PLEASE SEND THIS TO ALL YOUR CONTACTS, FORUNS. BLOGS, SITES





Evidences that GMOs seriously damage the health of Animals/Humans

Watch the excelent documentary "future of food" about GMO food:
http://video.google.com/videoplay?docid=6775597541955404580

* * *

Major incidents involving GM maize with Bt toxins:



Finally, we draw your attention to two incidents involving GM maize containing Bt toxins (from soil bacterium Bacillus thuringiensis). Only one case is under investigation by scientists. More info at: http://www.i-sis.org.uk/COAR.php

1- Syngenta's Bt176

Between 2001 and 2002, 12 dairy cows died on a farm in Woelfersheim in the state of Hesse in Germany after being fed Syngenta's Bt 176 maize; and other animals in the same herd had to be slaughtered on account of mysterious illnesses [12]. The Robert Koch Institute made little attempt to investigate the deaths and illnesses and the local district council in Giessen issued a statement in August 2003 stating that "the cause of incidents referred to could not be determined."

We pointed out [13] that Bt 176 suffers from the worst transgenic instability of all the transgenic lines examined recently by French and Belgian government scientists, who found that the company may also have misidentified or misreported the particular Cry1A protein present. Syngenta claims that the transgene in Bt176 is crylAb, but on analysis, the sequence of the transgene was 94% similar to a synthetic crylAc gene, and has only 65% homology with the native cry1Ab gene of Bacillus thuringiensis subsp kurstaki, from which it was supposed to have been derived.

This incident highlights the regulatory sham surrounding Bt crops [14, 15]. Bt toxins encompass a large superfamily of Cry proteins made by different strains of B. thuringiensis. The Bt transgenes incorporated into GM crops, however, are often synthesized in the laboratory, containing truncated (pre-activated) versions of the natural toxins (as in the case of Mon810) which means that they can harm non-target insects and other animals, or changes in amino acid sequences, or hybrid sequences of two or more Cry toxins, such that the toxicities to insect pests and other animals are totally unknown and untested. Yet, regulators have routinely accepted toxicity and allergenicity tests based on the natural toxins isolated from B. thuringiensis.

2- Mon810

Last year, scores of villagers in the south of the Philippines living near fields planted with Dekalb 818 YG - which turns out to be a hybrid between Mon810 and a locally adapted variety (Dekalb 818) - became ill when the maize started to flower. Dr. Terje Traavik, director of the Norwegian Institute of Gene Ecology, found antibodies reacting against the Bt toxin Cry1Ab, which is produced by Mon810, in the sera of 39 farmers who were affected. He reported this finding, along with other results of research in progress during a workshop preceding the Meeting of the Parties of the Cartagena Biosafety Protocol in Kuala Lumpur, Malaysia on 22 February 2004. He considered those results too important for public health to wait until the scientific reports appear in print after a lengthy "peer-review" process, and wanted to issue a timely warning to the delegates attending the official biosafety meeting

This provoked an immediate reaction from the pro-GM lobby, which has been running a campaign to discredit Traavik ever since. Traavik has reaffirmed his findings in answer to his critics [16]:

"We have used direct and inhibitory ELISAs (enzyme-linked immuno-sorbent assays) to demonstrate IgA, IgG and IgM antibodies specifically binding to Bt-toxin Cry1Ab in sera from Philippine farmers. A general interpretation would be that the farmers had been exposed, in an immunologically meaningful way, to Cry1Ab, or an antigen sharing epitopes with Cry1Ab, during the last 6-9 months before blood samples were taken. This might indicate coincidence in time between three observed events: the very first pollination season for Bt-transgenic maize, an outbreak of respiratory/intestinal disease among individuals living close to the Bt-maize field, and the production of serum antibodies. I strongly emphasized that the tests could not establish any cause-effect relationships between the 3 events, neither could the results preclude such relationships, and hence they might represent an early warning. As I said at the time, even if I had been able to prese nt the detection of specific anti-Cry1Ab IgE antibodies, my conclusions would have been the same."

The companies have repeatedly denied that Bt toxins are allergenic, but there are reports in scientific literature that Cry1Ac is a strong immunogen [17-19], and hence a potential allergen. Cry1Ac shares many Cry1A epitopes with CrylAb. Furthermore, as Travvik points out, "Bacillus thuringiensis spraying has elicited specific Cry1A antibodies in farm workers, within the same classes we detected, as well as allergy-related IgE antibodies. These findings were published already in 1999.." [20].

Recently, researchers in Japan's National Institutes of Animal Health, Food Research, and Livestock and Grassland Science found that Cry1Ab protein in GM maize Bt11 survives digestion in the gut of pigs [21, 22]. Its digestibility was estimated to be 92% by comparison with indigestible chromic oxide. Researchers from the Center for Genetic Engineering and Biotechnology in Havana Cuba had earlier identified 6 proteins in the brush border that bind specifically to Cry1Ac [23, 24], a toxin in the same family as Cry1Ab.

Conclusion
In conclusion, we consider the approval of NK603xMon810 and other GM maize mentioned, T25 and Bt176, to be a serious abuse of science in face of scientific and other evidence indicating that these GM crops pose serious health risks.

----
Dr. Mae-Wan Ho

Prof. Joe Cummins
Institute of Science in Society
And Independent Science Panel

More: http://www.i-sis.org.uk/COAR.php



From InfoNature.Org