
Revision 1.0.0: Changes and Improvements

Contents

1: Introduction! 2

2: Upgrading FIGnition to firmware 1.0.0 on an AtMega328 FIGnition! 2

3: Upgrading FIGnition to firmware 1.0.0 on an AtMega168 FIGnition! 3

3.1: Requirements:! 3

3.2 Install the Migration Firmware! 3

3.3: Setting the Volume Level! 4

3.4: Performing the Migration! 6

3.5: Help! I’ve Bricked My FIGnition!! 7

4: Audio Data Transfer! 8

4.1: FIGgyTape! 8

4.2: Loading Programs and Data Into FIGnition! 10

4.3: Saving Source code and Data from a FIGnition! 12

4.4: Upgrading the firmware on an AtMega168 FIGnition via Audio! 13

4.5: Command Line And Kern reference.! 14

4.6: Technical: FIGgyAudio format! 16

4.7: Technical: Writing Your Own Audio Data Transfer Code! 20

5: FIGnition Floating-Point Arithmetic! 22

5.1: Command Reference.! 25

5.2: Technical: FIGnition FP Format and Performance! 27

6: System Modifications! 28

6.1: SysVars and User variables Changes! 28

6.2: Software Serial Out Change! 29

6.3: Flash Disk Searching.! 30

6.4: FIGgyPad interrupts! 30

1: Introduction
Revision 1.0.0 of the FIGnition firmware fulfills the long-term objectives for FIGnition in-
cluding major improvements and a significant connectivity change. Briefly these are:

• Audio data transfer. Firmware 1.0.0 directly supports audio data transfer to and from
RAM and indirectly between external flash and audio as well as providing the ability to
upgrade via audio. Providing lossless audio formats are used, any loading function can
be achieved via any audio source, including mp3 players, computers, CD players (and
theoretically, obsolete cassette tapes).

• A java app called FIGgyTape exists for transferring program, data and firmware upgrade
files between FIGnition and a host computer.

• AtMega168 FIGnitions require a replacement bootloader from version 1.0.0. The ability
to upgrade and transfer data via USB will be lost, but the same functionality and more is
provided via audio. A special migration firmware image is required to upgrade to Firm-
ware 1.0.0.

• Floating-point arithmetic support. FIGnition now provides support for basic floating-point
arithmetic and conversions to and from text and to and from 32-bit integers.

• Additional 32-bit comparison and stack handling commands.

• A flkr video mode for audio data transfer.

• The Software Serial Out routine has been moved to Port D5.

• External Flash disk searching is as fast as earlier versions of FIGnition.

• A number of kern vectors have been added.

2: Upgrading FIGnition to firmware 1.0.0 on an AtMega328 FIGnition
This is done the same way as for previous upgrades, using USB. Use avrdude to down-
load the firmware image called FirmwareRev1_0_0PAL32.hex (or
FirmwareRev1_0_0NTSC32.hex for American users). The new audio features will be
available to AtMega328 owners and the USB bootloader will still be available and will be
the means for upgrading to future firmware revisions.

You have now migrated to Firmware 1.0.0 and can use all the new features :-)

3: Upgrading FIGnition to firmware 1.0.0 on an AtMega168 FIGnition
Upgrading to 1.0.0 (or later) on an AtMega168 FIGnition with earlier firmware is probably
the most challenging upgrade task you’ll have to face. The procedure should be realiable,
but it is possible for you to end up bricking your FIGnition, so take care!

3.1: Requirements:

• A FIGnition running any firmware from 0.5.1 onwards.
• The FIGnition must be either a FIGnition RevC or RevD with the audio add-on or a FIG-

nition RevE (a.k.a FIGnition FUZE or FIGnition inFUZE from RS components) or a FIGni-
tion FLINT with the audio add-on.

• A working external Flash chip (the Amic flash chip supplied with your FIGnition).
• A host computer with an audio jack output (can be Mac, PC or even a Sparc-based com-

puter with Java).
• The host computer must have the Java SE 1.5 or later run-time installed. Macintosh

computers are usually supplied with Java installed. Windows PCs can obtain the Java
run-time from:
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
. It is possible to obtain versions of Java for Linux from openJava.net:
http://openjdk.java.net

• A stereo to mono splitter. On my development Mac mini I required a stereo to dual mono
phono audio splitter in order to prevent periodic glitches in audio output. A mono jack to
phono converter would not work.

3.2 Install the Migration Firmware
From the Firmware 1.0.0 package, download FIGgyMigrationPAL.hex (or
FIGgyMigrationNTSC.hex for American users) via Avrdude1. This is a custom firmware im-
age and temporarily replaces your existing FIGnition firmware.

When the Migration firmware is installed, FIGnition reboots with the title message:

The first time you run the Migration firmware, you should Erase the external Flash hidden
region, which is a reserved area of at least 24Kb on the external Flash chip. Press ‘E’ and
FIGnition will ask for confirmation:

1 Guidelines on using avrdude can be found at:
https://sites.google.com/site/libby8dev/fignition/documentation/use-it#upgrading

Hit '!' to confirm
external Flash ROM area
erase.

You won’t erase any existing blocks you’ve used for saving data, it just clears the reserved
area. Press ‘!’. You should see the message:

Erasing: $20 (the page number will update quickly)

And after a short period:

Erasing: $70
Done, hit key.

Then FIGnition will return to the initial screen, but without providing the ‘E’ option:

FIGnition ROM Migrator

On FIGgyTape, choose
Special:Migrate & select
FIGnitionPAL.bin

Hit capital 'M' to begin
& on FIGgyTape, hit play.

At this point you should run the java program: FIGgyTape.jar, which can be executed
from the desktop or using the command line: java -jar FIGgyTape.jar . You will find that
on the latest versions of Mac OS X (and Windows?) the program cannot be run directly.
On a Mac you will need to hold the Ctrl key and choose open from the pop-up menu and
then confirm that you want to run the program.

When the program runs you’ll find it has a fairly crude interface:

You will need to quit or exit all programs on your computer that could generate sound. If
you’re reading these instructions from your web-browser; close all the tabs apart from this
one.

3.3: Setting the Volume Level
On FIGnition, press ‘M’ to begin Migration. The FIGnition flkr video mode will begin:

The relatively steady image shows that FIGnition isn’t yet receiving any audio data.

Despite the instructions, the first time you run Migrator you will need to set the correct vol-
ume level on the host computer. On FIGgyTape choose: Tone:Leader and a few seconds

later, press the button. A 2.7KHz tone should begin. Plug the phono plug into
the phono socket on FIGnition and the other end into the audio-out on your PC. You
should hear the sound stop when audio goes through to the FIGnition.

Adjust the volume level on FIGgyTape so that FIGnition reliably shows this kind of pattern:

On my Mac mini, setting the computer’s volume to maximum and the FIGgytape volume to
60 works well (this is the default setting).

When the volume level looks good, press the button and the FIGnition video
display should look pretty much like the initial flkr video mode.

You are now ready to migrate to the new FIGnition firmware.

3.4: Performing the Migration

As per the original Migration program instructions, choose Special:Migrate.. option and
then choose the file FirmwareRev1_0_0PAL.bin (or FirmwareRev1_0_0NTSC.bin for Ameri-
can users). After a few seconds FIGgyTape should have processed the data in the file and
it will be ready to play.

Press . FIGnition’s flkr video should start to read the leader tone and then
start to look like this kind of pattern:

You can see how the 0s and 1s affect it as FIGnition loads all the data in the new firmware
Rev1_0_0 image. After another 30s or so, the download should be complete. Press

 on FIGgyTape at the end.

If any audio had been downloaded incorrectly, you will see a message like:

$0a/$40 pages downloaded
wrongly.
Press any key to retry.

Press any key and the Migrator will start again with the message:

On FIGgyTape, choose
Special:Migrate & select
FIGnitionPAL.bin

Hit capital 'M' to begin
& on FIGgyTape, hit play.

Whenever you need to upgrade to a new version of the FIGnition ROM you should start by
erasing the external Flash ROM area (the upgrader also gives you this option) and then
make repeated attempts to download the firmware. Sometimes waiting for a couple of
seconds at the beginning of playback and then hitting pause on FIGgyTape before resum-
ing can help (this I think is a glitch with FIGgyTape).

If the firmware was downloaded correctly, FIGnition should display the message:

FIGnition 1.0.0 firmware
download OK!
To complete the migration
the bootloader must be
overwritten. Press
Capital 'B' to overwrite
the bootloader or 'q' to
quit.

It should now be safe to complete the migration. If you press ‘B’ FIGnition will then ask you
to confirm by pressing ‘!’ .

Press ‘!’. The screen will turn off; the FIGnition LED will flicker or just display fairly faintly
for a few seconds and then FIGnition will automatically reboot with the message:

You have now safely migrated to Firmware 1.0.0 and can use all the new features :-)

3.5: Help! I’ve Bricked My FIGnition!
It’s pretty unlikely you will brick your FIGnition: the migration application checks that all
pages have been downloaded correctly as they are downloaded and then checks again
that all the new firmware on the external flash has CRC checking codes that match the set
of CRC checking codes calculated by FIGgyTape and specially downloaded after the firm-
ware image itself.

So, there are two levels of checking: you should not brick your FIGnition! Nevertheless, it
may be possible.

There are four obvious solutions to this. Firstly, check the FIGnition Google group and
search for the topic “Migration, Bricked FIGnition”. You might find that you haven’t really
Bricked your FIGnition or that another suitable solution can be found there.

Alternatively, if you have an arduino or a spare FIGnition you can use it as an In-circuit Se-
rial Programmer to reprogram your FIGnition’s AVR chip from scratch. This is covered in
the FIGnition google group topic:

https://groups.google.com/forum/#!topic/fignition/9hi__dZIj0w

The third solution is to send the chip back to me along with a Paypal payment of £10 to
cover the cost of postage and my labour :-)

The fourth solution is to see if another FIGnition owner will do the same job (perhaps even
more cheaply :-)).

4: Audio Data Transfer
Here we cover the new audio data transfer commands ear and mic and how to use them
with the java application FIGgyTape. Firmware 1.0.0 can transfer binary programs directly
to and from RAM; can load and compile source code directly into RAM; can load and save
source code to and from external Flash storage and future upgrades can be performed
over audio too. In addition, you can execute command lines directly from FIGgyTape.

Finally, this section covers technical details on the audio format used by Firmware V1.0.0
(and later) as well as how to write your own audio data transfer code using the audio kern
vectors.

4.1: FIGgyTape
FIGgyTape is a small, cross-platform Java application that converts text or binary files into
.wav audio output in the FIGgyAudio format and can also convert FIGgyAudio format audio
input back into text or binary files. It’s available as part of the Firmware 1.0.0 distribution.

To use it you’ll need:

• A host computer with an audio jack output (can be Mac, PC or even a Sparc-based com-
puter with Java).

• The host computer must have the Java SE 1.5 or later run-time installed. Macintosh
computers are usually supplied with Java installed. Windows PCs can obtain the Java
run-time from:
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
. It is possible to obtain versions of Java for Linux from openJava.net:
http://openjdk.java.net

• A stereo to mono splitter. On my development Mac mini I required a stereo to dual mono
phono audio splitter in order to prevent periodic glitches in audio output. A mono jack to
phono converter would not work.

http://livepage.apple.com/
http://livepage.apple.com/
http://openjdk.java.net
http://openjdk.java.net

The application itself: FIGgyTape.jar, can be executed from the desktop or using the
command line: java -jar FIGgyTape.jar . You will find that on the latest versions of Mac
OS X (and Windows?) the program cannot be run directly. You will need to hold the Ctrl
key and choose open from the pop-up menu and then confirm that you want to run the
program.

When the program runs you’ll find it has a fairly crude interface:

When using FIGgyTape it is wise to quit or exit all programs on your computer that could
generate sound. If you’re reading these instructions from your web-browser; close all the
tabs apart from this one.

FIGgyTape supports the following UI features:
1. A slider for setting the audio level. I normally set the computer’s audio level to maxi-

mum and then the FIGgyTape audio slider provides the maximum range it can.
2. Some buttons for a tape transport: the Start, Rew, Fwd and End buttons currently do

nothing.
3. The play button. After a file (or a command line) has been processed into a FIGgyAudio

format; pressing play (or the space key) will output the audio and turn the play button
into Pause. Pressing pause will pause the audio, which is needed to transfer to exter-
nal Flash or perform an upgrade. Pressing the button again will resume playback.

4. The stop button. It’s possible to end playback or recordings by pressing the stop but-
ton. Pressing play afterwards currently will do nothing (you’ll need to choose another
file).

5. The Rec button. When transferring audio data from a FIGnition you’ll need to make
sure the audio connection goes from the FIGnition audio phono to the audio input on
the computer and then press the Rec button. FIGnition will begin to record audio at
16bits per sample at 44.1KHz.

6. A command line text box. You can type any command in here up to 80 characters and
FIGnition will convert it to FIGgyAudio format when you choose Debug:Cli.

FIGgyTape supports the following menu options:

1. File:New. Currently unimplemented.
2. File:Open.. This is used for processing .bin files. Choose a suitable file from the diolog

box and FIGgyTape will process it. Press the Play button for FIGgyTape to start playing
it.

3. File:Run.. This is used for downloading source code directly into RAM and compiling
it. Choose a suitable file from the dialog box and FIGgyTape will process it, generating
a section of audio for the command line which then loads in the source code. Press the
Play button for FIGgyTape to start playing it.

4. File:Flash.. This is used for downloading source code or binary flash blocks into ex-
ternal Flash. Choose a suitable file from the dialog box and FIGgyTape will process it,
generating a section of audio for the command line; another section for the Flash
loader itself and finally the data you want to download. Press the Play button for FIG-
gyTape to start playing it and pause when FIGnition tells you to pause the audio.

5. File:Upgrade.. This is used for upgrading to new firmware on an AtMega168 FIGni-
tion. Choose a suitable file from the dialog box and FIGgyTape will process it, generat-
ing a section of audio for the command line; another section for the upgrader program
itself and finally the new firmware image. Press the Play button for FIGgyTape to start
playing it and pause when FIGnition tells you to pause the audio.

6. File:Close. Currently unimplemented.
7. File:Save. This is used for saving binary or text files after you’ve recorded them on a

FIGnition. Choose a suitable name for the file from within the dialog box and save the
data.

8. Speed. These are sample-rate settings for data transfer. The default and only currently
tested rate is 11KHz.

9. Tone:Leader. This option is used for testing the correct volume level. Press type 6
ear <exe> on your FIGnition and then choose Tone:Leader. The flkr video image will
appear and you can adjust the volume as described in section 3.3 until the video image
looks like it should.

10. Tone:LeaderStart/LeaderByte and Saw. These were menu options used in develop-
ment and have no current purpose.

11. Tone:Cli. This converts a command line in the text box into FIGgyAudio format audio.
Press the Play button for FIGgyTape to start playing it.

12. Tone:Rec (pure Wav). This was a menu option used in development and has no cur-
rent purpose.

13. Debug:Log. This causes lots of extra processing information to be dumped in a file
called DebugLog.txt. It is for development purposes.

14. Special:Migrate. This is covered in sections 3.4.

4.2: Loading Programs and Data Into FIGnition
This section covers loading into RAM and also External Flash.

Forth Programs Directly To RAM: To load source code programs directly into RAM and
compile them: on your FIGnition type the command:

6 ear <exe>

Connect the audio phono cable to FIGnition’s audio socket and (via an audio splitter if
needed) to the computer’s audio out jack socket. Run the FIGgyTape java app.

If you haven’t done so already, you will need to make sure the volume level on FIGgyTape
is correct. See section 3.3.

When this is done, choose File:Run.. from FIGgyTape and then choose the .fth pro-
gram you wish to run. For most FIGnitions, this must be a .fth file less than 6Kb (and it
might need to be slightly different from the Flash version so that it doesn’t try to load and

compile itself from Flash). FIGgyTape will convert the file into the FIGgyAudio format.
Press play on FIGgyTape. FIGgyTape will transfer a command line first; the screen will
flash; and then after a few more seconds the Forth program will load and compile. If every-
thing loads correctly you’ll see quite a bit of gibberish on the FIGnition screen and after a
pause (while it compiles) you should see an “OK” message. Otherwise as soon as the
audio finishes you’ll see the error message:

Tape :-(

When the audio stops, press the Stop button on FIGgyTape.

Forth Programs To External Flash: To load source code programs into Flash requires
about 2Kb of free RAM on your FIGnition and is at least a two-step process. Files can be
downloaded onto FIGnition with multiple attempts. On your FIGnition type the command:

block 6 ear <exe> (e.g. 20 6 ear will load to block 20 onwards)

Connect the audio phono cable to FIGnition’s audio socket and (via an audio splitter if
needed) to the computer’s audio out jack socket. Run the FIGgyTape java app.

If you haven’t done so already, you will need to make sure the volume level on FIGgyTape
is correct. See section 3.3.

When this is done, choose File:Flash.. from FIGgyTape and then choose the file you
wish to transfer. FIGgyTape will convert the file into the FIGgyAudio format. Press play on
FIGgyTape and get ready to press pause. After a few seconds, FIGgytape will transfer a
command line; the screen will flash; and then after a few more seconds a Flash loader
program will load. If it loads OK, you’ll see the message of the form:

Pause tape to prep
10 blocks.

Appear on the screen and when the flash loader is ready you’ll see the message.

Hit key & start audio..

Press play on FIGgyTape to resume playback and after a few more seconds it will transfer
the file to external flash memory.

If everything loads correctly you’ll see quite a bit of gibberish on the FIGnition screen and
after a pause (while it compiles) you should see an “OK” message. If any error occurs dur-
ing the initial loading process you’ll see the error message:

Tape :-(

When the audio stops, press the Stop button on FIGgyTape. If a loading error occurs you
should re-attempt to download the file as described earlier.

At the end, the flashloader will have been deleted from RAM. If you downloaded a source
program you will be able to compile it by typing:

block load <exe>

And run it according to the instructions for the program.

Executing Forth command lines from FIGgytape: On your FIGnition type the command:

6 ear <exe>

Connect the audio phono cable to FIGnition’s audio socket and (via an audio splitter if
needed) to the computer’s audio out jack socket. Run the FIGgyTape java app.

When this is done, type the command line you want to execute into the edit box on FIGgy-
Tape and then choose Tone:Cli . The Command line will be transferred to FIGnition and
executed immediately (it can also overwrite the beginning of your program area too!).

4.3: Saving Source code and Data from a FIGnition
This section covers saving binary images directly from FIGnition and blocks of Forth code
from Flash.

Saving Binary Images From external RAM: To save a binary image from RAM type:

start end 6 mic fileName.bin” <exe>

For example, if you’re running a program called GiniSim to save it as binary, type:

$8000 here 6 mic GiniSim.bin” <exe>

FIGnition will display the message:

Start Rec, hit key.

Now make sure the audio cable connects the FIGnition Audio socket to the mic input on
your computer (with the mic level set to something fairly sensible). Press the Rec button
on FIGgyTape. After about 4 seconds finally press any key on FIGnition to start saving the
program.

The display should change to a flkr video image and you’ll see the data being saved on
the screen. The program should save pretty quickly (FIGnition Forth is quite compact).

When it’s finished FIGnition should display “OK”. Press the Stop button on FIGgytape and
after waiting for a little while, choose File:Save.. and save the program. If the file was
transferred correctly it should save OK with the same name as you gave it at the begin-
ning.

Saving Blocks of data From external Flash: To save blocks of data from external flash
you will first need to load in the program ExtFlashSave.fth into Flash as described in sec-
tion 4.2. Once this is done; compile the external Flash Save program into FIGnition by typ-
ing:

extFlashSaveBlockNumber load <exe>

When this is done the save” command is now available. Type:

blockStart blockCount 6 save” fileName.fth” <exe>

For example, to save a source code program called Luna that’s 7 blocks long starting at
block 113, type:

113 7 6 save” Luna.fth” <exe>

FIGnition will display the message:

Start Rec, hit key.

Now make sure the audio cable connects the FIGnition Audio socket to the mic input on
your computer (with the mic level set to something fairly sensible). Press the Rec button
on FIGgyTape. After about 4 seconds finally press any key on FIGnition to start saving the
program.

The display should change to a flkr video image and you’ll see the data being saved on
the screen. The program will take somewhat longer to save as it’s saving source code.

When it’s finished FIGnition should display “OK”. Press the Stop button on FIGgytape and
after waiting for a little while, choose File:Save.. and save the program. If the file was
transferred correctly it should save OK with the same name as you gave it at the begin-
ning.

4.4: Upgrading the firmware on an AtMega168 FIGnition via Audio
This section covers upgrading the firmware using Audio itself. It works in a similar way to
the migration program. It requires about 2.5Kb of free RAM on your FIGnition and is at
least a two-step process. Files can be downloaded onto FIGnition with multiple attempts.
On your FIGnition type the command:

6 ear <exe>

Connect the audio phono cable to FIGnition’s audio socket and (via an audio splitter if
needed) to the computer’s audio out jack socket. Run the FIGgyTape java app.

If you haven’t done so already, you will need to make sure the volume level on FIGgyTape
is correct. See section 3.3.

When this is done, choose File:Upgrade.. from FIGgyTape and then choose the new fir-
mare you wish to transfer - it will be a binary file and must be a firmware version later than
1.0.0.

FIGgyTape will convert the file into the FIGgyAudio format. Press play on FIGgyTape and
get ready to press pause. After a few seconds, FIGgytape will transfer a command line; the
screen will flash; and then after a few more seconds the upgrader program will load. If it
loads OK, you’ll see the message:

Pause tape.

Appear on the screen and when the upgrader is ready you’ll see the message:

Hit 'E' to erase, any
other key to upgrade.

As in section 3.2, you should press ‘E’ is you’re downloading a new version for the first
time and you’ll need to confirm by pressing ‘!’ (or ‘c’ to cancel). After an erase you’ll see the
message:

Done. Hit key to upgrade.

Press any key and then press play on FIGgyTape to resume playback. After a few more
seconds it will transfer the new firmware image to a special region on external Flash mem-
ory.

When the audio stops, press the Stop button on FIGgyTape, FIGnition will check that the
external Flash pages match the supplied check codes and then you’ll either see the suc-
cess message:

0 bad pages, done!
Reboot with SW1+SW3

Or an error message.

x bad pages, retry

You can re-attempt to download just the firmware again, by choosing
Special:Migrate..from the FIGgyTape program; pressing any key apart from ‘q’ on FIGni-
tion and then pressing the play button on FIGgyTape. The firmware upgrader will reload
blocks that failed to load the first time. This process can be repeated until the firmware fully
loads correctly and an OK message is displayed.

To complete the upgrade. Unplug your FIGnition; hold down SW1 and plug the USB cable
back in; press SW3, the LED should flicker and the firmware will be upgraded after a cou-
ple of seconds.

4.5: Command Line And Kern reference.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

Loading and Saving using audio

Note: dataRate governs the data transfer rate, theoretically they are as follows, but only rate 6 is currently supported.

6 is clk/64, 1Period=28 => 11.21KHz
5 is clk/64, 1Period=56 => 5.605KHz.
4 is clk/64, 1Period=113 => 2.808KHz.
3 is clk/8, 1Period=14 => 89.69KHz
2 is clk/8, 1Period=28 => 44.843KHz
1 is clk/8, 1Period=56 => 22.421KHz
0 is clk/8, 1Period=113 => 11.21KHz.

dataRate ear FIGnition loads the next block of data containing a
RAM header at the given dataRate.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

start end da-
taRate

mic FIGnition saves bytes start .. to end in external
RAM at the given dataRate.

Kern Vectors

The conventional way to define a kern command is:

: inline
 create -1 allot
 dup 256 < if c, else , then
 $80 latest lfa>ffa c!
; immediate

following kern vectors are supported:
11 kern inline VDskFind
12 kern inline crc
13 kern inline audioOutHeader
14 kern inline >tape
15 kern inline +tape>
16 kern inline -tape
17 kern inline tape>
18 kern inline />tape
19 kern inline packet

buff^ blk# VDskFind phys Searches for the Physical block corresponding to
logical block blk# and returns its value. The last
block on the Flash disk is returned if it cannot be
found. buff^ is the area in internal RAM to be used
as a buffer (usually vram is used).

data crc crc crc’ Calculates the next CCITT 16-bit CRC code given
the byte value data.

start len type
dataRate

au-
dioOutHeade
r

fileName” bias
packet

Used when saving data. Starts the leader tone and
displays the message “Start tape & press key”. Fills
in a header packet with the start and len entries.
Names the header packet fileName. Resets the
bias to 0 and returns the packet pointer.

bias src len >tape bias’ Sends len complete audio frames from internal
memory at src with an initial audio bias and returns
the final audio bias.

dataRate +tape> frame^ Takes FIGnition into flkr mode; sets up the packet
to work at dataRate; waits for a header packet to
be received and then returns a pointer to its audio
frame.

expectedPkts -tape Turns off flkr video and disables tape interrupts. If
expectedPkts doesn’t match the downloaded pack-
ets, generates a “Tape :-(“ error. Otherwise contin-
ues.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

blk tape> frame^ Reads in the next packet, update the loadmap for
the given blk and returns a pointer to its audio
frame or 0 if the packet’s crc didn’t match its data.

timerClk />tape Stops mic output interrupts and sets the timer 0 clk
rate.

packet packet^ Returns the internal RAM pointer to the tAudioPkt
used to manage Audio data transfer (see section
4.6).

4.6: Technical: FIGgyAudio format
Audio data transfer (historically cassette tape data transfer) is notoriously unreliable. The
FIGgyAudio format takes a number of steps to increase the reliablity:

• FIGgyAudio uses a zero-crossing technique which was found to be a relatively reliable
and amazingly simple method during the 1980s. Here the value of each bit of data is
conveyed by the time period between +1v to -1v voltage transitions on the audio line.

• FIGgyAudio uses a bit-biasing technique to keep the DC bias of data transitions to a
minimum.

• FIGgyAudio transmits data in 64b packets with CCITT 16-bit CRC codes at the end of
each packet. CRCs are an extremely reliable error checking technique compared with
simple checksums or one’s complement checking.

• FIGgyAudio can support scatter-loading so that load operations can be repeated and er-
roneous packets can be added if they are reloaded correctly.

As standard FIGgyAudio can run at between 5.6KBits/s and 11KBits/s making it substan-
tially faster than cassette transfer on home computers in the 80s and comparable with
USB transfer using FIGnition’s previous V-USB bootloader.

Transmitting Bits

In FIGgyAudio, all bits are transmitted as a time period between a transition from +1v on
the audio line to -1v on the line. At its standard data rate, a ‘1’ value is an 89.6µs period
between a transition and a ‘0’ value is a 179.2µs period between a transition.

The FIGnition audio hardware consists of a capacitor and pair of resistors. On the input
side, these act to roughly double the voltage transition so that a swing of +1v/-1v on the
audio cable can become as large as +2v/-2v, which makes it possible to correctly read the
transitions digitally.

Transmitting Bytes

A whole byte is transmitted as one or two ‘bias’ bits followed by 8 transitions representing
bits 7 to 0 of the byte.

Bias bits are used to keep the DC bias of the signal as close as possible to 0v. The capaci-
tor and resistors will naturally dissipate the energy from transitions over a short period of
time, but will keep some of the energy in the transitions for frequencies over 20Hz or so -
this is why the circuit would reproduce audio over the normal audible range.

Transmitted bytes on average should contain the same number of 0s and 1s, but over
shorter periods the transitions will generate effective frequencies much lower than the bit
rate. This will translate into a short-term (millisecond) bias on the input and reduce trans-
mission reliability (as the average voltage is pulled up or down).

However, by preceding a data byte with a single bias bit we will cause all the transitions to
be inverted, thus pulling down the bias voltage for the following byte and therefore increas-
ingly reliability. However, what if we don’t need to change the bias?

FIGgyAudio resolves this by either sending a pair of ‘1’s (which don’t change the bias for
the following byte because they invert the signal twice) or a single ‘0’ (which does change
the bias). The pair of ‘1’s take the same amount of time as a ‘0’, thus the bias transitions at
the beginning of each byte always take the same amount of time.

Note: on the decoding side, FIGnition doesn’t need to consider whether transitions have
been inverted by bias bits, because the bias bits themselves do the job of the inversion. It
simply treats them as bits as bit 8 or bits 8 and 9 of the byte (i.e. they end up being ig-
nored).

FIGgyAudio doesn’t transmit parity bits, error correction is at the frame level.

Transmitting Frames

FIGgyAudio transmits files as a set of audio frames. Each frame always consists of a
leader tone followed by 64 data bytes where the first data byte’s bias will always be a pair
of ‘1’s. Finally the frame is followed by a CCITT 16-bit CRC.

The leader tone is always at least 18 ‘0’ transitions. This is because it is impossible for this
sequence to occur as part of a the data part of the frame. Here’s why: a sequence of 9 ‘0’
bits means that the bias needed to be inverted (a ‘0’ bias) and then 8 ‘0’ bit values were
transmitted. Thus it is impossible for the next byte to contain a bias of 0 and 8 ‘0’ data bits,
because the 8 ‘0’ data bits don’t change the bias, and therefore would require a pair of ‘1’
bias bits. In practice over 24 ‘0’ transitions are used between frames.

A pair of ‘1’s therefore will unambiguously denote the beginning of a data packet.

The CCITT 16-bit CRC algorithm is a fast byte-parallel algorithm everyone should use.

 crc = (unsigned char)(crc >> 8) | (crc << 8);
 crc ^= byteValue;
 crc ^= (unsigned char)(crc & 0xff) >> 4;
 crc ^= (crc << 8) << 4;
 crc ^= ((crc & 0xff) << 4) << 1;

It computes a CRC in 16c and 13 instructions on an AtMega AVR. The CCITT algorithm
used here was first documented as a BSI standard algorithm for the 6800 microprocessor
in the 1970s; fell into disuse in the 90s and 2000s, but has recently become more popular.
The one used in FIGnition firmware 1.0.0 and later was adapted from:

http://embdev.net/articles/CRC-16-CCITT_in_AVR_Assembler

Transmitting Entire Files
FIGgyAudio transmits each file as a long leader tone of at least 3 seconds followed by a
header frame; followed immediately by all the data frames in the file.

The format of a header packet is:

typedef struct {
! byte fileType;
! ushort len;
! ushort start;
! byte fileName[32];
! byte unused[64-37];
} tFIGgyAudioHeader;

The currently defined fileTypes are:

typedef enum {
! kFIGgyAudioNone=0,
! kFIGGyAudioUpgrade=1,

http://embdev.net/articles/CRC-16-CCITT_in_AVR_Assembler
http://embdev.net/articles/CRC-16-CCITT_in_AVR_Assembler

! kFIGgyAudioRAM=2,
! kFIGgyAudioExtFlash=3
} tFIGgyAudioFileTypes;

The len field is the number of data frames in the file for RAM files (providing up to 4Mb),
but the number of flash blocks in the file for flash files (providing up to 32Mb).

The start field is the start address for RAM files (or 0 if the file should be loaded just un-
der top) and is meaningless for Flash files and Upgrade files (it is set to 0 by convention).

The fileName should be zero-terminated and limited to 32 characters though currently
there are no checks on this and the remaining bytes are undefined.

FIGnition Support For Non-RAM files

The current FIGnition firmware has no direct support for anything other than loading binary
files directly into RAM. This is due to a lack of firmware space. However, because the
command line can be overwritten and executed with this method it is possible to place ex-
ecutable Forth scripts into the command line which then ‘bootstrap’ other loading pro-
grams.

So, to load .fth source files directly into RAM we provide a command line which loads the
following file and then sets the Forth compiler to start executing it (which compiles it).

To load files into Flash we provide a command line which loads a program into RAM which
provides the means to load files into Flash.

Thus the process in either case is relatively simple for the user.

4.7: Technical: Writing Your Own Audio Data Transfer Code
Using the firmware kern vectors it is possible to write custom audio data transfer code. It is
possible to record audio data directly to a computer and be processed by FIGgyTape or
record directly onto an audio device for later translation or playback to a FIGnition. Custom
audio data transfer code is used to support saving and loading to external flash memory
as well as upgrading to new firmware images.

At the time of writing only data transfer to FIGgyTape has been tested. A FIGgyTape re-
cording is currently limited to 128Kb of transition data (i.e. a raw series of ‘0’ or ‘1’ transi-
tions).

Defining Kern Vectors. To use the kern vectors properly you’ll need to obtain access to
them. The complete set of kern vectors are defined in section 4.5, you don’t need all of
them.

Saving Data. Custom code for saving audio data should follow this kind of pattern:

start len type audioOutHeader (setup header & driver info & start leader tone)
1 >tape (send the header frame)
len 0 do
! (prepare x frames of data and store in internal RAM at addr)
! addr x >tape

loop
(drop temporary data from data stack)
0 />tape

A simple example can be seen in the code for saving external Flash:

: save" (blk len div , name --)
 >r 2dup kExtFlash r> audioOutHeader (blk len /blk len type div/ amp iSrc)
 1 >tape (blk len amp)
 swap 0 do
 over i + blk> (read block from flash, will copy to vram)
 vram blkPages >tape (write 8 frames)
 loop
 drop drop 0 />tape
;

The tape saving system in >tape is a blocking routine that uses about 50% of CPU and
runs for between 6.1ms and 12.2ms. If your code has hard real time constraints for gener-
ating data that exceed these parameters then you’ll need to use the user-interrupt facility
to provide data in the background. Note: if you do this, your user-interrupt must run for no
more than about 400µs, which is between 80 and 320 Forth byte codes in flkr or video off
mode).

However, the tape saving system doesn’t force hard real-time constraints on you. At the
end of >tape when the last byte has been sent (which will be the crc followed by 3 leader
bytes), the leader tone will continue to be sent automatically at roughly 2.7KHz (or every
5.7 video scans). This means that it should be possible to turn the video back on and per-
form a number of other operations even with user interaction before saving the next block.

Even though the first command to audioOutHeader sets up the information for a header
block this doesn’t mean you’re forced to know in advance how much you want to save and
save everything as a single file (though it’s simpler that way). You could, for example, set
up a means of sending everything in short files of a known number of frames and at the
end of each set of frames, send a longer lead tone; construct your own packet header with
another known set of frames and simply send it using >tape to begin the next ‘file’. In this
way, you won’t force the user to pause and restart playing on the audio device (which au-
dioOutHeader does). The header frame structure is given in section 4.6 / Transmitting
Entire Files.

Loading Data. Custom code for loading audio data always follows this kind of pattern:

rate +tape> (starts flicker mode at dataRate=rate and returns next header addr)
dup ic@ kExtFlash = if
! dup 1+ i@ (len)
! swap 3 + i@ (start) swap 0 do
! ! i tape> (return 0 for a bad frame, addr otherwise)
! ! ?dup if
! ! ! (process the frame)
! ! then
! len
then

totalPacketsReceived -tape (stop tape, report any error)

tape> blocks execution until a complete frame has been received (and then checks its crc
and updates its loadMap bit). However, the frame receive code is interrupt-driven and can
receive an entire packet + crc in the background. This means that although tape> does
impose real-time constraints, your code has approximately 6.1ms to process the previous
packet of data. In flkr and video off mode this represents between 80 and 320 Forth byte
codes per byte of data you need to process.

The external Flash loader is a good example of a worst-case scenario. The >blk routine to
save external RAM to flash is not real-time at all, because searching for blocks can take a
wide span of time and saving a block may involve purging the external Flash of dirty
blocks. Therefore the external Flash loader prepares all the saving operations in the back-
ground before the actual data is loaded. The FIGgyTape application provides the external
Flash loader with information about the number of blocks needed (and the starting block is
provided by the user as part of the command line).

Depending on the application, it may be that you need to modify FIGgyTape or produce a
custom .wav generator to be able to send data in the right way for your FIGnition code to
load it.

Flkr Mode. Flicker mode is a video mode designed to provide information to the user - you
don’t have to use it to save or load data. You could for example turn the video off com-
pletely using the fast command:

: fast 129 $43 ic! ;

And then when you need to go back into a proper video mode execute 0 vmode or 1
vmode. Note: you can’t have video on when loading data, you must either turn it off or use
flkr mode.

Crc Generator. The crc generator is available at kern vector 12. The firmware code uses
it to check crcs (in tape>) or generate crcs (in >tape) for individual audio frames, but it
can work for any block of data. Using the crc code follows the pattern:

-1 (prime the crc with the value -1)
endAddr startAddr do
! i ic@ (or c@, or perhaps it’s just computed data)
! swap crc
loop

The crc is left on the top of the stack. FIGnition’s crc algorithm as described earlier is very
fast - much faster than bit-oriented algorithms, at the equivalent of 1cycle per bit (ignoring
call/return).

5: FIGnition Floating-Point Arithmetic
Firmware 1.0.0 provides a small, but useful set of single-precision floating point arithmetic
commands. You can:

• Enter floating point numbers directly on the command line and FIGnition will parse them
correctly (you can also convert floating point strings to values using number).

• Convert floating point values back into strings using #f or display them using f. (floating-
point values are always displayed in scientific notation).

• Perform basic floating point arithmetic using f+ , f-, f*, f/ and fneg.

• Convert between 32-bit integer and floating point values using fint and float.

• Compare floating point values (and 32-bit integers) using d0< and f< .

• Manage floating point values on the data and return stacks using 2dup, 2drop, 2over,
2swap, d>r and dr> (you can use these commands to manage the top two items on the
stack even if they don’t contain floating-point numbers).

• Test for overflow (the value will be 1d)

Some examples follow:

: dconst
 create -1 allot
 71 c, d,
; immediate

3.1415927 dconst pi

: sphere (r)
! 2dup 2dup f* f*
! 1.3333333 f* pi f*
; (r^3*4/3*pi)

: lozEqDt (dt x y z)
 [-8.0 3.0 f/] dliteral
 2over f* 2swap d>r (dxy[-bz]:z)
 d>r 2over 2over f* (dxy[xy]:[-bz]z)
 dr> f+ dr> 2swap d>r (dxyz:Z)
 fneg 28.0 f+ d>r (dxy:[r-z]Z)
 2over dr> f* 2over f- (dxy[[x*[r-z]]-y]:Z)
 d>r f- -10.0 f* (d[-s[x-y]]:YZ)
 2over f* 2swap ([dX]d:YZ)
 dr> 2over f* 2swap (d x' y' d:Z)
 dr> f*
; (Dt x' y' z')

: lozSum (dxXYyZz)
 f+ d>r f+ d>r f+ (dx':y'z')
 dr> dr>
;

2048 bytes history
0 var his

: mplot (xy)
 2dup 1 pen plot

 his @ >r
 r history (xyh^:h)
 dup c@ over 1+ c@
 2 pen plot (xyh^)
 swap over 1+ c! c!
 r> 2+ 2047 and his !
;

: .loz (Dt x0 y0 z0 --)
 0 history 2048 0 fill
! 1 vmode cls
! begin
! ! 2over 2.2 f* (dxyz[y*2.2])
! ! fint drop 80 + >r (dxyz:py)
! ! 2dup 2.5 f* (dxyz[z*2.5]:py)
! ! fint drop 5 + r> (dxyz/[pz][py]/plot)
! ! (cr swap . swap . sp i@ .)
! ! mplot
! ! d>r d>r 2over (dxd:yz)
! ! 2over dr> dr> (dxdxyz)
! ! 2over 2over d>r d>r (dxdxyz:yz)
! ! lozEqDt (dxXYZ:yz)
! ! dr> 2swap dr> (dxXYyZz)
! ! lozSum (dx'y'z)
! inkey 32 = until
! 2drop 2drop 2drop 2drop
! 0 vmode
;

: bigFib
! 1.0 1.0
! begin
! ! 2dup f.
! ! 2swap 2over f+
! 2dup 3.0e38 f< 0= until
! 2drop 2drop
;

: fpDemo
 pi f. (3.141592e+00)
 key drop cr

 6371.0 sphere f. (1.083206e+12 Km3)
 key drop cr

 0.01 1.0 0.0 0.0 .loz

 bigFib
;

(Lorenz Attractor demo)

Handling Overflow. Overflow occurs when floating-point calculations exceed
±3.402822e+38 . FIGnition doesn’t trap overflow by throwing an error, but instead by return-
ing a result of 1d and any floating point arithmetic operations applied to inputs that have
overflowed always return the overflow value. For example: 1d 0.0 f* is still overflow.
The following command sequence returns -1 if overflows has occurred:

1d d- or 0=

This means that it’s possible to perform a whole sequence of operations and only have to
test for overflow at the end:

1.7e38 sphere (returns overflow)
1.0e26 f/ 9.5 f+ 16 float f- fneg (still returns overflow)
2dup 1d d- or 0= (tests for overflow)

: fabs $7FFF and ;
-1.345 fabs f.

5.1: Command Reference.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

Floating-Point number conversion

#f works in conjunction with <# , sign and #> to convert floating point values into scientific notation, though it doesn’t
really have any flexibility. f. merely makes the input absolute whilst storing the sign on the stack in the manner ex-
pected by sign. #> returns the address and length as for normal number conversion. However, this does mean that it
can be used for simply converting to strings and then manipulating the result as a string.

fa fb f+ fa+fb Adds the two floating-point inputs fa and fb.

fa fb f- fa-fb Subtracts the floating-point input fb from fa.

fa fb f* fa*fb Multiplies the two floating-point inputs fa and fb

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

fa fb f/ fa/fb Divides the floating-point input fa by fb.

fa fneg -fa Negates the floating-point input fa.

fa fint al aH Converts the floating-point input fa into a signed
32-bit integer in the range -2^31 to 2^31-1. Values
are rounded to 0. Numbers outside the correct
range return incorrect values.

al aH float f= Converts the double number a into a floating-point
value fa. Only the most significant 24 bits of the
input are converted accurately.

fa fb f< fa<fb? Returns a single value -1 if fa<fb or 0 otherwise.

fA addr^ #fd fA’ addr’ Given fA in the range 0.0 to 9.99999 converts the
integer portion of fA into a digit character stored in
addr (which is incremented); returns the fractional
addr of fA scaled by 10.0.

fA #f fA’ Converts the absolute floating-point value in fA into
its text representation in the form d.dddddd±eEE
into the pad. Returns the remainder.

fa f. Displays fa as a signed floating-point value in sci-
entific notation.

text^ number fa -1 If text^ contains a floating-point string, returns the
floating-point value and -1 to denote floating-point.

Supporting Double-Number Commands.

A number of double-number commands (which also work with floating-point values) have been added to support
floating-point arithmetic operations.

In addition, byte code 71 performs a floating-point constant fetch operation and can be used to create a dconst com-
mand:

: dconst create -1 allot 71 c, d, ; immediate

3.1415927 dconst pi
pi f. (displays 3.141593e+00 OK)

al aH 2drop Drops a double or floating point number from the
stack.

al aH bl bH 2over al aH bl
bH al aH

Copies the previous double or floating point num-
ber to the top of the stack.

al aH bl bH 2swap bl bH al
aH

Swaps the top two double or floating point numbers
on the stack.

al aH d>r : al aH Moves the double or floating point number at the
top of the stack to the return stack.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

: al aH dr> al aH Moves the double or floating point number on the
top of the return stack to the data stack.

al aH d, Inserts the double or floating point number on the
top of the stack into the dictionary at here.

addr d@ al aH Reads a double or floating point number from ex-
ternal RAM at addr.

al aH addr d! Stores the double or floating-point number a in ex-
ternal RAM at address addr.

5.2: Technical: FIGnition FP Format and Performance
FIGnition Floating-point arithmetic is based on IEE754 single-precision arithmetic. It has a
mantissa sign-bit, followed by an 8-bit biased exponent, followed by a 23-bit mantissa pro-
ducing a range 0.5 to 0.99999994 (in steps of 5.96x10-8) .

A floating-point value is: sign*mantissa*2^(exponent-127).

FIGnition Floating-point arithmetic differs from IEE754 single-precision in the following
ways:

• FIGnition Floating-point arithmetic only handles a generalized ‘overflow’ condition rather
than ±∞ and NaNs when the floating-point range is exceeded.

• FIGnition Floating-point arithmetic doesn’t handle denormalised numbers, results whose
mantissas are < 5.87747e-39 are simply 0.0.

The following technical specifications are valid:

• MaxFloat = 3.402822e+38, which is $7FFFFFFFd .
• MinNormalisedFloat = 5.87747e-39 which is $800000d
• f* calculates mantissas to 48 significant binary digits before rounding.
• f/, f+ and f- calculates mantissa results to 32 significant binary digits before rounding.
• Rounding always rounds up the mantissa if the 24th most significant digit is 1.
• Floating point performance is on average 14.8KFlops.

The benchtest used to establish floating point performance is:

: bm1f

! 10000 0 do
! ! 10.9 9.8 f+ 7.6 f- 5.4 f* 3.2 f/
! ! 2drop
! loop
;

The time taken is 3.3s of which 0.5s is occupied by pushing floating point values, 2drop
and the loop operation. Thus 2.7s are spent actually calculating: the performance is
14.8KFlops.

6: System Modifications
A few changes have been made to the system. A number of kern functions have been
added to support audio data transfer (documented in section 4.5).

The following additional changes have been made.

6.1: SysVars and User variables Changes
Internal RAM system variables are now:

Offset Name Type Purpose

0 gCur byte* The address of the video RAM at the beginning of the current dis-
play line in text mode.

0 plotY byte The y coordinate of the pen on the screen in bitmap mode.

1 clipTop byte The y coordinate of the top of the clipping rectangle in bitmap mode.

2 gCurX byte The x coordinate of the print position in text mode; or the x coordi-
nate of the pen in bitmap mode.

3 buff byte[8] An 8 byte buffer used for cmove.

11 gKScan byte The debounced keypad state (where bit 0=SW1 and bit7=SW8)

12 stackFrame byte* The current base address for the persistent stack frame used by l>
and >l (as well as locs and loc; for setting up and releasing persis-
tent stack frames).

14 clipLeft byte The LHS pixel coordinate for the clip rectangle

15 clipRight byte The RHS pixel coordinate for the clip rectangle.

16 clipBot byte The bottom pixel coordinate for the clip rectangle.

17 savedX byte The secondary pen position x coordinate (used in 2blt).

18 savedY byte The secondary pen position y coordinate (used in 2blt).

19 swUartCh byte The Software Uart’s current character.

20 swUartState byte The Software Uart’s current state.

21 userIntVec byte* The address in external RAM of the user interrupt vector.

23 userIntFlags byte[4] A Bit array of interrupts that have been triggered since the pre-
vious user interrupt routine was executed. In Firmware 0.9.9 it
used 3 bytes, but it turned out 4 bytes were needed.

Offset Name Type Purpose

24 key byte The key code returned by the keyboard driver is now a system
variable.

25 helpCount char The helpCount used by the keyboard driver is available.

A number of changes were required for the Forth User variables in order to support Com-
mand Line execution from the audio system. They are now:

Offset Name Type Purpose

0 current word^ Contains the address of the latest definition. Current linkage now
uses single indirection rather than double-indirection.

2 warning word Unused. It was part of the error system, but isn’t needed.

4 marker byte^ The address of the text marker used in the editor.

6 top byte^ The address of the top of free external RAM.

8 blk* byte^ The address of the flash block allocated by blk> and >blk.

12 blk# word The value of the current block used by load.

14 fparse word Unused

16 dp word The dictionary pointer, points to the first free byte of external RAM.
dp @ is here .

18 state word The compiler state, 0 for interpret, $40 for compile mode.

20 base word The number base when converting between strings and numbers.

22 hld byte^ The pointer to the current character when converting numbers to
strings.

24 tib byte^ A pointer to the terminal input buffer.

26 unused byte[8] Unused

6.2: Software Serial Out Change
The Software serial out has been moved to PortD5 which means the correct code for using
it is now:

Code Comments

$2B const PORTD
$2A const DDRD
$44 const TCCR0A
$45 const TCCR0B
$46 const TCNT0
$48 const OCR0B
$6E const TIMSK0
$35 const TIFR0

sysvars 19 +
 const swUartCh
sysvars 20 +
 const swUartState

These are the addresses of some of the AVR registers for
accessing the software uart. We need to modify PORTD.5;
both of the control registers for Timer 0, the Output Control
0A register and the timer 0 interrupt mask. In addition we
need access to the system variables for the uart.

: swUartInit
 $20 $FF 2dup PORTD
 >port> drop
 DDRD >port> drop
 0 TCCR0B ic!
 0 TIFR0 ic!
 4 $FF TIMSK0
 >port> drop
;

Initializes the software serial out. Sets PORTD.6 to output
1. Stops Timer0 and enables the OC0B interrupt.

: swUartEmit (ch --)
 begin
 TCCR0B ic@ 0= until
 gSwUartCh ic!
 11 gSwUartState ic!
 32 OCR0B ic!
 $20 TCCR0A ic!
 0 TCNT0 ic!
 3 TCCR0B ic!
;

Waits until the timer has stopped (it’s stopped by the
swUart interrupt as well as init). Sets up the Uart character
and resets the uart state to 11. Sets the match period to 32
(which determines the 9600 baud). Sets the Timer mode to
free-running mode which Clears 0C0B on compare match,
Resets the Timer0 counter and finally starts Timer0, run-
ning at clk/64, which is 312.5KHz.

6.3: Flash Disk Searching.
In version 1.0.0 the algorithm for mapping virtual disk blocks to physical flash pages has
been redesigned and the key routine has been made much faster. This means that disk
operations in 1.0.0 are back to the same speeds as for Firmware 0.9.8 and earlier.

6.4: FIGgyPad interrupts
The keyboard scanning is always called from the video interrupt code, at about 100Hz (i.e.
a single row scan every 10ms).

In earlier Firmware revisions the video interrupt code had to push every caller-saved regis-
ter, about 17 registers in total. This added 3.4µs to the interrupt. The reason it had to be
done was because Interrupts calling conventions in Gcc on an AVR always push all of
these registers if you call a sub-function in the interrupts handler. Since I didn’t want this
overhead every time the video interrupt was called, I shifted it to a special routine that only

does all of this when the keyboard scanning happens. It’s more efficient that way, but very
ugly.

In Firmware 1.0.0, I added a tool which could analyse and entire set of registers that would
need to be pushed when calling a function to make it register-safe.

The concept and a critique of GCC’s caller-saving register convention is covered more
fully in this blog entry:

http://oneweekwonder.blogspot.co.uk/2014/03/caller-convention-calamities.html

http://oneweekwonder.blogspot.co.uk/2014/03/caller-convention-calamities.html
http://oneweekwonder.blogspot.co.uk/2014/03/caller-convention-calamities.html

