store typing Ψ iff dom(Ψ) ⊆ dom(S) and the contents of each location l ∈ dom(Ψ) has type Ψ(l) to
approximation k:

S :k Ψ ≜ dom(Ψ) ⊆ dom(S) ∧ ∀j < k.∀l ∈ dom(Ψ).⟨j, ⌊Ψ⌋j, S(l)⟩ ∈ ⌊Ψ⌋k(l)

Definition 3.6 (Semantic Typing Judgement). For any type environment Γ and value environment

σ , we write σ :k,Ψ Γ if for all variables x ∈ dom(Γ) we have ⟨k,Ψ,σ (x)⟩ ∈ JΓ(x)K; that is

σ :k,Ψ Γ ≜ ∀x ∈ dom(Γ).⟨k,Ψ,σ (x)⟩ ∈ JΓ(x)K

The semantic typing judgement is then defined as:

Γ |= t : T ≜ FV(t) ⊆ dom(Γ) ∧ (∀k,σ ,Ψ.σ :k,Ψ Γ =⇒ ⟨k,Ψ,σ (t)⟩ ∈ JTK∗)
|= t : T ≜ ∅ |= t : T

3.2.2 Interpretation of Types. The interpretation of syntactic types are given in Figure 2. JTK
defines what it means for a value to belong to a type, and JTK∗ defines what it means for a term to

belong to a type.

Any natural can safely take any number of steps with any capabilities — as it does not consume

any resources, thus there is no requirement on Ψ. The interpretation for Unit is similar.

Function values in T1 ⇒ T2 must map argument values in T1 to result expressions in T2. More

precisely, ⟨k,Ψ, λx:T1.t⟩ ∈ JT1 ⇒ T2K requires that function body t satisfies JT2K for at least

j < k steps when applied to an argument that satisfies JT1K for j steps. Moreover, a value of the

free function type T1 ⇒ T2 may capture references from the environment, and can assume the

references in Ψ are available; so we only constraint the behavior of the body t for stores satisfying
store typings Ψ′

that extend Ψ. As Ψ′
could be Ψ and j could be k – 1, the store typing Ψ must at

least contain the necessary capabilities for the function body t to take k – 1 steps.
The interpretation for T1 → T2 is similar. The key difference is that (j,Ψ′) does not need to

extend (k,Ψ): there is no constraint on Ψ′
. As Ψ′

could be empty, this ensures that a stoic function

can only use capabilities provided via its arguments.

For references, the definition requires that the capabilities provided should map the location

l to the right type. Note the condition does not directly say anything about the capabilities that

the value at l may need for safe execution; however, if a store S is well-typed with respect to Ψ,
then the value at S(l) and the store S itself will have to satisfy Ψ(l) and hence T (up to a suitable

approximation). This reflects an improvement of the step-indexed proof technique in [Ahmed 2004]

over [Ahmed et al. 2003]. In the latter, the logical relation is defined on the quadruple ⟨k,Ψ, S, v⟩,
as we need to check that for all l ∈ dom(Ψ), S(l) can safely take j steps with ⌊Ψ⌋j and S. Ahmed

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

JNatK ≜ { ⟨k,Ψ, n⟩ }

JUnitK ≜ { ⟨k,Ψ, unit⟩ }

JT1 ⇒ T2K ≜ { ⟨k,Ψ, λx:T1.t⟩ | ∀v,Ψ′, j < k.
((k,Ψ) ⊑ (j,Ψ′) ∧ ⟨j,Ψ′, v⟩ ∈ JT1K) =⇒ ⟨j,Ψ′, t[v/x]⟩ ∈ JT2K∗ }

JT1 → T2K ≜ { ⟨k,Ψ, λx:T1.t⟩ | ∀v,Ψ′, j < k.
⟨j,Ψ′, v⟩ ∈ JT1K =⇒ ⟨j,Ψ′, t[v/x]⟩ ∈ JT2K∗ }

JRef TK ≜ { ⟨k,Ψ, l⟩ | ⌊Ψ⌋k(l) = ⌊JTK⌋k }

JTK∗ ≜ { ⟨k,Ψ, t⟩ | val(t) ∧ ⟨k,Ψ, t⟩ ∈ JTK
∨

¬val(t) ∧ ∀j, S, S′, t′.
(j < k ∧ S :k Ψ ∧ (S, t) −→j (S′, t′) ∧ irred(S′, t′))
=⇒ ∃Ψ′.(k,Ψ) ⊑ (k – j,Ψ′) ∧ S′ :k–j Ψ′∧

⟨k – j,Ψ′, t′⟩ ∈ JTK }

Fig. 2. Semantic Typing for λcap

[2004] shows that one can remove S from the quadruple and simplify the definition of JRef TK with
an additional definition of well-typed store and impose that condition in expression typings, i.e.

well-formed store will keep well-formed during evaluation.

The expression typing specifies the condition for a term t to safely take k stepswith the capabilities
Ψ. If t is a value,4 then ⟨k,Ψ, t⟩ ∈ JTK∗ is equivalent to ⟨k,Ψ, t⟩ ∈ JTK. Otherwise, given a well-typed

store S with respect to Ψ, if (S, t) reduces to an irreducible state (S′, t′) in j steps for any j < k, then
S′ should be well-typed in an extended store typing Ψ′

, and t′ should be a value of type T that can

safely take k – j steps with the capabilities Ψ′
.

3.2.3 Soundness.

Theorem 3.7 (Soundness). If |= t : T, and S is a store, then (S, t) is safe.

Proof. We need to show that for any k, (S, t) is safe for k steps.

From the definition of semantic typing judgments, we know that for any k′,Ψ, we have ⟨k′,Ψ, t⟩ ∈
JTK∗. In particular, it holds for Ψ = ∅ and k′ = k. It is obvious that S :k Ψ.
From the definition of JTK∗, the case that t is a value is trivial, otherwise either (S, t) can safely

take k steps without reducing to a value, which concludes the proof; or (S, t) −→j (S′, t′) for j < k
steps, and there exists some Ψ′

such that (k – j,Ψ′, t′) ∈ JTK. From the definition of JTK, we know
t′ must be a value, thus (S, t) is safe for k steps. □

Definition 3.8 (Non-interference). A term t of type T is non-interferent with the store typing Ψ1,
written as t : T # Ψ1, if and only if for any k, there exists Ψ2 with dom(Ψ1) ∩ dom(Ψ2) = ∅ such that

⟨k,Ψ2, t⟩ ∈ JTK∗.

4
We need to make the case explicit in the definition, as it is needed in the proof of T-Stoic: we want to ensure that if

⟨k,Ψ, v⟩ ∈ JTK∗ then ⟨k,Ψ, v⟩ ∈ JTK with the same Ψ, not just with some extension of Ψ.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Stoic: Effects as Capabilities 1:11

The definition depends on the following observation: if ⟨k,Ψ, t⟩ ∈ JTK∗, then the store typing

Ψ are the resources (or capabilities) that are sufficient for the safe evaluation of t for k steps. If T
is a function type, the definition of JT1 → T2K and JT1 ⇒ T2K also ensures that execution of the

function body is safe. As k can be any number in the definition, it is impossible for t to read, write

or refer to any memory locations in Ψ1.
In the following example, both get and inc interfere with their environments, as the memory

location m is captured and used (read/write):

val m = ref 0

val get = () => !m // Unit => Int

val inc = () => m := !m + 1 // Unit => Unit

Moreover, the following function will be taken as interferent as well according to the definition:

val f = { // Int => Ref Int

val m = ref 0

(x: Int) => m // capture, but no read/write

}

In our system, the function f will be typed as Int ⇒ Ref Int. Rejecting the function as stoic is

important, otherwise it will be unsafe to use stoic functions in multiple threads. In the example

above, if we use the function f in two different threads, it may lead to data races on the shared

location m. A stoic function should only use explicitly provided memory locations or create new

memory locations, but not secretly capture memory locations.

To simplify presentation, we also use the following definitions:

(1) σ :Ψ Γ ≜ ∀k.σ :k,Ψ Γ
(2) v :Ψ T ≜ ∀k.⟨k,Ψ, v⟩ ∈ JTK
(3) Ψ1 – Ψ2 ≜ { (l 7→ τ) | Ψ1(l) = τ ∧ l < dom(Ψ2) }

Theorem 3.9 (Non-interference). If Γ |= λx:T1.t : T1 → T2, ∀Ψ,σ , v,Ψ1, if σ :Ψ Γ and v :Ψ1 T1,
we have σ (t)[v/x] : T2 # Ψ – Ψ1.

Proof. By the definition of non-interference, we need to prove that for any step-index k, there
exists Ψ′

such that dom(Ψ – Ψ1) ∩ dom(Ψ′) = ∅ and ⟨k,Ψ′,σ (t)[v/x]⟩ ∈ JT2K∗.
We choose Ψ′ = Ψ1, it is obvious that dom(Ψ – Ψ1) ∩ dom(Ψ1) = ∅, by the definition of store

typing subtraction. Without loss of generality, let’s choose some m > k, from the definition of

semantic judgments and the fact that σ (λx: T1.t) is a value, we have the following:

⟨m,Ψ,σ (λx: T1.t)⟩ ∈ JT1 → T2K

Now by the definition of JT1 → T2K and ⟨m, v,Ψ1⟩ ∈ JT1K, we have ∀j < m, ⟨j,Ψ1,σ (t)[v/x]⟩ ∈
JT2K∗. In particular, it holds for k, as we know k < m. □

This theorem says that if an function is typed as stoic under an environment, calling the resulting

function will not read/write any memory locations from the outer environment, except those

explicitly provided as an argument.

In the other direction, if the argument type and return type of a stoic function are both pure

types (e.g. Nat or Unit), it is impossible for the environment to read/write locally created memory

locations after execution of the stoic function. In such cases, stoic functions create completely

segregated regions of memory.

In another word, the only doors that enable interference of local memory of a stoic function and

its environmental memory is via function argument and return value. By controlling the front- and

back-door, it is possible to predict what effects are possible during and after a stoic function call.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

This is not true for free functions, as capturing provides a privileged channel for them to interact

with the environment.

3.3 Basic Lemmas
We list the basic lemmas that will be used in the proofs. These lemmas are easy to prove, and

readers can find most of the proofs in section 3.4 of Ahmed [2004].

Lemma 3.10 (State Extension Reflexive). (k,Ψ) ⊑ (k,Ψ).

Lemma 3.11 (State Extension Transitive). If (k1,Ψ1) ⊑ (k2,Ψ2) and (k2,Ψ2) ⊑ (k3,Ψ3), then
(k1,Ψ1) ⊑ (k3,Ψ3).

Lemma 3.12 (Type Set Extensible). For any syntactic type T, extensible(JTK).

Lemma 3.13 (Extensibility Weakening). If extensible(⌊τ ⌋k) and j ≤ k then extensible(⌊τ ⌋j).

Lemma 3.14 (Index Cut). If (k,Ψ) ∈ (j,Ψ′), i < k, and i < j, then (i, ⌊Ψ⌋i) ⊑ (i, ⌊Ψ′⌋i).

Lemma 3.15 (Index Weakening). If j < k, then (k,Ψ) ⊑ (j,Ψ).

Lemma 3.16 (Determinism of Evaluation). If (S, t) −→i (S1, t1) ∧ irred(S1, t1) and (S, t) −→j

(S2, t2) ∧ irred(S2, t2), then S1 = S2, t1 = t2 and i = j.

Lemma 3.17 (Store Index Weakening). If S :k Ψ and j < k, then S :j Ψ.

3.4 Proof of Typing Rules
To relate our syntactic type judgement Γ with semantic typing, we must prove that our syntactic

typing rules are sound relative to semantic typing, as stated in the following theorem.

Theorem 3.18 (Soundness of Syntactic Typing). If Γ ⊢ t : T then Γ |= t : T.

This theorem is proven by induction on derivations of Γ ⊢ t : T. Each case can be shown as a

separate typing lemma, and we show a selection of such lemmas in the rest of this section.

The typing rules T-Nat, T-Unit and T-Var are trivial to prove sound, thus are omitted. Only the

proofs for T-Stoic and T-Degen are new, other proofs are similar to those in Section 3.5 of Ahmed

[2004]. Thus we only show the proofs for T-Stoic and T-Degen here, and keep other proofs in the

appendix.

Lemma 3.19 (Pure Type). If ⟨k,Ψ, v⟩ ∈ JTpuK, then ⟨k, ∅, v⟩ ∈ JTpuK.

Proof. There are three cases: Unit, Nat, T1 → T2. In each case, the definition of JTK does not
depend on Ψ, thus we can always choose Ψ = ∅. □

Theorem 3.20 (Stoic). The following typing rule holds:

pure(Γ) |= v : T1 ⇒ T2
Γ |= v : T1 → T2

(T-Stoic)

Proof. We need to show that for all k,σ ,Ψ, if σ :k,Ψ Γ, then:
(G1) FV(v) ⊆ dom(Γ)
(G2) ⟨k,Ψ,σ (v)⟩ ∈ JT1 → T2K∗

Without loss of generality, we choose k,σ ,Ψ such that σ :k,Ψ Γ. From the definition of pure, we
have for all x ∈ pure(Γ), (pure(Γ))(x) = Γ(x). Now from the definition of environment typing, we

have σ :k,Ψ pure(Γ).
By the definition of JT1 → T2K∗ and the fact that σ (v) is a value, to prove (G2), we need to show:

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Stoic: Effects as Capabilities 1:13

(G2’) ⟨k,Ψ,σ (v)⟩ ∈ JT1 → T2K
From the definition of pure, we know ∀x ∈ dom(pure(Γ)), (pure(Γ))(x) = Tpu for some Tpu. Now

use the definition of pure again and the Lemma Pure Type, we have σ :k,∅ pure(Γ). Now from the

premise and definition of semantic judgments, we have:

(A1) FV(v) ⊆ dom(pure(Γ))
(A2) ⟨k, ∅,σ (v)⟩ ∈ JT1 ⇒ T2K∗
Now from A2, the definition of JT1 ⇒ T2K∗ and the fact that σ (v) is a value, we have:
(B) ⟨k, ∅,σ (v)⟩ ∈ JT1 ⇒ T2K

From the definition of JT1 ⇒ T2K, we know there exists t such that σ (v) = λx:T1.t. Suppose j < k
and ⟨j,Ψ′, v1⟩ ∈ JT1K, by the definition of JT1 → T2K, to prove G’ we need to show:

(G2”) ⟨j,Ψ′, t[v1/x]⟩ ∈ JT2K∗

From (B), the definition of JT1 ⇒ T2K, j < k, (k, ∅) ⊑ (j,Ψ′) and ⟨j,Ψ′, v1⟩ ∈ JT1K, we have exactly
G2”. And G1 holds trivially from A1. □

Theorem 3.21 (Degeneration). The following typing rule holds:

Γ |= t : T1 → T2
Γ |= t : T1 ⇒ T2

(T-Degen)

Proof. By the definition of semantic judgments, for any k,σ ,Ψ, suppose σ :k,Ψ Γ, then we need

to show:

⟨k,Ψ,σ (t)⟩ ∈ JT1 ⇒ T2K∗

From the premise and definition of semantic judgments, we have ⟨k,Ψ,σ (t)⟩ ∈ JT1 → T2K∗. The
conclusion follows immediately from the lemma Degeneration Closed. □

Lemma 3.22 (Degeneration Value). If ⟨k,Ψ1, v⟩ ∈ JT1 → T2K, then ⟨k,Ψ2, v⟩ ∈ JT1 ⇒ T2K.

Proof. By the definition of JT1 → T2K, we know it must be the case that v = λx:T1.t. By the

definition of JT1 ⇒ T2K, suppose j < k, (k,Ψ2) ⊑ (j,Ψ′) and ⟨j,Ψ′, v1⟩ ∈ JT1K, we need to prove:

(G) ⟨j,Ψ′, t[v1/x]⟩ ∈ JT2K
This is immediately from the definition of JT1 → T2K. □

Lemma 3.23 (Degeneration Closed). If ⟨k,Ψ, t⟩ ∈ JT1 → T2K∗, then ⟨k,Ψ, t⟩ ∈ JT1 ⇒ T2K∗.

Proof. If t is a value, the result is immediately from the definition of expression typing and the

lemma Degeneration Value.

If t is not a value, we need to show that for any j < k, S, S′, t′, S :k Ψ, if (S, t) −→j (S′, t′) and
irred(S′, t′), then there exists Ψ′

such that the following holds:

(G1) (k,Ψ) ⊑ (k – j,Ψ′)
(G2) S′ :k–j Ψ′

(G3) ⟨k – j,Ψ′, t′⟩ ∈ JT1 ⇒ T2K
Without loss of generality, suppose S :k Ψ and (S, t) −→j (S′, t′) ∧ irred(S′, t′) for j < k steps.

From the premises and the definition of JT1 → T2K∗, there exists Ψ1 such that:

(A1) (k,Ψ) ⊑ (k – j,Ψ1)
(A2) S′ :k–j Ψ1
(A3) ⟨k – j,Ψ1, t′⟩ ∈ JT1 → T2K

Now choose Ψ′ = Ψ1, G1 holds from A1, G2 from A2, G3 from A3 and the lemma Degeneration

Value. □

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

4 PROPERTIES AND EXTENSIONS
In this section, we give an in-depth analysis of effect polymorphism and effect masking from

the perspective of the calculus. We also discuss the extension of the system to support checked

exceptions and parametric polymorphism.

4.1 Effect Polymorphism
Recall that the following function map has the type signature (Int ⇒ Int) → List[Int] ⇒ List[Int]:

val map = // (Int => Int) -> List[Int] => List[Int]

(f: Int => Int) => (xs: List[Int]) =>

xs match {

case Nil => Nil

case x :: xs => f(x) :: map(f)(xs)

}

The function map is stoic, as it does not capture any capabilities or access any non-stoic functions

in the outer environment. The inner function is non-stoic, because it captures the non-stoic function

f. All capabilities in usage during a call of map must come from the passed in function f. In the

language of effects, it means map does not produce any effects itself, all effects it produces during

the call are produced by the function f.

Effect polymorphism is inherently built in capability-based effect systems that support both

stoic and free functions. This is because a stoic function like map can only indirectly uses whatever

capabilities carried along by f. The following code snippet shows the usage of map with stoic and

non-stoic function parameters:

val main = (io: IO) => {

val xs: List[Int] = ...

map { x => println(x)(io); x * x } xs

map { x -> x * x } l

}

A small caveat is that, when we curry the function map with a stoic function, by the typing rule

T-App, it can only get the type Int ⇒ Int instead of Int → Int:
val squarePure1 = map { x -> x * x } // List[Int] => List[Int]

A small trick to get back the stoic function is to resort to η-expansion:

val squarePure2 = // List[Int] -> List[Int]

(xs: List[Int]) => map { x -> x * x } xs

This implies when an expected type is a stoic function type, sometimes we need to do η-expansion.
However, usually only higher-order functions expect function values, and higher-order functions

like map are usually effect-polymorphic, they accept free functions as parameters, no η-expansion is

required in such cases. Moreover, when we fully apply a function, effect polymorphism happens

implicitly without η-expansion. Thus, we expect the need for η-expansion will be rare in practice.

Note that η-expansion is necessary when the expected type is a stoic function type. This is due

to the inability of our system to tell whether map has some internal effects or not. It is possible to

have a different version of map with the same type signature:

val mapE = // (Int => Int) -> List[Int] => List[Int]

(f: Int => Int) => {

val m = ref Nil

(xs: List[Int]) => {

m := !m ++ xs

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Stoic: Effects as Capabilities 1:15

!m

}

}

Now in the following code, double and doubleEta will behave differently:

val double = // List[Int] => List[Int]

mapE { (x: Int) => x * x }

val doubleEta = (xs: List[Int]) => // List[Int] -> List[Int]

mapE { (x: Int) => x * x } xs

double(List(1, 2)) == List(1, 2)

double(List(3, 4)) == List(1, 2, 3, 4)

doubleEta(List(1, 2)) == List(1, 2)

doubleEta(List(3, 4)) == List(3, 4)

Theoretically, this is not surprising as η-expansion also makes a big difference in traditional

type-and-effect systems [Lucassen and Gifford 1988]. This can be demonstrated by the following

example:

• f:Int
e1
−−→ Int

e2
−−→ Int, x:Int ⊢ f x : Int

e2
−−→ Int ! e1

• f:Int
e1
−−→ Int

e2
−−→ Int, x:Int ⊢ λy:Int.f x y : Int

e1,e2
−−−−→ Int ! PURE

As we see from above, η-expansion delays the effect e1. In our case, it ensures that a stoic function
indeed does not capture mutable references from its environment: it turns environmental references

captured in a non-stoic function into local references of a stoic function.

In the absence of mutational effects, it is possible to prove the following two theorems:

Γ |= t1 : (U ⇒ V) → T1 ⇒ T2 Γ |= t2 : U → V

Γ |= t1 t2 : T1 → T2
(T-Poly)

Γ |= t1 : Tpu → T1 ⇒ T2
Γ |= t1 : Tpu → T1 → T2

(T-Pure)

The intuition for T-Poly is that in an abstraction t1 = λf:U ⇒ V. λy:T1. t of the type (U ⇒ V) →
T1 ⇒ T2, the nested abstraction of the type T1 ⇒ T2 is typed in a pure context plus f. Therefore it
cannot capture any capabilities or free functions, except f. Otherwise, the enclosing abstraction
t1 could not be typed as stoic. Now we know f is instantiated with a stoic function t2, thus we
can also give the inner function a stoic type as well. The intuition for T-Pure is similar: the inner

function cannot capture any capabilities nor free functions, thus we can type it as stoic as well.

In the presence of mutational effects, the theorem T-Poly and T-Pure do not hold, as in the

outer stoic function, it may create local references that are captured in T1 ⇒ T2. This can be

demonstrated by the following stoic function, which has the type (Int ⇒ Int) → Int ⇒ Unit:
(f: Int => Int) => {

val m = ref 0

(x: Int) => m := f(x) // Int => Unit

}

There are subtle differences among the following types:

(1) (Int ⇒ Int) → List[Int] ⇒ List[Int]
(2) (Int ⇒ Int) → List[Int] → List[Int]
(3) (Int ⇒ Int) ⇒ List[Int] → List[Int]
(4) (Int ⇒ Int) ⇒ List[Int] ⇒ List[Int]
(5) (Int → Int) → List[Int] ⇒ List[Int]

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

(6) (Int → Int) → List[Int] → List[Int]
(7) (Int → Int) ⇒ List[Int] → List[Int]
(8) (Int → Int) ⇒ List[Int] ⇒ List[Int]
Function 1-4 may accept both stoic and free function as parameters, while others only accept

stoic function. Function 3-4, 7-8 are non-stoic, so they may capture capabilities from the outer

environment, while others not. The inner function of 2-3, 6-7 are pure, while others may be impure.

The inner function of 4 and 8 may have arbitrary effects, the inner function of 1 may only have as

many effects as the provided function plus read/write local references in its outer function, the

inner function of 5 may only read/write local references in its outer function.

Note that for the function type (Int ⇒ Int) → List[Int] ⇒ List[Int], we are not sure if the inner
function only read/write references in its outer function, whether the first parameter of the type

Int ⇒ Int is actually used or not in the inner function. In this sense, our system is an approximation

and is less precise than traditional type-and-effect systems. In type-and-effect systems [Lucassen

and Gifford 1988], the effects of all functions are precise, there are no functions with unknown

effects like free functions do in our system. By trading precision (but not soundness) for usability,

we hope to make effect systems more popular among programmers.

4.2 Mutational Effects and Effect Masking
As our calculus demonstrates, if we take references as capabilities, then we can control mutational

effects. The property of non-interference guarantees that during the execution of a stoic function,

the function can only read or write memory locations that are explicitly made possible through

function parameters.

It is important that when we use the calculus to control mutational effects, we do not generalize

the typing rule T-Stoic from value to arbitrary term, i.e. the following typing rule cannot be proved

in the system:

pure(Γ) |= t : T1 ⇒ T2
Γ |= t : T1 → T2

(T-Stoic’)

If we admit such a rule in the type system, we’ll be able to type the following term f with the

stoic type Int → Int. Now a stoic function captures references from the environment. It means two

different calls to f can interfere, it becomes impossible to perform compiler optimizations, like dead

code elimination or parallelization, based on stoic function types.

val f = { // Int => Unit

val m = ref 0

(x: Int) => m := x

}

A function may locally create new references and mutate them. If they are not observable from

outside, those effects can be masked. This is also called effect masking in the literature [Lucassen

and Gifford 1988].

But how to support effect masking in the effect system? In Lucassen and Gifford [1988], they

invented special syntax and typing rules for private regions in order to support masking of local

effects. In Koka, the compiler needs to do some proof work to show that a function is fully

polymorphic on the heap type h in st<h> in order to safely mask local mutational effects [Leijn

2017]. This approach corresponds to runST in Haskell [Launchbury and Peyton Jones 1994], its

safety is guaranteed by parametricity of the rank-2 polymorphic type:

runST :: (∀β .ST β α) → α

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Stoic: Effects as Capabilities 1:17

To write a dummy increment operation that uses mutation internally, we have to write following

code in Haskell:

increment :: Int -> Int

increment x = runST $ do

ref <- newSTRef x

modifySTRef ref (+1)

readSTRef ref

In contrast, effect masking is automatically supported in our system: a stoic function can always

safely create new memory references and mutate them. As long as the function can be type checked

in a pure environment, non-interference of memory effects is guaranteed. Non-observable effects

are disregarded automatically by the typing rule T-Stoic. Based on our system, the code looks like

the following:

val increment = (x: Int) => { // Int -> Int

val y = ref x

y := !y + 1

!y

}

Norman Hardy pointed us to another usage of stoic functions to create a secret:
val mkSecret = () => {

val count = ref 0

val inc = () => count := !count + 1 // Unit => Unit

val get = () => !count // Unit => Int

(inc, get)

}

In the code above, we can think count is a secret shared by inc and get. It is a secret because the

only possible way to manipulate it is through inc and get. The fact that mkSecret is a stoic function

guarantees that there is an authentic secret. Otherwise, if count is declared outside of mkSecret, it

may be observed and manipulated by other means.

The example above is closely related to the property of non-interference of memory effects.

The fact that mkSecret does not take any reference as input implies that its local memory region

is going to be separated from other memory regions with inc and get as the only indirect link.

The typing rule for T-Stoic guarantees that there is no way for affecting the local memory region

except through inc and get.

4.3 Checked Exceptions
A naive approach to support checking exceptions based on capabilities is to introduce an exception

type Exn and two primitive functions as follows:
5

try : (Exn => T, String => T) -> T

throw : String -> Exn -> Bot

The function try takes two free functions: one is the normal execution code with an exception

capability as parameter. The second is the exception handling code with an error message as

5
Strictly speaking, try should have a polymorphic type. But as try needs to be a keyword and deserves a typing rule, we

omit the universal type quantifier ∀T to simplify presentation.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

parameter. The function throw takes an error message and an exception capability, its return type

is the bottom type Bot.

A benign usage of try and throw can be demonstrated by the following example:

val calc = (io: IO) => (a: Int) => { // IO -> Int => Int

try(

(exn: Exn) => { // Exn => Int

println("start computing...")(io)

throw("some info")(exn)

},

(msg: String) => { // String => Int

println("error found:" + msg)

0

}

)

}

In the code above, the calculation throws an exception, the handler prints the error message

and returns 0. The primitive function try masks the exception effect with the handler, so that the

function calc only exposes I/O effects.

It seems that if we prevent programmers from creating an exception capability ex nihilo, then
we have the guarantee that the only possible way to mask an exception effect is by using try or

indirectly using an exception capability provided by try.

However, this design is unsound. We need to ensure that the exception capability does not escape
from the scope of try. The problem can be demonstrated by the following example:

val calc = (io: IO) => (a: Int) => { // IO -> Int => Int

val m = ref ((x: Int) => x) // Ref[Int => Int]

try(

(exn: Exn) => {

m := (x: Int) => throw(exn, "error")

},

(msg: String) => {

println("error found:" + msg)

unit

}

)

(!m)(3)

}

In the code above, we capture the exception capability in a free function and store the function

in the mutable cell m. Now the call (!m)(3) will throw exceptions, but the function calc does not

have exception effects in its type signature!

If we examine the problem more closely, we will find the problem is two-fold:

(1) The exception capability can be returned from try as a value or captured in a free function.

(2) Unrestricted capturing of types like Ref[Int =>Int] makes it possible to leak the capability.

We fix the two problems respectively:

(1) We require that the return value of try does not capture the exception capability.

(2) We only allow capturing variables that cannot leak the capability.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Stoic: Effects as Capabilities 1:19

capture(Exn) = true

capture(T1 ⇒ T2) = true

capture(Ref T) = capture(T)

capture(T) = false, otherwise

leaky(Ref T) = capture(T)

leaky(T1 ⇒ T2) = capture(T1) or leaky(T2)
leaky(T) = false, otherwise

Fig. 3. Definition of capture and leaky

To control the capturing of variables in the try code block, we use the definitions in Figure 3.

The function capture defines if a value of the type can hold or capture an exception capability value.

The function leaky defines whether an environment variable of such a type can potentially leak

the exception capability.

Now, we can have two more restrictions on the primitive function try:

(1) The return type T of try cannot be a capture type (that is, capture(T) = false).

(2) Only variables of non-leaky type T can be captured inside the code block of try (that is,

leaky(T) = false).

With the restrictions above, we conjecture the exception capability cannot leak from the try

block. We leave its formal proof to future work.

4.4 Parametric Polymorphism
To extend the system with parametric polymorphism, we need the following two syntactic typing

rules:

pure(Γ), X ⊢ t2 : T

Γ ⊢ λX. t2 : ∀X.T (T-TAbs)

Γ ⊢ t1 : ∀X.T
Γ ⊢ t1 [T2] : [X 7→ T2]T

(T-TApp)

Since we restrict in T-TAbs that type abstractions cannot capture any capabilities, we can treat

universal types like ∀X.T as pure types. However, for soundness, we need to treat type variables as

impure and remove bindings of type variables like x : X from pure environments. This is important

to guarantee preservation of the system. This can be seen from the following term t. Without the

restriction, it can be typed as ∀X.X → Nat → X:

t = λX. λx:X. λy:Nat. x

Now the term t [IO] will have the type IO → Nat → IO by T-TApp. However, after one

evaluation step, the term λx:IO. λy:Nat. x has the type IO → Nat ⇒ IO, as the capability variable x
is captured in the inner lambda; thus preservation breaks.

In practice, we may want to introduce restrictions on type parameters. For example, given the

following definition of the parallel map function pmap, the system cannot guarantee that all calls to

pmap are parallelizable, as the stoic function f may be impure:

def pmap [T, U](f: T -> U)(l: List[T]): List[U] = ...

The problem is that the type parameter T could be instantiated to a capability type or free function

type. For example, consider:

pmap { io -> print("hello")(io) } List(system.io)

pmap { f -> f() } List(() => println("hello, world")(system.io))

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

Topim

IO S ⇒ T Toppu

S → T Nat

Fig. 4. Subtyping: Toppu and Topim

There are two possibilities. The first is to introduce a type lattice as it is shown in Figure 4, then

we can resort to F<:. Another way is to introduce kinding on type parameters, to indicate whether

the type parameter can be instantiated with an impure type or not.

5 RELATEDWORK
In the body of the paper, we already discussed related work about effect polymorphism and effect
masking. We briefly recap them here.

In Haskell, almost every general purpose higher-order function needs both a monadic version

and a non-monadic version. As reported by Lippmeier [2010, Section 1.6], Haskell has fractured

into monadic and non-monadic sub-languages. Solutions based on parametric polymorphism, such

as Koka [Leijn 2017], complicate the syntax and type signature of higher-order functions (though

the user is supported by type inference). Our solution to effect polymorphism is supported by the

combination of stoic functions and stoic functions, enabling a succint syntax.

In Lucassen and Gifford [1988], special syntax and typing rules for private regions are introduce

to support masking of local effects. In Haskell, effect masking is supported by the ST monads and

runST [Launchbury and Peyton Jones 1994], the safety is guaranteed by parametricity of the rank-2

polymorphic type:

runST :: (∀β .ST β α) → α

However, this approach is heavy in syntax. Koka improves its usability by moving the burden of

proof from programmers to the compiler: the compiler needs to do some proof work to show that a

function is fully polymorphic on the heap type h in st<h> in order to safely mask local mutational

effects [Leijn 2017]. In our system, effect masking is supported automatically without any special

syntax or typing rule.

Note that the usability of our system is achieved by sacrificing some precision but not soundness

of the effect system. For example, the function map will take the following type in a type-and-effect

system [Lucassen and Gifford 1988]:

(Int
σ
−→ Int) → List[Int]

σ
−→ List[Int]

From the type signature, it is obvious that the first parameter (Int
σ
−→ Int) is not used in

the outer function, as its effect is empty. In our system, the same function map takes the type

(Int ⇒ Int) → List[Int] ⇒ List[Int]. We only know that the inner function can produce as many

effects as the first parameter plus possible effects on locally allocated memory cells inside the outer

function. By trading precision (but not soundness) for usability, we hope to make effect systems

more popular among programmers.

Meanwhile, as we have shown in 4.2, our system also supports compiler optimizations, as a stoic

function is pure if its parameter and return type are pure.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Stoic: Effects as Capabilities 1:21

5.1 Capabilities
There has been a long history in using capabilities in computer systems for security. For example,

KeyKos [Hardy 1985] is the first operating system to implement confinement based on capabilities.

Mullender and Tanenbaum [1986] uses capabilities in the design of distributed operating systems.

The recent verified secure kernel seL4 [Elkaduwe et al. 2008; Klein et al. 2009] is also designed

around capabilities.

Dennis and Van Horn [1966] propose the object-capability model as a conceptual framework

of capability systems, and Miller [2006] refines the model. Several programming languages are

implemented based on the model, such as E, Joule and Pony [Agorics 1995; Clebsch et al. 2015;

Miller 1997]. And there are some verification efforts for object-capabilities, like [Devriese et al.

2016; Murray 2010; Swasey et al. 2017].

A major difference between our work and this line of research is that capabilities in our system

are controlled by a static type system, while the others depend on clever design patterns.

5.2 Checking Effects
Gifford and Lucassen [1986]; Lucassen and Gifford [1988] first introduced type-and-effect systems

and effect polymorphism using effect type parameterization. In the same work, they also introduced

the concept effect masking for memory effects.

Moggi [1991] introduced monads for giving semantics to computational effects. Wadler and

Thiemann [2003] showed that it is possible to transpose any type-and-effect system into a corre-

sponding system for checking effects based on monads. The work on algebraic effects [Bauer and

Pretnar 2015; Kammar et al. 2013; Plotkin and Pretnar 2009] provides a different approach to give

semantics to (user-defined) effects. Algebraic effects may also be equipped with a type system for

checking effects [Leijen 2017]. Our work focuses on checking effects instead of giving semantics to

effects, thus it is closer to Wadler and Thiemann [2003].

Osvald et al. [2016] introduced second-class citizenship. Second-class citizens observe stack

discipline, they cannot be leaked into the heap after the function call finishes. They capitalize on

the idea effects as capabilities and capabilities as 2nd-class citizens to implement an effect system for

Scala. The type system will ensure the usage of capabilities observes stack discipline by checking

that a first-class function does not capture capabilities. However, the system restricts that the return

value of a function must be first-class. This is an obstacle to use the system to control mutational

effects, as heap references may not be returned from functions.

Miller et al. [2014] introduced spores, which enable programmers to control what types of

values can or cannot be captured inside a closure. The abstraction is primarily motivated for safe

concurrent and distributed computing. For example, it can ensure that the closures shared between

two machines are serializable and there is no accidental capturing of non-serializable values from

the environment. Spores have more refined control on the capturing behaviors of closures, while

stoic functions can only be used to control the capturing of capabilities. Due to this restriction,

stoic functions are conceptually simpler and syntactically more succinct. We believe the two have

different usage: spores are more suitable for distributed and concurrent computing, while stoic

functions fit better for capability-based systems.

Marino and Millstein [2009] proposed a general effect system based on the idea effect systems as
privilege checking. For the example of checked exceptions, a try block grants the privilege canThrow

to the body of try, while a throw clause involves checking the privilege. The idea is in the same

spirit as effects as capabilities. They impose a set of monotonicity requirements on the externally

provided privilege discipline to guarantee type soundness. The proposed framework is more general

than ours in that it can be instantiated to control memory effects, ensure strong atomicity for

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

unrestricted (E, W, C)

affine (E, W) relevant (E, C)

linear (E)

ordered (none)

Fig. 5. Substructural type systems, exchange (E), weakening (W), contraction (C)

software transactional memory and etc. However, they do not propose a concept like stoic as we
do. Our work is more specific, and it covers more concrete topics like effect polymorphism and

effect masking.

5.3 Substructural types
The two function types in our system are reminiscent of two function types in one style of linear type

systems [Mazurak et al. 2010; Morris 2016; Wadler 1990]. In such linear type systems, there exists

two function types: linear function type and unrestricted function type. Unrestricted function types

exhibit similar capturing behaviors as stoic functions. For example, unrestricted functions cannot

capture linear functions nor variables of linear types. Besides the similarity in capturing control,

our system does not have restrictions on substructural properties, thus it is not a substructural type

system.

More generally, depending on whether the substructural properties hold or not in the type

system, type systems can be classified as in Figure 5 [Pierce 2005].

Our work shows that in the area unrestricted, there is an interesting system which exhibits similar

capturing behaviors as substructural type systems. This similarity is not superficial. For example,

the work by Morris [2016] is an important inspiration for us in our on-going work in developing a

type inference algorithm.

6 CONCLUSION
We propose stoic function as a useful abstraction for capability systems. We formalize the concept

in STLC with mutation, taking heap references as capabilities. We prove that stoic functions in that

setting enjoy non-interference of memory effects.

We show that our system supports a common form of effect-polymorphism without introducing

effect variables. The capability-way of thinking is what programmers already familiar with in daily

life, thus the cognitive load is low. The ability to embed non-stoic functions inside stoic functions

reduces the syntactic overhead to be only at the interface. Also, combining multiple effects is

easy as capabilities combine easily. Effect masking is supported automatically without any special

syntax nor typing rule. The effect system can be adopted incrementally. The benefits of usability

are achieved by sacrificing a little precision but not soundness of the effect systems (Section 4.1).

Future work. Norman Hardy, the designer of KeyKos, pointed to us the potential usage of stoic

functions to solve the confinement problem [Lampson 1973]. We want to explore the application

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Stoic: Effects as Capabilities 1:23

of stoic functions in safe and efficient operating systems without segregation based on virtual

memory, following the formal approach to OS design as in Hunt and Larus [2007]. The work in

this paper is based on the approach of foundational proof-carrying code [Appel and McAllester

2001], which makes the application in security promising.

Second, we are motivated to implement an effect system for Standard ML or OCaml. One

immediate challenge is to develop a type inference algorithm. The work by Morris [2016] is an

inspiration for us.

Third, we are working on an effect system for object-oriented languages that can control muta-

tional effects, non-determinism and input/output. There are more challenges in the OO setting,

including the support for read-only references, transitive object immutability, immutability poly-

morphism, inheritance, interfaces, inner classes and so on.

REFERENCES
Inc. Agorics. 1995. Joule: Distributed Application Foundations. (Dec. 1995). Retrieved February 8, 2017 from http:

//www.erights.org/history/joule/index.html

Amal Ahmed, Andrew W. Appel, and Roberto Virga. 2003. An indexed model of impredicative polymorphism and mutable

references. (2003).

Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Ph.D. Dissertation. Princeton University.

Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic
Methods in Programming 84, 1 (2015), 108–123.

Sylvan Clebsch, Sebastian Blessing, Sophia Drossopoulou, and Andrew McNeil. 2015. The Pony Language. (2015). Retrieved

February 8, 2017 from https://github.com/ponylang/ponyc

Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for multiprogrammed computations. Commun. ACM 9,

3 (1966), 143–155.

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about object capabilities with logical relations and

effect parametricity. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 147–162.
Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. 2008. Verified protection model of the seL4 microkernel. In

Working Conference on Verified Software: Theories, Tools, and Experiments. Springer, 99–114.
David K. Gifford and John M. Lucassen. 1986. Integrating functional and imperative programming. In Proceedings of the

1986 ACM Conference on LISP and Functional Programming. ACM, 28–38.

Norman Hardy. 1985. KeyKOS architecture. ACM SIGOPS Operating Systems Review 19, 4 (1985), 8–25.

Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the software stack. Operating Systems Review 41, 2 (2007),

37–49. https://doi.org/10.1145/1243418.1243424

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN Notices, Vol. 48. ACM, 145–158.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM, 207–220.

Butler W. Lampson. 1973. A note on the confinement problem. Commun. ACM 16, 10 (1973), 613–615.

John Launchbury and Simon L. Peyton Jones. 1994. Lazy functional state threads. In ACM SIGPLAN Notices, Vol. 29. ACM,

24–35.

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. 486–499. http:

//dl.acm.org/citation.cfm?id=3009872

Daan Leijn. 2017. The Koka Book. (2017). Retrieved February 4, 2018 from https://koka-lang.github.io/koka/doc/kokaspec.

html

Ben Lippmeier. 2010. Type inference and optimisation for an impure world. Ph.D. Dissertation. Australian National University.

John M. Lucassen and David K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 47–57.

Daniel Marino and Todd Millstein. 2009. A generic type-and-effect system. In Proceedings of the 4th international workshop
on Types in language design and implementation. ACM, 39–50.

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in System F. In Proceedings of the 5th
ACM SIGPLAN workshop on Types in Language Design and Implementation. ACM, 77–88.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

http://www.erights.org/history/joule/index.html
http://www.erights.org/history/joule/index.html
https://doi.org/10.1145/504709.504712
https://github.com/ponylang/ponyc
https://doi.org/10.1145/1243418.1243424
http://dl.acm.org/citation.cfm?id=3009872
http://dl.acm.org/citation.cfm?id=3009872
https://koka-lang.github.io/koka/doc/kokaspec.html
https://koka-lang.github.io/koka/doc/kokaspec.html

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: a type-based foundation for closures in the age of

concurrency and distribution. In ECOOP 2014–Object-Oriented Programming. Springer, 308–333.
Mark S. Miller. 1997. The E Language. (1997). Retrieved February 8, 2017 from http://www.erights.org/elang/index.html

Mark S. Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph.D.
Dissertation. Johns Hopkins University, Baltimore, Maryland, USA.

Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55–92.

J. Garrett Morris. 2016. The best of both worlds: linear functional programming without compromise. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016.
448–461. https://doi.org/10.1145/2951913.2951925

Sape J. Mullender and Andrew S. Tanenbaum. 1986. The design of a capability-based distributed operating system. Comput.
J. 29, 4 (1986), 289–299. https://doi.org/10.1093/comjnl/29.4.289

Toby C. Murray. 2010. Analysing the security properties of object-capability patterns. Ph.D. Dissertation. University of Oxford,

UK.

Martin Odersky. 2015. Scala — where it came from, where it is going. (2015). Retrieved February 8, 2017 from http:

//www.slideshare.net/Odersky/scala-days-san-francisco-45917092

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki. 2018. Simplicitly:

foundations and applications of implicit function types. PACMPL 2, POPL (2018), 42:1–42:29. https://doi.org/10.1145/

3158130

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone too far?

Affordable 2nd-class values for fun and (co-)effect. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, 234–251.

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Benjamin C. Pierce. 2005. Advanced topics in types and programming languages. MIT Press.

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In European Symposium on Programming. Springer,
80–94.

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional verification of object capability patterns.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 89.

Philip Wadler. 1990. Linear types can change the world. In IFIP TC, Vol. 2. 347–359.
Philip Wadler and Peter Thiemann. 2003. The marriage of effects and monads. ACM Transactions on Computational Logic

(TOCL) 4, 1 (2003), 1–32.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

http://www.erights.org/elang/index.html
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1093/comjnl/29.4.289
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130

	Abstract
	1 Introduction
	2 Effects as Capabilities
	2.1 Stoic and Free Functions
	2.2 Effect Polymorphism
	2.3 Effect Propagation
	2.4 Combining Effects
	2.5 Incremental Adoption

	3 Calculus
	3.1 Definition
	3.2 Semantic Typing
	3.3 Basic Lemmas
	3.4 Proof of Typing Rules

	4 Properties and Extensions
	4.1 Effect Polymorphism
	4.2 Mutational Effects and Effect Masking
	4.3 Checked Exceptions
	4.4 Parametric Polymorphism

	5 Related Work
	5.1 Capabilities
	5.2 Checking Effects
	5.3 Substructural types

	6 Conclusion
	References

