


FlowCAP-II Summit 2011 
  
Sept 22-23, 2011 
NIH Campus, Bethesda, Maryland 
Natcher Auditorium (Balcony A & B). 
  
FlowCAP-II Summit 2011 will assemble the key stakeholders in field to present and discuss the results 
from the FlowCAP-II competition, and to discuss how automated methods are being used to address 
biological questions. The FlowCAP project (http://flowcap.flowsite.org/) was established to provide a 
mechanism to compare and contrast the utility of these novel computational approaches as applied to a 
common set of reference datasets. 
  
The objectives of this two-day workshop are to: 

·     Allow developers of novel computational algorithms to describe their methods and present the 
results from their initial analysis of the seven FlowCAP -2 Challenges 

·     Allow key representatives of the flow cytometry user community to review and critique the results; 
·      Discuss how the new computational methods could be improved to meet the needs of the user 

community; 
·    Discuss opportunities for additional analytical solutions to solve problems for other data related to 

flow cytometry. 
  

Day 1: 
  
8:30 Meet and greet (light refreshments provided) 
9:00 Call to order - (Ryan Brinkman)  
9:10 Welcome address (DAIT representative) 
 
Session 1 – Informatics Challenges in Flow Cytometry 
This session will explore some of the current challenges faced by the flow cytometry community in 
analyzing flow cytometry data, including rare population detection, assessment of cellular activation 
responses, evaluation of disease states, therapeutic responses and longitudinal analysis of temporal 
changes. 
  
 
9:30 Informatics Challenges in High Throughput Flow Cytometry - 
 I - FITMaN/HIPC Standardization of Immunophenotyping (McCoy, J. Philip (NIH/NHLBI)) 
 II - TBA (Deborah Phippard - ITN) 
 
Session 2  FlowCAP-II Challenges & Results 
  
Talks by data providers discussing the datasets, their evaluation criteria and results (FlowCAP-CC). Each 
challenge and its results will be discussed in turn, with added discussion at end. We hope the participants 
will discuss features they used to discriminate between groups to perhaps help us understand potential 
batch effect issues.  
 
10:30   Challenge 1 - HIV-Exposed-Uninfected (HEU) versus Un-exposed (UE) 
 
The goal of this challenge was to find cell populations that can be used to discriminate between HEU (n = 
20) and UE (n = 24) infants. Blood samples were taken at 6 months after birth and were left unstimulated 
(for control) or stimulated with 6 Toll-like receptor molecules.  
 
Dataset description and analysis results: Nima Aghaeepour 
 



11:10 Break 
 
11:20 Challenge 2: Acute Myeloid Leukaemia 
 
The goal of this challenge was to find cell populations that can be used to discriminate  between  AML 
positive  (n  = 43) and  healthy  donor  (n  = 316) patients. Peripheral blood or bone marrow aspirate 
samples  were collected over a 1 year period  using  8 tubes (tube #1 is an isotype control and #8 is 
unstained)  with  different  marker  combinations.   
 
Dataset description and challenge: Wade Rogers 
Analysis 1 (FlowCAP) - Nima Aghaeepour 
Analysis 2 (DREAM Initiative) - Raquel Norel 
 
12:30  Lunch (on your own) 
 
1:30 Challenge 3 - Intracellular Cytokine Staining of Post-HIV Vaccine Antigen Stimulated T-cells 
 
3A Identification of Antigen Stimulation Group 
 
The goal of this challenge was to correctly label the antigen stimulation group of post-HIV vaccine T-
cells. The data  set contains  samples  from 48 individuals  (column  ”pub-id” in the metadata).   Each 
individual received an experimental  HIV  vaccine.   Samples were collected approximately 10 months 
later and T-cells challenged  with  two antigens  (ENV-1-PTEG and  GAG-1-PTEG, column  ”antigen”   in  
the  meta- data). The response of CD4+ and CD8+ T-cells was measured by flow cytometry for each of 
these groups. The cells were found to respond differently to the two antigen stimulations.  
 
3B Identification of Responders and Non-Responders in Intracellular Cytokine Staining of Post-HIV 
Vaccine Antigen Stimulated T-cells 
 
The dataset is identical to challenge 3A. However, the goal is to use automated methods to identify 
responders and non-responders  to the antigen stimulations, as defined by manual analysis. Important to 
this challenge are additional positive controls for each sample,  in which  positive  staining  cells can  be 
detected  for each cytokine following stimulation with an antigen that is  known to produce a cytokine 
response. Also provided is a matched negative control, where the sample was not challenged with 
antigen. This negative control is used as a patient-matched baseline. The goal of this challenge was to 
identify each sample as either a responder or non-responder to the antigen stimulation.  
 
Dataset and analysis: Raphael Gottardo 
 
2:15 Challenge 4: Multiple Sclerosis Treatment 
 
The goals of this challenge were to i) recapitulate the results of expert manual gating using automated 
algorithms and  ii) to find cell populations that correlate with treatment arms between healthy controls, 
multiple sclerosis patients treated with Copaxone and multiple sclerosis patients treated with  interferon 
beta.  Peripheral blood mononuclear  cells were isolated from blood specimens taken before (t0) and 4 
hr, 12 hr, 24 hr and 72 hr after the initiation of treatment.  Samples were stained with an 8-marker T cell 
reagent panel.  Data  was collected on a viable lymphocyte  gate  based on FSC/SSC, with 100,000 
gated events collected/sample. 
 
Dataset and analysis: Richard Scheuermann 



2:35 Challenge 5: Omalizumab and Rush Immunotherapy 
 
The goal of this challenge was to find cell populations that correlate with treatment arms between 
placebo, omalizumab  alone, rush immunotherapy alone, and the combination of omalizumab and rush 
immunotherapy (see Casale  TB,  et  al., J Allergy Clin Immunol 2006;117:134-40 and  Casale  TB,  et 
al., J Allergy Clin Immunol  2007;120:688-95 for experiment design details and outcome results). 
Peripheral blood mononuclear cells were isolated from blood specimens taken before and after treatment 
at various timepoints. Samples were stained with 7 different 4-marker reagent panels. 
 
Dataset and analysis: Richard Scheuermann 
 
3:00 Coffee &snacks 
 
3:15 Challenge 6: Stimulation of Influenza-specific cytokine-expressing T cells 
The goal of this challenge was to identify rare populations (e.g. 25 cells per million) that are induced by 
influenza antigen stimulation of PBMC.  Human PBMC were incubated in triplicate with pools of influenza 
peptides (G1 to G6), DMSO control medium, tetanus peptides and Staph Enterotoxin B (SEB).  After 10 
hours, cells were stained with a panel of antibodies specific for surface antigens and cytokines, then 
fixed and analyzed. Algorithms were to identify the rare cytokine-secreting activated T cell populations 
that are induced by influenza and tetanus antigen stimulation.   
 
Dataset and analysis: Tim Mosmann 
 
 
3:35 Challenge 7: Dilution of activated cells in control populations. 
The goal of this challenge was to determine the sensitivity with which your algorithm can identify SEB 
activated T cell populations.  Human PBMC were incubated with control medium, or SEB. After 10 hours, 
cells were stained with a panel of antibodies specific for surface antigens and cytokines,   fixed   and  
analyzed. Stimulated  and  unstimulated  cell  populations  were  then combined electronically in different 
ratios. Participants identified the activated T cell populations that are induced by SEB stimulation, 
analyzing each sample independently. 
 
Session 3(1) – New Algorithms for FCM Analysis and their application 
to FlowCAP-II 
This session will include presentations from those groups who have developed novel methods for FCM 
data processing and analysis not presented in FlowCAP-I and groups that have developed significant 
modifications to previous methods that have resulted in substantial improvements. Each presentation will 
be 15 minutes plus time for short questions, with a longer Q&A session at the end.  
 
4:00 Phenotyping (flowType) and Robust Feature Selection (FeaLect) for Flow Cytometry Data - Nima 
Aghaeepour 
 
4:20 FIND: A new software tool and development platform for enhanced multicolor flow analysis - Shareef 
M. Dabdoub 
 
4:40 Analysing Flow Cytometry ICS Data Using a BioConductor Pipeline - Mike Jiang 
 
5:00 Wrap up - Scientific Session  Day 1 
 
6:30 Dinner (not subsidized) - Meet in DoubleTree Inn (Bethesda) Lobby to head out for group dinner 
  



Day 2 
 
8:30 Meet and greet (light refreshments provided) 
8:55 Call to order - (Ryan Brinkman)  
  

Session 3(2) – New Algorithms for FCM Analysis and their application 
to FlowCAP-II 
 
9:00 flowBin: A Complete Pipeline for Feature Extraction and Classification of Multi-tube Flow Cytometry 
Data - Kieran O’Neill 
 
9:20 Automated identification of cell population changes using cross-sample comparison with FLOCK - 
Yu Qian 
 
9:40 Extracting a cellular hierarchy from high-dimensional single-cell data - Peng Qiu 
 
10:00 Automated Identification of Differential Signatures in Cellular Populations - Robert Bruggner 
 
10:20 Applying K-means (or flowPeaks) and Support vector machines to the sample classification 
problem using the flow cytometry data - Yongchao Ge 
 
10:40 flowMatch:A tool to create feature--�preserving templates by population matching - Ariful Azad 
 
11:00 Break  
 

Session 4 – Future of Flow Informatics 
 
11:10 FlowCAP-1 Results & Discussion (Richard Scheuerman)  
 
12:00 FlowCAP Future: An open session dedicated to the review of the state-of-the-art, planning of 
FlowCAP-III, etc. 
 
1:00 Meeting ends 
  
  
 
FlowCAP is supported by grants from the NIH/NIAID and NIB (EB008400) 
  
 



Phenotyping (flowType) and Robust Feature Selection (FeaLect) for Flow 
Cytometry Data 
 
Nima Aghaeepour, Habil Zare, and Ryan Brinkman 
 
We have prepared two sets of results for challenges 1, 2, and 3(a): flowType: This 
pipeline uses the  flowMeans algorithm for cell population identification [1]. Briefly, 
flowMeans identifies a large number of clusters in the data and merges them based on the 
Mahalanobis distance between them until the desired number of clusters is reached. For 
each of the markers in a given dataset, flowMeans was used to identify a partition that 
divides the cells into a positive and a negative population. This is based on the 
assumption that the cells either express a given marker or not (i.e., there are two distinct 
cell populations). For N markers this results in 2^N phenotypes. To allow exclusion of 
markers from population identification (which later enabled us to identify the “important” 
markers), each marker was also allowed to be “neutral” (i.e., that marker was excluded 
from the clustering); thus, for any single subset, each marker could be negative, positive, 
or neutral (ignored). This increases the number of cell populations to 3^N. These 
phenotypes are then evaluated using ROC analysis, t-test with Bonferroni correction, and 
bootstrapping-based sensitivity analysis. These tests result in a hit list of "statistically 
significant" features (with the exception of the HEUvsUE challenge were non of the 
phenotypes remained significant after p-value correction). These phenotypes are then 
divided to several groups, based on the Pearson correlation between them and the 
markers required for defining the phenotypes in each group are identified. The final 
representative phenotype with maximum area under the ROC on the training set is used 
to label the samples in the test set. A more detailed description of the pipeline is available 
elsewhere[2]. The flowType R package is available through Bioconductor. 
 
FeaLect: This pipeline builds a multivariate model using the phenotypes measures by 
flowType. A bagging technique is used to score the features for the linear classifier. 
Robustness of the model is measured by both cross-validation and holdout-validation on 
the training-set. The model is then used to label the samples in the test-set. A more 
detailed description of FeaLect is available elsewhere[3,4]. The FeaLect R package is 
available through CRAN. 
 
[1] Nima Aghaeepour, Radina Nikolic, Holger Hoos, and Ryan Brinkman. rapid cell 
population identification in flow cytometry data. Cytometry Part A, 79(1):6–13, 2011. 
 
[2] Nima Aghaeepour, Pratip K. Chattopadhyay, Anuradha Ganesan, Kieran O’Neill, 
Tess M. Brodie, Habil Zare, John R. Mascola, Adrin Jalali, Armstrong Murira, Celsa A. 
Spina, Jamie Scott, Holger H. Hoos, Nelson Michael, Ryan R. Brinkman, and Mario 
Roederer. Early immunologic correlates of hiv protection can be identified from 
computational analysis of complex multivariate t-cell flow cytometry assays. Status: 
Manuscript circulated to co-authors. 
 
[3] Habil Zare, Ali Bashashati, Josef Connors, Nima Aghaeepour, Arvind Gupta, Randy 
Gascoyne, Ryan Brinkman, and Andrew Weng. Automated analysis of multidimensional 



flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and 
small lymphocytic lymphoma, American Journal of Clinical Pathology, 2011. 
   
[4] Habil Zare, Gholamreza Haffari, Andrew Weng, Randy Gascoyne, Arvind Gupta, 
Ryan Brinkman, Statistical analysis of overfitting features. Status: manuscript in 
preparation. 



FIND: A new software tool and development platform for enhanced multicolor flow 
analysis 
 
Shareef M. Dabdoub1,2, William C. Ray1,2, Sheryl S. Justice2 
1 The Ohio State University Biophysics Program 
2 The Research Institute at Nationwide Children’s Hospital 
  
Flow Cytometry is a process by which cells, and other microscopic particles, can be 
identified, counted, and sorted mechanically through the use of hydrodynamic pressure 
and laser-activated fluorescence labeling. As immunostained cells pass individually 
through the flow chamber of the instrument, laser pulses cause fluorescence emissions 
that are recorded digitally for later analysis as multidimensional vectors.  
 
Most widely adopted analysis software limits users to manual separation of events based 
on visualization of two or three dimensions. While this may be adequate for experiments 
using four or fewer colors, advances have lead to laser flow cytometers capable of 
recording 24 different colors.  In addition, mass-spectrometry based machines capable of 
recording at least 100 separate channels are being developed. Analysis of such high-
dimensional data by visual exploration alone can be error-prone and susceptible to 
unnecessary bias. The last few decades have seen a good deal of research activity into 
creating new tools and adapting existing algorithms for automated group classification of 
multi-dimensional data. However, the majority of this research has not been made 
available to users through widely adopted analysis software packages and, as such, are 
not in common use. 
  
Here we present a new software application for analysis of multi-color flow cytometry 
data. The main goals of this effort are to provide a user-friendly tool for automated gating 
(classification) of multi-color data as well as a platform for development and 
dissemination of new analysis and visualization tools. With this software, users can easily 
load single or multiple data sets, perform automated event classification, and compare 
results between experiments. We also make available a simple plugin system that allows 
researchers to implement and share their data analysis and classification algorithms. This 
will greatly reduce development time as well as provide a common platform for 
distribution of new techniques to flow cytometry users around the world. 



Analysing Flow Cytometry ICS Data Using a BioConductor Pipeline. 

Mike Jiang, Greg Finak, Raphael Gottardo 

We applied existing BioConductor packages for flow cytometry data analysis to gate and 
analyze an intracellular cytokine staining assay of T-cells from HIV-vaccinated 
individuals, (challenge three of flowCAP II). The goals of the challenge were two-fold: a) 
predict the antigen stimulation group of each sample, b) identify whether the CD4 and 
CD8 T-cell subpopulations for each subject were responders or non-responders to each 
stimulation. Using the flowStats and flowCore packages, we applied a knowledge-driven 
gating approach and a new sequential normalization strategy by alternately gating and 
normalizing subpopulations to identify cytokine-positive, CD4 and CD8 T-cells in each 
sample. Normalization allowed us to use a common set of gates for each subject across 
stimulations, whereas cytokines were gated in a sample-specific manner to account for 
variation in the peak width of the cytokine-negative population. For the classification 
challenge, the negative control was used to compute the background adjusted proportion 
of cytokine positive cells for each subject, and a decision tree classifier was trained using 
the marginal cytokine features, under 10-fold cross validation. For the responder / non-
responder calls, we fit a Beta-Binomial model to the raw cytokine-positive counts of 
stimulated and unstimulated samples, then estimated the posterior probability that the 
proportion of cytokine positive cells for the stimulated sample is larger than the 
proportion of cytokine positive cells for the unstimulated sample. The training data were 
used to calibrate these probabilities in a decision tree classifier. 



flowBin: A Complete Pipeline for Feature Extraction and Classification of Multi-
tube Flow Cytometry Data 
 
Kieran O’Neill1;2 and Ryan Brinkman1;3 
1 Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada 
2 Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada 
3 Department of Medical Genetics, University of British Columbia, Vancouver, BC, 
Canada 
 

Multiplexing flow cytometry experiments across tubes containing different 
combinations of markers is a common solution to the problem of measuring the 
expression of more markers than a particular flow cytometer can handle in one run. Data 
from such experiments produces unique challenges, particularly for cross centre and 
retrospective analysis, since markers are often assayed in different combinations. 

One solution is Pedreira et al’s method of combining tubes via K-nearest 
neighbours (KNN) applied across parameters shared by all tubes, to create a very high-
dimensional single file.[2] However, this method implies imputation, and can lead to 
spurious artificial populations.[1] To solve this problem, we instead binned data using 
overfitted K-means clustering in the shared parameters, and mapped these bins across 
tubes using KNN. We then extracted summary statistics (e.g., median fluorescence 
intensity) for each bin in terms of each parameter. Although this approach involved some 
data reduction, it avoided imputation. 

Binning within patients raised the problem of linking features across patients for 
classification. To solve this, we took each bin from each sample as a separate training 
instance, labelled with the sample label, and then trained a support vector machine 
(SVM) classifier. For class prediction, we took the majority vote of the predicted labels 
for a given sample’s bins. Classification with parameter optimization and cross-validation 
was implemented using the ksvm R package, but could in theory be made to work with 
any modern classification method. 
 
References 
[1] G. Lee, W. Finn, and C. Scott. Statistical file matching of flow cytometry data. 
Journal of Biomedical Informatics, 44(4):663–676, 2011. 
[2] C E Pedreira, E S Costa, S Barrena, Q Lecrevisse, J Almeida, J J M van Dongen, and 
A Orfao. Generation of flow cytometry data files with a potentially infinite number of 
dimensions. Cytometry Part A, 73(9):834–846, 2008. 
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Automated identification of cell population changes using cross-sample comparison 
with FLOCK 
 
Yu Qian1, 2, John Campbell3, Yue Liu3, Megan Kong2, and Richard H. Scheuermann*1, 2 
1Division of Biomedical Informatics, 2Department of Pathology, University of Texas 
Southwestern Medical Center, Dallas, TX 75390, USA  
3Health Information Systems, Northrop Grumman, Inc., Rockville, MD 20850, USA 
 
Multi-dimensional flow cytometry (FCM) brings in challenges not only in identifying 
individual cell populations but also with population mapping and interpretation across 
different samples and treatment groups. FLOCK (Flow Clustering without K) is an 
automated software system we have developed for the identification of cell populations 
from multi-dimensional FCM data [Qian 2010], which has been made publicly available 
at the Immunology Database and Analysis Portal - ImmPort (http://www.immport.org).  
This presentation will focus on the design of a general cross-sample comparison method 
and how this method can be used with FLOCK to map populations and detect their 
changes across different samples. Based on population characteristics identified by 
FLOCK, we successfully model the similarity between populations across different 
samples using F-measure. Then a novel relative distance model is proposed to capture the 
position pattern and relative order of cell populations, so that their slight shifts between 
different samples could not affect the mapping. A meta-clustering of cell populations is 
performed based on their relative distances to identify whether a population in one 
sample can be found in another sample or it is a new population. When the number of 
samples is large, the meta-clustering is done incrementally and the problem is converted 
to a constrained maximum bipartite matching problem which can be efficiently solved by 
existing graph algorithms. The proposed method is general and can be combined with 
other existing automated population identification methods to map populations across 
samples. This presentation will also briefly discuss a semi-supervised approach to encode 
user knowledge to assist population interpretation and identify rare populations. Results 
we generated based on FlowCAP2 datasets will be demonstrated and discussed. 
 
Supported by U.S. NIAID Bioinformatics Integration Support Contract (N01-AI40076) 
 
References: 
Qian, Y., Wei, C., Eun-Hyung Lee, F., Campbell, J., Halliley, J., Lee, J. A., Cai, J., Kong, 
Y. M., Sadat, E., Thomson, E., Dunn, P., Seegmiller, A. C., Karandikar, N. J., Tipton, C. 
M., Mosmann, T., Sanz, I. and Scheuermann, R. H. (2010), Elucidation of seventeen 
human peripheral blood B-cell subsets and quantification of the tetanus response using a 
density-based method for the automated identification of cell populations in 
multidimensional flow cytometry data. Cytometry Part B: Clinical Cytometry, 78B: S69–
S82. doi: 10.1002/cyto.b.20554 
 



Extracting a cellular hierarchy from high-dimensional single-cell data 
Peng Qiu1, Erin F. Simonds2, Sean C. Bendall2, Kenneth D. Gibbs Jr.2, Michael D. 
Linderman3, Karen Sachs2, Garry P. Nolan2, Sylvia K. Plevritis4 
1Department of Bioinformatics and Computational Biology, University of Texas M.D. 
Anderson Cancer Center; 2Department of Microbiology and Immunology, 3Computer 
Systems Laboratory, 4Department of Radiology, Stanford University 

 
Flow cytometry and the next-generation mass cytometry technologies capture the 
heterogeneity of biological systems by providing multiparametric measurements of single 
cells. Even as cytometry technology is rapidly advancing, methods for analyzing this 
complex data lag behind. Traditional flow cytometry analysis is often a subjective and 
labor-intensive process that requires users’ deep understanding of the cellular phenotypes 
underlying the data. Furthermore, the advent of mass cytometry is quickly increasing the 
dimensionality of the data, making the traditional analysis approaches a critical 
bottleneck. To objectively explore the richness of such high-dimensional single-cell data, 
new computational methods are needed. 
We present a novel analytical approach, Spanning-tree Progression Analysis of Density-
normalized Events (SPADE), to explore high-dimensional cytometry data in a robust and 
unsupervised manner, and reveal a likely underlying cellular hierarchy. Briefly, SPADE 
views a cytometry dataset as a high-dimensional point cloud of cells, and uses topological 
methods to reveal the geometry of the cloud. We applied SPADE to an 8-parameter flow 
cytometry dataset of normal mouse bone marrow, and a 31-parameter mass cytometry 
dataset of normal human bone marrow. In both datasets, SPADE detected a hierarchy 
which recapitulates well-described patterns of hematopoiesis.  
SPADE is a versatile tool for cytometric data analysis, facilitating identification of 
cellular hierarchy, identification of rare cell types, and automated comparison of 
functional markers that enables new biology discoveries.  



FlowCAP Methods 
 
Maria Chikina 
 

The method is based on computing 2D histograms of all possible pairs of stains 
(forward and side scatter were ignored.). Each feature in the dataset represents the 
proportion of cells that fall into a specific bin on a 2 dimensional scatter plot. The bin 
width was set to 0.1 and bins spanned the full range of data in each dimension.  

The resulting features were used for classification with SVMstruct [1] using 
precision-recall break-even point as the loss function. The tradeoff constant was 
empirically optimized over the range of 10-5 to 103. The number of cross-validation trials 
was 50 for the AML challenge and 22 for the HIV challenge (in this case this represents 
leave-one-out cross-validation). Classifications of unlabeled results were obtained from 
all cross-validation models and the results were averaged to produce final classification 
values. As SVM produces continuous classification values a threshold was chosen to 
achieve best classification accuracy on held out examples. 
 
References 
[1] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine 
learning for interdependent and structured output spaces. 
In Intl Conf. on Machine Learning, 2004. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 Automated Identification of Differential Signatures in Cellular Populations  
Authors:  
 Robert Bruggner (presenting), Rachel Finck, Robin Jia, Noah Zimmerman, 
Michael Linderman, David Dill, Garry Nolan 
Abstract:  
          Nuanced behavior of phenotypically distinct cellular populations plays a 
critical role in both immune response to and development of cellular diseases 
(i.e. cancer). Furthermore, recent work has highlighted the utility of subpopulation 
profiling in patient prÍognosis. Accordingly, the ability to discern and identify 
condition-relevant populations can potentially play a critical role in disease 
diagnosis and treatment. To facilitate analysis of complex mixtures of cells, 
instrumentation technologies such as flow cytometry have emerged that enable 
high-throughput, simultaneous measurement of intra- and extra-cellular 
molecules within a single cell. However, the high-dimensionality of such data 
coupled with normal biological variation make comprehensive manual 
identification of phenotype-relevant subpopulations unfeasible. 
           Recent work on cell population-finding algorithms has enabled automated 
identification of clusters of cells in multidimensional space. We utilize these 
algorithms in conjunction with supervised learning models and present here a 
method for automated discovery of differential cell populations. Given multiple 
samples from patients belonging to two or more phenotypic classes, we 
automatically identify sub-populations of cells within each sample, extract meta-
features describing each population, and train a supervised classifier for 
identification of a sample class. It follows that the stratifying features of a 
successful classifier correspond to class-differentiating populations. We 
demonstrate our method to by identifying differential populations in the blood of 
HIV patients challenged with two different antigens. 
           As technologies such as mass cytometry continue to increase the number 
of simultaneous measurements per cell, automated approaches such as the one 
described here will play a crucial role in the unbiased discovery and identification 
of populations involved in both disease mechanism and response. 
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