
Revision 0.9.9: Changes and Improvements

Introduction
Revision 0.9.9 of the FIGnition firmware has a number of essential changes and significant
improvements. Briefly, these are:

• The editor can now edit as much text as there is RAM available.

• load will now load text in contiguous blocks until there’s a block <512 characters long.

• The Flash Disk driver has been re-written in Forth. It’s now about half the length, but cru-
cially makes Flash access in Forth much more convenient. The blk> and >blk com-
mands no longer need the user to provide a physical block address (which will reduce
programming errors).

• Stack underflow and overflow checking are now implemented with zero performance
overhead!

• Break key checking (FIGgypad only) and Multiple, re-entrant, User-interrupts are sup-
ported with zero performance overhead.

• Memory management has been improved. FIGnition now checks the RAM size on
startup and serial ram can be allocated from the top down (which means it’s finally pos-
sible to use the Flash disk without it colliding with the video memory). The number of free
bytes is now displayed on power-up.

• A no-video mode (which speeds FIGnition up by about 1.9 x).

• The ability to use the Software Serial Out routine.

• The ~ , _ keys are available from the keypad (and from FIGkeys).

• A few bugs have been corrected in the block editor, the blitter and the quit, u/ and locs
commands.

• A number of commands have been added to the system to support the above.

• With the exception of the Flash Driver, the system is now 10% to 20% faster than before
according to the PCW Benchmarks.

The Editor
The editor can now edit as much text as there is in RAM. In addition some commands
have been fixed and others have been added. Editor text will write and read multiple, con-
tiguous blocks up to a block <512 characters long. It is possible to mark text from a differ-
ent area to the editor itself.

Usage: n edit to edit text from block n. The editor will attempt to use all the remaining
RAM for editing (with a space of about 700 bytes between here and the start of editor

text). The bottom line shows the first block being edited and the number of characters in
the text / the maximum buffer space.

Features

Key FIGkeys Function

displayable
character

displayable
character

Inserts text at the current cursor location

Cursor Cursor Moves the cursor within the text area.

<mark> Alt+m Marks the current location for copying text.

<copy> Alt+m Inserts the character under the current mark position at
the current text location.

<cmd+en-
ter>

<ctrl>, <re-
turn>

Updates the editor status.

<cmd+z> <ctrl>, z Deletes the text.

<cmd+w> <ctrl>, w Writes the text to Flash starting at block n.

<cmd+$> <ctrl>, $ Enters the shell, the command bye exits back to the edi-
tor.

Using The Shell
The Shell can be used for a wide variety of tasks. For example:

You can type in Forth commands in the shell, e.g. perform some calculations to the get re-
sults and then return to the editor.

You can load another block into FIGnition’s RAM. For example, 30 blk> <exe> would
load block 30 into RAM and store the text at blk. So, then typing blk* mark <exe>
would set the marker to the beginning of the block; so that when you <copy> text, text will
be copied from that location to the editor’s buffer.

You can generate a string and use it to mark text. For example, find vlist lfa>nfa
mark <exe> would set the marker to the beginning of the text for vlist.

When you want to exit the shell you should type bye <exe> . The data stack must be in
the same state as when you entered the shell.

Erasing The Disk
The Editor used to provide an ‘E’ command for erasing the Flash. The command fdisk
now does this (fdisk can also be used from within the editor shell).

Command Completion
In the FIGnition Forth editor, pressing <shift>, <space> activates command completion.
Whenever you start to type a new word, the list of available words that match the text
you’ve typed appear in the bottom 4 lines. Pressing <shift>, <space> again will insert the
first word on that list.

Keypad Characters
Two new characters are available from the Figgypad (and also via FIGkeys):

Key Combination Character

<shift> , <SW1+SW7> _

<shift> , <SW1+SW8> ~

The Forth Flash Disk Driver
The Forth Flash Disk Driver has been rewritten in Forth, but otherwise has the same func-
tionality and supports the same disk format. Additional Forth byte codes have been added
to the core system to provide access to the core ‘C’ functions for accessing the Amic Flash
to read and write pages; read the Amic Flash ID, test the status of the Amic Flash and
erase Flash sectors.

Stack Empty and Full Checking.
FIGnition Forth now checks for stack empty and stack full conditions at all times. More
precisely, it checks whenever you execute loop , until , while , repeat , if (and it
branches) , else , calling a command in external RAM , ; , c@ , @ , c! and ! commands.

If the stack pointer is out of range FIGnition displays the error message Stack Empty in
aCommand or Stack Full in aCommand and then exits your code, returning to quit.

A stack empty condition happens when sp drops below sp0 . A stack full condition hap-
pens when sp is within 40 bytes of rp (this is because system interrupts may use another
40-odd bytes).

Break Key Checking.
FIGnition Forth now checks for the break key being pressed at the same time as checking
for Stack Empty or Full conditions. The break key combination is SW5+SW2+SW3+SW8.
This combination was chosen because it’s not easily pressed, can’t be ghosted by another
keypress and won’t be a key combination needed by a game (because it’s an unnatural
position for your fingers to be in).

Break can be suppressed by setting GPIOR0 bit 7. The program code to do this is:

: breakoff (dis/en --) 7 << 127 $3E >port> drop ;

Executing 1 breakoff disables break, and executing 0 breakoff enables break.

User Interrupts.
Multiple, re-entrant user interrupts are now supported in FIGnition Forth. Any ATMega168/
328 interrupt can be trapped (apart from vector_3, used for Bitmap Prefetching; vector_11
which is used for the video state machine and vector_14 which is the software Uart).

To support them, 4 bytes were added to the sysvars, at offset 21 there's the interrupt vec-
tor, which is the cfa of a normal FIGnition Forth routine defined by the programmer. At off-
set 23 there are 3 bytes which contain activated interrupt flags. The firmware has every
spare interrupt vector mapped to a single routine which sets the flag bit corresponding to
the interrupt vector in an interrupt flag byte.

When FIGnition checks for Stack faults and the break key, it also looks for any set user-
interrupt flag bits and if any are, it suspends the current Forth program and then makes
forth call the user interrupt vector’s cfa in sysvars +21. It also pushes the flag bits as two
words on the data stack and clears them (so the same interrupts aren't immediately retrig-
gered). The Forth user-interrupt routine is just an ordinary : -defined Forth word which
finds the interrupt flags on the top two items of the stack and simply returns as normal.

It’s fairly complex, but it’s only as complex as it needs to be to support multiple interrupts
simultaneously and re-entrantly. However, the following timer0 example shows it can be
fairly simple to use at a basic level.

Code Comments

$35 const TIFR0
$6E const TIMSK0
$45 const TCCR0B
$46 const TCNT0

These are the addresses of some of the AVR registers for
Timer0.We need its interrupt flags; its interrupt mask; con-
trol register B for starting and stopping the timer and the
timer counter itself.

: OVF (flags23to16 flags15to0)
 drop drop
 16 $26 ic!
 clock i@ vram i!
; (--)

OVF is the interrupt routine itself. Since only one interrupt
is handled, the flags don’t matter, so they are dropped.
Otherwise, successive interrupts would cause the stack to
overflow and a stack error would be generated.

The interrupt routine just inverts the LED (16 $26 ic!)
and then outputs the current clock value on the top left-
hand part of the screen. It doesn't do anything clever with
the interrupts itself, it just lets timer0 carry on and gener-
ate another overflow interrupt in 256 timer0 ticks.

: setupInts
 [find OVF lfa>cfa] literal
 sysvars 21 + i!
 0 TCNT0 ic!
 5 TCCR0B ic! (clk/1K)
;

setupInts sets up the interrupt. It finds the cfa of OVF
and stores it in the FIGnition interrupt vector at sys-
vars+21. Then it clears the timer0 counter and then starts
it running at just under 20KHz (20MHz/1024). This will
cause an overflow every 13ms (about 76Hz). However, it
doesn't actually activate the overflow interrupt quite yet.

: testInts
 setupInts
 1 TIMSK0 ic!
 begin
 inkey dup emit
 asc ! = until
 0 TIMSK0 ic!
;

testInts first calls setupInts to set the interrupt in-
formation up and then finally executes 1 TIMSK0 ic!
to activate the timer0 overflow interrupt. Then it sits in a
loop emitting anything you type until you press !. At the
end it disables the Timer0 interrupt. If it didn’t do that, the
interrupt would continue to run while the user continues to
interact with FIGnition, e.g. while typing in new commands.

To use it, type testInts <exe> . The clock value is poked into video memory and the
LED inverts every 13ms. While this is happening, you can type and text starts to appear
from the current cursor position - hey presto, interrupt, driven code.

Practical interrupt code involves a number of subtle complexities. For example in this case
OVF can't be allowed to run for more than 13ms or OVF itself would get interrupted! The
routine would have to disable the TIMSK0 interrupt at the beginning of OVF; clear any OVF
and sysvar flags and then at the end re-enable the interrupt. In addition, if it handled more
than one interrupt it would all have to go through the one routine which would then need to
jump to the intended user interrupt code. This would add to user-interrupt latency, which is
limited owing to the nature of the FIGnition Forth implementation and is significantly worse
than a typical 8-bit computer. Interrupt latency is estimated to be typically in the region of
20µs to 200µs.

Nevertheless, it’s possible to demonstrate interrupts in a fairly flexible way, and the
mechanism more usable than many early 80s computers.

Memory Management.
Prior to Firmware 0.9.9, RAM inside FIGnition could only be allocated upwards, with here
pointing at the last byte used by the system. Other areas of memory that were needed on
demand, such as the Flash block buffer or the video memory were assigned to fixed ad-
dresses.

With Firmware 0.9.9 it’s possible to dynamically allocate RAM from the top of RAM using
claim and reclaim. The user variable top points to the last byte of memory allocated. This
provides programmers with a means of, for example, allocating dynamic heaps independ-
ently of memory used by programs. Because the top of RAM depends on whether FIGni-
tion has a standard 8Kb of RAM or is expanded to 32Kb of RAM; the size of RAM now

needs to be calculated. This is done by the command top! (which resets top to the top of
RAM).

Details on all these commands are provided in the reference section.

No-Video (Fast) Mode
User Interrupts make FIGnition more suitable for embedded / realtime applications. How-
ever, to provide better interrupt latency (and lower power consumption) in some circum-
stances it would be helpful to be able to turn off the display. This also has the advantage of
improving FIGnition’s performance by a factor of 1.94.

The following commands allow the user to turn off and on the video display:

: fast 131 67 ic! ;
: slow 0 67 ic! ;

A short example follows:

: waitLoop
 0 do
 10000 do
 loop
 loop
;

: fastTest fast 20 waitLoop slow ;

Typing in fastTest <exe> will take the system into Fast mode, execute 200,000 empty
loops and then re-enter slow mode.

There are limitations with the use of fast, namely that the keyboard isn’t scanned in fast
mode.

Software Serial Out
FIGnition’s firmware has always had an internal interrupt-driven software serial out routine,
which was developed to provide debugging information while the video display was being
developed and debugged1. However, it hadn’t been maintained for the past 3 years and
would now conflict with normal system behaviour, in addition it used global variables which
weren’t accessible to Forth. In Firmware 0.9.9 the software serial out routine has been up-
dated to make it usable again.

The software serial port always outputs via PORTD 6 (pin 12) at 9600 baud with 8-bits, no
parity and 1 stop bit. It can operate correctly in text mode, but not in hires bitmapped
mode. The following example code uses the Software Serial Port:

1 It’s part of the bootstrapping process. An LED blink routine was developed first and then it was used to de-
bug a software serial out routine and this in turn was used to debug the video out code.

Code Comments

$2B const PORTD
$2A const DDRD
$44 const TCCR0A
$45 const TCCR0B
$46 const TCNT0
$47 const OCR0A
$6E const TIMSK0
$35 const TIFR0

sysvars 19 +
 const swUartCh
sysvars 20 +
 const swUartState

These are the addresses of some of the AVR registers for
accessing the software uart. We need to modify PORTD.6;
both of the control registers for Timer 0, the Output Control
0A register and the timer 0 interrupt mask. In addition we
need access to the system variables for the uart.

: swUartInit
 $40 $FF 2dup PORTD
 >port> drop
 DDRD >port> drop
 0 TCCR0B ic!
 0 TIFR0 ic!
 2 $FF TIMSK0
 >port> drop
;

Initializes the software serial out. Sets PORTD.6 to output
1. Stops Timer0 and enables the OC0A interrupt.

: swUartEmit (ch --)
 begin
 TCCR0B ic@ 0= until
 gSwUartCh ic!
 11 gSwUartState ic!
 32 OCR0A ic!
 $82 TCCR0A ic!
 0 TCNT0 ic!
 3 TCCR0B ic!
;

Waits until the timer has stopped (it’s stopped by the
swUart interrupt as well as init). Sets up the Uart character
and resets the uart state to 11. Sets the match period to 32
(which determines the 9600 baud). Sets the Timer mode to
CTC mode that ends and Clears 0C0A on compare match,
Resets the Timer0 counter and finally starts Timer0, run-
ning at clk/64, which is 312.5KHz.

The software serial out is a bit-bashing interrupt driven routine, but is accurate even
though its interrupt routine may be called dozens of microseconds after its timer match oc-
curs. This is because it uses the output compare pin itself to automatically generate the bit
transition at the right time. So as long as the interrupt takes place before the next bit needs
to be output, then they will be all transmitted at exactly the right time.

Bug Fixes
FIGnition contains a number of bug-fixes to the system:

1. The Editor’s z command (to clear the edit text area) was very buggy. This has been
fixed.

2. The quit command failed to reset the data and return stacks.

3. The blitter had a bug which meant that bitmaps had to be an exact multiple of 8-pixels
wide.

4. The locs command (for allocating persistent stack frames) didn’t which didn't take into
account the way the avr return stack is post-decremented (odd, but that's the way At-
mel handles it!). This meant that executing >l 0 would overwrite the StackFrame re-
store value which meant that nested locs invocations would incorrectly restore the per-
sistent stack frame.

5. The u/ command didn’t properly check for overflow, which occurs if the denominator is
>=65536 * the divisor. It now returns a modulus of 0xffff if overflow occurred and a by-
product of fixing the bug lead to an implementation over twice as fast and a 20% im-
provement for a number of benchmarks.

The following example code tests for the blitter bug:

hex create bm
 0103 , 070F ,
 1F3F , 7FFF ,
 80C0 , E0F0 ,
 F8FC , FEFF ,

: tb (dim x y)
 1 vmode cls
 >r >r bm over 0 tile
 r> r>
 8 0 do
 2dup at >r >r
 0 over blt
 0 over blt
 1-
 r> r> 8 +
 loop
 key 0 vmode
;

Type decimal $0810 10 10 tb <exe> to test the bug. The diagonal images should
be progressively clipped from the right, but the bug made them clip on the left hand side
and sometimes align the bitmap output to the next tile. With the bug fix, the bitmaps do get
progressively clipped from the right-hand side.

Benchmarks
The new benchmarks are 10% to 20% faster than before. This is partly due to the new
horizontal pixel synchronisation code, which allows a little more time for user code to exe-
cute in text mode. It’s also partly because the new stack/break key / interrupt checking
mechanism involves a quicker calling mechanism (and reschedules a useful instruction
into what would otherwise by a nop). But mostly it’s because the u/ algorithm is about
twice as fast as its predecessor.

Here are the new results:

Benchmark Time(s) Ins’s/loop KIPS vs Jupiter-Ace

BM1 0.0116 1 86.2 13.7

BM2 0.046 9 195.6 11.7

BM3 0.218 69 316.5 35.1

BM4 0.228 69 302.6 28.3

BM5 0.252 71 281.7 25.8

BM6 0.320 79 246.8 23

BM7 0.660 119 180.3 19.6

BM3L 0.034 10 294.1 29.4

BM1G 0.0960 9.844 102.5 31.4

Avg (w/o BM1G) 23.3

Avg (w/o BM3L and
BM1G)

22.4

[Note: BM1G is described as having 9.844 instructions per loop. It really has 10 instruc-
tions, but the value is rescaled to compensate for the difference in pixels on a Jupiter Ace
screen]

Note: There is an exception to the general performance improvement, the Forth Flash
Disk driver is much most of the time owing to a slow algorithm for searching for Flash
blocks. This will be addressed in Firmware 1.0.0.

Command Reference
There have been a number of changes and additions to the version of FIGnition Forth:

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

EEProm Access

addr ec@ u8 Returns the EEProm contents at address addr.

value addr ec! Stores value to EEProm memory at address addr.

src dst len emove> Copies len bytes of EEProm memory from EEProm
address src to serial RAM at address dst.

Dictionary Access

addr >lfa lfa Searches for the Forth command that occupies the
memory area that includes addr, returning it’s lfa.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

String Commands.

enclose has changed between 0.9.8 and 0.9.9 and no longer properly conforms to normal Forth standards in this
ROM. The reason for this is that enclose now reads from a fragment of a text buffer and uses a hidden command -->
to obtain the next fragment of the text buffer if the end of the fragment is found. This is needed to support multiple
contiguous blocks.

textStart de-
limiter

enclose textStart
textEnd

Searches for the character delim starting at text-
Start. Returns a possibly modified textStart and
textEnd in order to include the delimited text.

System Commands

bye Returns from the current command shell (calling
cold if this is the top-level command shell)

Memory Management

top! Tests the size of external RAM, storing the last ad-
dress ($9FFF or $FFFF) in top.

size claim addr Claims a block of memory size bytes from external
RAM at top, returning the first byte available. Top is
then placed just below the claimed memory block.

addr reclaim Releases previously claimed external RAM from
(and including) the block starting at addr. Top is
updated to point after the block that started at addr.

top addr Returns the address of top. Use top @ to return the
contents of top.

Flash Disk Commands

Loads and loads have been modified to handle multiple contiguous Forth blocks; whilst being upwardly compatible
with the previous definition of load and loads. This is possible because in Version 0.9.8, the maximum text size for a
block was 511 bytes and in 0.9.9 (and onwards) a block text length of <=511 characters will be still interpreted as the
last block.

blk* has now been defined because previously the block buffer was always set to point to the last 513 bytes of RAM.
From firmware 0.9.9 it can be allocated dynamically.

blk> and >blk no longer require a physical block parameter. They claim a block if needed (but never reclaim it. The
user must reclaim the block manually and store 0 in blk* to free the block buffer).

Low-level Flash Access via Forth byte codes is now possible. To gain access to them you need to provide access to
the byte codes themselves:

: :inline create 128 + c, latest lfa>ffa dup c@ 128 xor swap c! ;
52 :inline SerFlRd
53 :inline SerFlWr
67 :inline SerFlEr
68 :inline SerFlId

Flash IDs for Amic chips are: A25L40 = $2013 , A25L040 = $3013 , A25L080 = $3014.

Stack Inputs
(: Parameter
Stack Inputs)

Command Post-Command
inputs

Stack
Effect

Action

n load Loads a set of contiguous Forth blocks starting at
block n until a block containing <512 characters is
found.

n count loads Loads count sets of contiguous Forth blocks start-
ing at block n where each set of blocks is termi-
nated by a block containing <512 characters.

blk* addr Returns the reference to address of the current
block buffer pointer. Use blk* @ to obtain the ad-
dress of the buffer itself.

blks addr Unused.

blk# n The current block number being loaded.

fdisk Formats the External Flash Disk.

blksize n Returns the size of a block (currently the constant
512).

virt blk> Claims a 512 byte buffer if needed and reads virtual
block virt from Flash (or EEProm if a negative
number is used) into it.

virt >blk Writes the 512 byte buffer at blk* to virtual block virt
in Flash.

virt dst
maxBlks

blks> Over-
flow?

Reads up to maxBlks contiguous blocks from Flash
(or EEProm) starting at block virt; storing the text at
dst. Returns -1 if > maxBlks could have been read
or 0 otherwise.

virt src count >blks Writes count*blockSize bytes of external RAM start-
ing at src to count contiguous Flash blocks starting
at virt.

SerFlId id Returns the Flash ID of the chip.

n dst^ SerFlRd Reads Flash page n to internal Ram at address
dst^

n src^ SerFlWr Writes contents of internal Ram from address src to
Flash page n.

n SerFlEr Erases the sector that starts at page n.

Editor Shell Commands

Note: fdisk is the substitute for the E command in the editor.

addr mark Sets the text editor’s mark/copy address to addr.

kern supports the following vectors:

Vector Stack Inputs
(: Parameter
Stack Inputs)

Command Post-
Command

inputs

Stack
Effect

Action

0 kChrSet addr Returns the address in Flash for the character
set.

1 FigVer version Returns the version number of this FIGnition
firmware.

2 (.") String (Compile mode only). Expects a string to fol-
low (.") and displays the string.

3 value addr toggle xors the word in external RAM at addr with
value.

4 lo hi str ntype digits lo hi str'
ntype

Processes an unsigned number in the current
base starting at str, leaving str pointing at the
terminating character. ntype is decremented if
it was <0 to begin with.

5 lo hi str ntype intnum lo hi str'
ntype

Processes a signed number in the current
base using digits.

6 str^ (vlist) Lists the commands beginning with the text in
str.

7 refresh? ed cmd The vector for the core editing code. See the
section on the editor (@TODO).

8 : returnAddr^ (“) str^ :
ret+2

The core routine for processing an inline
string. It returns execution to just after the
String leaving the pointer to the string on the
stack.

9 : n oldRp oldSf
.. ret^

(loc;) Deallocates a persistent stack frame, restores
the Return Stack pointer to just after it; and
finally returns to the command that originally
called the routine that set up this stack frame.

10 (ec!) Performs the EEProm command that writes
the EEPRom value in EEDR to EEProm ad-
dress EEAR.

sysvars have been changed and are now:

Offset Name Type Purpose

0 gCur byte* The address of the video RAM at the beginning of the current dis-
play line in text mode.

0 plotY byte The y coordinate of the pen on the screen in bitmap mode.

1 clipTop byte The y coordinate of the top of the clipping rectangle in bitmap mode.

2 gCurX byte The x coordinate of the print position in text mode; or the x coordi-
nate of the pen in bitmap mode.

3 buff byte[8] An 8 byte buffer used for cmove.

11 gKScan byte The debounced keypad state (where bit 0=SW1 and bit7=SW8)

