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We address the problem of determining inflationary characteristics in a model independent way
and then study constraints for reheating. We start from a recently proposed equation which allows
to accurately calculate the value of the inflaton at horizon crossing φk. We then use an equivalent
form of this equation to write a formula that relates the tensor-to-scalar index r to the number of
e-folds during inflation Nk, hence a general bound for Nk follows. In particular, at present r < 0.063
implies Nk < 56.3. We also give an upper bound to the size of the universe, during the inflationary
epoch, that gave rise to the current observable universe. The reheating epoch is discussed and a
bound is given for the effective number of relativistic degrees of freedom gre which translates into
a bound for the reheat temperature. From here bounds for the number of e-folds during reheating
and also during the radiation dominated epoch follow. A criteria to know whether the constraint
for the effective number of degrees of freedom exists is given in terms of the ratio Ve/Vk where Ve

is the potential at the end of inflation and Vk at the horizon crossing scale k. Finally we study
two particular models: Starobinsky model, which was studied before and is mostly used here for
comparison, and a Mutated Hilltop Inflation (MHI) model. Tables II and III show results for the
two specific models of inflation.

I. INTRODUCTION

During the last several years we have seen an extraor-
dinary advance in our knowledge of the universe, its com-
position, geometry and evolution. The idea of an infla-
tionary universe remains solid some 40 years after its in-
ception [1], [2], (for reviews see e.g., [3], [4], [5]), however
the existence of a plethora of models [6] constantly re-
minds us that our knowledge of that epoch is imprecise,
and even more so when we consider the time of reheating
after inflation ends, for reviews on reheating see e.g., [7],
[8], [9]. Numerous works have been done in our attempt
to better understand the reheating era with varying de-
grees of success [10] - [23]. In this work, we initially
address the problem of determining important inflation-
ary characteristics in a model independent way and then
study possible constraints for reheating.

The organization of the article is as follows: in Section
II we first start from a recently proposed equation [24]
which allows us to accurately calculate the value of the
inflaton at horizon crossing φk. We then use an equiva-
lent form of this equation to write a formula that relates
the tensor-to-scalar index r to the number of e-folds dur-
ing inflation Nk, hence a general bound for Nk follows.
In particular, at present r < 0.063 implies Nk < 56.3.
We end the section by calculating a bound to the size
of the universe, during the inflationary epoch, that gave
rise to the current observable universe. In Section III
we discuss the reheating epoch and a bound is given for
the effective number of relativistic degrees of freedom gre
which translates into a bound for the reheating temper-
ature [25] and bounds for the number of e-folds during
reheating and also during the radiation dominated epoch.
The constraint is given by Eq. (20) as a bound for the
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ratio Ve/Vk where Ve is the potential at the end of infla-
tion and Vk at the horizon crossing scale k. In Section IV
we study two particular models: Starobinsky model [29]
- [32] which was studied before [24] and is used now to
compare with a Mutated Hilltop Inflation (MHI) model
[33], [34] where several interesting aspects occur. Tables
II and III show results for the two specific models of in-
flation. Finally in Section V we give our conclusions on
the most important points discussed in the article.

II. RESULTS FOR THE INFLATIONARY
EPOCH

The equation which determines the inflaton field φ at
horizon crossing is [24]

ln[
a∗Hk

k∗
] = 2Nk , (1)

where k is the horizon scale during inflation k∗ is the
pivot scale and a∗ is the corresponding scale factor. The
Hubble function at k is given by Hk =

√
8π2εkAs and

Nk ≡ ln ae
ak

is the number of e-folds from φk up to the
end of inflation at φe. Notice that the Hubble function
introduces the scalar power spectrum amplitude given
here by As. Eq. (1) is a model independent equation
although its solution for φk requires specifying a model
of inflation; Hk and Nk are model dependent quantities.
Thus, after finding φk, we can proceed to determine all
inflationary parameters and observables.

An easy way to understand Eq. (1) is by connecting
the epoch where the scale k left the horizon during infla-
tion to the pivot scale k∗ where we measure the horizon
reentry of precisely the same scale k thus, k = k∗. This
can be expressed by

ln

(
a∗
ak

)
= 2Nk , (2)
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where 2Nk is the number of e-folds from the scale k up to
the end of inflation plus the number of e-folds from the
end of inflation up to the scale k∗ which is also equal to
Nk. Multiplying the term inside the parenthesis above
and below by Hk and setting akHk ≡ k = k∗ ≡ a∗Hk∗

we get Eq. (1). An alternative but equivalent way of
obtaining Eq. (1) is given in [24]. To find the value of a∗
we solve the Friedmann equation for a∗

k∗ = H0

√
Ωmd,0
a∗

+
Ωrd,0
a2∗

+ Ωdea2∗ , (3)

where k∗ = 0.05/Mpc ≈ 1.3105 × 10−58 (see Table I to
find the numerical values of the other parameters used in
our calculations).

Note also that Eq. (1) incorporates knowledge from the
present universe, in the determination of a∗, of the early
universe, when considering the scale k during inflation,
and also of the CMB epoch by the presence of the scalar
power spectrum amplitude As through Hk.

From Eq. (1) and Hk =
√

8π2εkAs we can get an ex-
pression for r ≡ 16εk in terms of the number of e-folds
Nk

r =
2k2∗

π2a2∗As
e4Nk . (4)

Imposing a bound b to r we get a general bound for Nk

r < b ⇒ Nk <
1

4
ln

(
π2a2∗As

2k2∗
b

)
≈ 57.016 +

1

4
ln b ,

(5)
for the particular value b = 0.063 [26], [27] we get the
present bound for Nk

r < 0.063 ⇒ Nk < 56.3 . (6)

This is a model independent result, it follows from
Eq. (1), phenomenological parameters and the bound for
r without specifying any model of inflation.

We can also calculate a model independent bound to
the size of the patch of the universe from which our
present observable universe originates. We adapt Eq. (2)
to this situation

ln

(
a0
ak

)
= 2Nk , (7)

where a0 is, as usual, the present scale factor a0 = 1, k
is the horizon scale during inflation which gave rise to
our observable universe such that k = k0 (k0 ≡ a0H0 is
the present scale) and 2Nk is the number of e-folds from

the scale k up to the end of inflation plus the number of
e-folds from the end of inflation up to the scale k0 which
is also equal to Nk. Note that the k in Eq. (7) has not
the same value as the k in Eq. (2). From Eq. (1) and
from the bound for Nk follows that at the scale k

ak = a0 e
−2Nk > a0 e

−132.7 ≈ 2.34× 10−58 . (8)

Note that we have added N∗ ≡ ln a0
a∗
≈ 10.05 e-folds

to the upper bound of 56.3 for Nk because there are
10.05 e-folds from the pivot scale k∗ = 0.05/Mpc up to
the present scale k0. If the diameter of the observable
universe is 8.8 × 1026m then at the scale k the size of
the universe from which ours originates was bigger than
2.059×10−31m. Thus, at the scale k the universe diame-
ter was at least 1.274× 104 times bigger than the Planck
length. At the end of inflation it had a size of at least
1.35 cm.

III. RESULTS FOR THE REHEATING EPOCH

To establish constraints for the reheating epoch we
need in particular a formula for the number of e-folds
during reheating. The standard way to proceed is to
solve the fluid equation with the assumption of a con-
stant equation of state parameter ω during reheating, this
gives the number of e-folds during reheating in terms of
the energy densities as follows

Nre ≡ ln
are
ae

= [3(1 + ω)]−1 ln[
ρe
ρre

] , (9)

where ρe is the energy density at the end of inflation and
ρre the energy density at the end of reheating

ρre =
π2gre

30
T 4
re , (10)

with gre the number of degrees of freedom of species at
the end of reheating. To proceed we assume entropy con-
servation after reheating, this assumption establish an-
other expression involving Tre which can be substituted
in Eq. (10) and then in Eq. (9)

gs,reT
3
re =

(
a0
aeq

)(
aeq
are

)(
2T 3

0 + 6× 7

8
T 3
ν,0

)
, (11)

where gs,re is the number of degrees of freedom of species
after reheating, T0 = 2.725K and the neutrino tempera-
ture is Tν,0 = (4/11)1/3T0. The number of e-folds during
radiation domination Nrd ≡ ln

aeq
are

follows from Eqs. (9)

and (11)

Nrd = −3(1 + ω)

4
Nre +

1

4
ln[

30

greπ2
] +

1

3
ln[

11gsre
43

] + ln[
aeq ρ

1/4
e

a0 T0
] . (12)
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TABLE I. For easy reference this table collects numerical values of parameters used in the paper. Dimensionless quan-
tities have been obtained by working in Planck mass units, where Mpl = 2.4357 × 1018GeV and set Mpl = 1, the pivot
scale k∗ ≡ a∗H∗ = 0.05 1

Mpc
, used in particular by the Planck collaboration, becomes a dimensionless number given by

k∗ ≈ 1.3105 × 10−58. This can be compared with k0 ≡ a0H0 ≈ 8.7426 × 10−61h. To calculate a∗ we have to specify h for
the Hubble parameter H0 at the present time. We take the value given by Planck h = 0.67 for definitiveness and check
that no important changes occur for N∗ ≡ ln a0

a∗
for h in the interval 0.67 < h < 0.73. The solution of Eq. (3) for a∗ is

a∗ = 4.3000 × 10−5 from where we get N∗ = 10.05 for the number of e-folds from a∗ to a0.

Parameter usually given as Dimensionless

H0 100h km
s
/Mpc 8.7426 × 10−61 h

T0 2.725K 9.6235 × 10−32

As 2.0968 × 10−9 2.0968 × 10−9

k∗ 0.05/Mpc 1.3105 × 10−58

a∗ − 4.3000 × 10−5

Ωmd,0 0.315 0.315

Ωrd,0 7.9 × 10−5 7.9 × 10−5

Ωde 0.685 0.685

We can finally obtain an expression for the number of e-folds during reheating Nre by combining Eqs. (1) and
(12), the result is [24]

Nre =
4

1− 3ω

(
Nk −

1

3
ln[

11gs,re
43

]− 1

4
ln[

30

π2gre
]− ln[

a∗ρ
1/4
e

a0T0
]

)
. (13)

From this equation we can study the dependence of the
degrees of freedom gre on Nre and ω. For as long as
species have the same temperature and p ≈ 1

3ρ we have
that gs,re ≈ gre. Thus, we set gs,re = gre in Eq. (13) and
proceed to solve for gre, the result is [24]

gre = gre(φk) e−3(1−3ω)Nre , (14)

where

gre(φk) =

(
43

11

)4(
π2

30

)3
(

Hk

eNkρ
1/4
e

a0T0
k∗

)12

. (15)

The quantity gre(φk) essentially depends on φk. Numer-
ical studies of the thermalization phase during reheating
suggest that 0 . ω . 0.25 [28]; here we extended our
discussion up to ω ≈ 1/3. To extract a constraint for
the reheating temperature we observe that for ω . 1

3 the
exponential in Eq. (14) is always less than one. Thus,
gre(φk) gives the largest possible value of gre

gre . gre(φk) . (16)

In certain models gre(φk) and, as a consequence, gre is
less than the number of species of the Standard Model of

Particles (106.75). If this is the case [25] then a constraint
on the reheating temperature Tre follows immediately.
We have shown before [24] that this is indeed the case for
the Starobinsky model and in the next section we show
that it is also the case for a mutated hilltop inflation
model.

Let us write in more detail the condition under which
a constraint is expected. At the end of inflation when
ω = −1/3 an expression for ρe follows

ρe =
3

2
Ve =

9

2

Ve
Vk

H2
k . (17)

Together with Eq. (1), Eq. (15) can then be written in a
form containing only known quantities with the exception
of the last factor involving the ratio of the potential at
the scale k and at the end of inflation

gre(φk) =

(
43

11

)4(
2π2

270

)3(
a0T0√
a∗k∗

)12(
Vk
Ve

)3

, (18)

taking all the numbers from the Table I we get

gre(φk) ≈ 1.7981

(
Vk
Ve

)3

< 106.75 , (19)
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where we have written in the r.h.s. of Eq. (19) the num-
ber of degrees of freedom of the Standard Model of Parti-
cles as an upper limit for gre(φk). When gre(φk) > 106.75
no restriction for the reheating temperature coming from
the number of degrees of freedom of species arises. In su-
persymmetric models this number should be twice as big.
From the r.h.s. of Eq. (19) and the obvious requirement
Ve < Vk follows that

0.2563 <

(
Ve
Vk

)
< 1 . (20)

Whenever Ve/Vk is within these limiting values a con-
straint on the reheat temperature arises. Notice that
all these equations and bounds are model independent
although their solutions require specifying a model of in-
flation.

IV. THE STAROBINSKY AND MUTATED
HILLTOP INFLATION MODELS

The Starobinsky model revisited.– The potential of the
Starobinsky model [29–31] is given by [32]:

V = V0

(
1− e−

√
2
3φ
)2
, (21)

with Hubble function

Hk =
√

8π2εkAs =

√
32As

3

π

e
√

2
3φk − 1

, (22)

where εk is the slow-roll parameter ε ≡ 1
2

(
V ′

V

)2
at φ =

φk. The number of e-folds Nk follows easily

Nk = −
∫ φe
φk

V
V ′ dφ = 1

4

(
3e
√

2
3φk −

√
6φk

)
− 1

4

(
3e
√

2
3φe −

√
6φe

)
,

(23)
where φe denotes the end of inflation: φe =√

3
2 ln

(
1 + 2√

3

)
. We can solve Eq. (1) for φk with the

result [24]

φk = 5.365 , (24)

from here all inflationary parameters and observables fol-
low. Notice that in the Starobinsky model there are no
further parameters apart from the overall V0 (which is
fixed by the scalar amplitude) and we can obtain precise
values for all the quantities of interest during inflation.
Thus, Nk = 55.6 and we can also determine the size of
the primordial universe according to Starobinsky model.
The scale factor ak is

ak = a0 e
−2Nk = a0 e

−131.3 ≈ 9.49× 10−58 . (25)

Following the previous general discussion around Eq. (8)
we have now that at the scale k the size of the patch of the

universe from which ours originates was 8.35 × 10−31m.
At the end of inflation it had a diameter size of 2.71 cm.

FIG. 1. Schematic plot of the mutated hilltop potential given
by Eq. (26) as a function of φ for an inflaton field rolling from
the right. Characteristics of inflation and reheating for this
model are given in Tables II and III.

On the other hand, the ratio
(
Ve
Vk

)
≈ 0.2945 is well

inside the limiting values given by Eq. (20) and thus, a
constraint follows for the number of degrees of freedom
which translates into a constraint for the temperature at
the end of reheating, from Eq. (15) or Eq. (19) it follows
that gre ≈ 70.39.

In models where there is at least one free parameter
(different from an overall parameter which is fixed by the
scalar amplitude), one can investigate whether there is a
range of values of the parameter such that φk gets closer
to φe in such a way that the ratio Ve/Vk falls within the
limits of Eq. (20). Of course, the value of the parameter
should be consistent with the other requirements of infla-
tion, in particular a tensor-to-scalar ratio r and spectral
index ns within the bounds for these observables. We
discuss this possibility with a model of mutated hilltop
inflation.

Mutated Hilltop Inflation model.– This model is given
by the potential [33], [34]

V = V0

(
1− sech

(
φ

µ

))
. (26)

The number of e-folds Nk can be calculated in closed
form with the result

Nk = µ2

(
2 ln

cosh(φe2µ )
cosh

(
φk
2µ

))+ cosh
(
φk
µ

)
− cosh

(
φe
µ

)
.

(27)
The field at the end of inflation φe is given by the solution
to the condition ε = 1. The solution is very involved and
is given by
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TABLE II. Characteristics of the inflationary and reheatings epoch are given for the Starobinsky and Mutated Hilltop Inflation
(MHI) models. The second column quotes the value of φk for each model, with an specified model dependent parameter in the
case of MHI. From this value of φk follows all inflationary quantities. Three values of the parameter µ are given such that a
constraint to the reheating temperature follow. The constarint follows if Eq. (19), equivalently Eq. (20), is satisfied.

Model φk r ns α Nk gre(φk) Tre(GeV)
Starobinsky 5.3653 0.00343 0.96534 −6.1 × 10−4 55.6 70.39 0.5

MHI µ = 9.8107 12.8844 0.06300 0.96599 −6.16 × 10−4 56.3 > 106.75 −

MHI µ = 1.4118 5.8665 0.00420 0.96601 −5.93 × 10−4 55.6 106.75 103

MHI µ = 1 4.7910 0.00228 0.96539 −6.08 × 10−4 55.5 40.10 0.18

MHI µ = 0.5196 3.1405 0.00067 0.96444 −6.35 × 10−4 55.2 10.75 0.01

TABLE III. The table shows the number of relativistic degrees of freedom gre(φk), the reheating temperature Tre, number
of e-folds during reheating Nre and during radiation Nrd. The reheating temperature follows from the history of gre(T ) an
corresponds to the approximate mass of the particle when annihilation begins. The value of the parameter µ in the second row
corresponds to the bound on r (r < 0.063, [27]) and the other three values are such that a constraint occurs according to the
discussion following Eqs. (19) and (20). The lower bound for Tre comes from nucleosynthesis considerations and the bounds
for Nre and Nrd follow from Eqs. (12) and (13).

Model gre(φk) Tre Nre Nrd

Starobinsky 70.39 10MeV < Tre < 500MeV 40.84 > Nre > 36.30 16.69 < Nrd < 21.23

MHI µ = 9.8107 � 106.75 10MeV < Tre 41.57 > Nre 16.69 < Nrd

MHI µ = 1.4118 106.75 10MeV < Tre < 103GeV 40.89 > Nre > 28.61 16.69 < Nrd < 28.97

MHI µ = 1 40.10 10MeV < Tre < 180MeV 40.30 > Nre > 37.41 17.13 < Nrd < 20.02

MHI µ = 0.5196 10.75 10MeV 40.43 16.69

sech
(
φe
µ

)
= 1

6µ2(3+2µ2)2

(
−8µ6 + 4µ4(−6 + 5× 21/3R

1/3
2 )− 2µ2(9 + 21/3(−15 + 21/3R1)R

1/3
2 + 4× 22/3R

2/3
2 )− 3× 22/3R1R

1/3
2 + 3× 22/3R

2/3
2 + 2R1R

2/3
2

)
.

(28)

where R1 = 21/6µ
√

12µ4 + 66µ2 − 3 and R2 = µ3(4µ(9+

µ2) + 3
√

6
√

4µ4 + 22µ2 − 1. We cannot solve in general
Eq. (1) for φk and arbitrary µ thus, we resort to the fol-
lowing strategy: Eq. (4) is equivalent to Eq. (1) although
written in terms of r rather than Hk. We solve the equa-
tion r = 16εk = b, where b is an upper bound on r (e.g.,
b = 0.063 at present). With this solution for φ, let us say
φk(µ, b)

φk = φk(µ, b) , (29)

we solve the equation Nk = Nk(b) where Nk(b) is the
value of Nk in Eq. (1) at the bound (e.g.,Nk(0.063) =
56.3). In conclusion, we form a system of two equations
for two unknowns: φk and µ, consistently with Eq. (1).
There are, of course, some others equally valid variations
on this strategy. Once we have the values of φk and µ at
the bound we can investigate from there the behaviour of
the solution for various values of the parameter µ. What
we find in this particular model is that at the bound
b = 0.063, µ = 9.8107 with φk = 12.8844. Smaller values
of µ go in the right direction: lowering the value of r and,

in this case, also lowering the spectral index ns. Due to
Eq. (4) Nk follows the behaviour of r, also diminishing
as r diminish (see Table II).

From the Table II we see in row number four the case
µ = 1 where gre satisfies the bounds in Eq. (20)

gre(4.791) = 40.10 . (30)

Rows numbers three and five correspond to the limiting
values 106.75 and 10.75 for the effective number of de-
grees of freedom. The first limit saturates the degrees of
freedom for Standard Model of Particles and the second
corresponds to an approximated lower bound for the re-
heating temperature of 10 MeV coming from nucleosyn-
thesis considerations [28] although a lower Tre for the
lower bound has been discussed in the literature [35].
The solution for φk(µ) can be easily obtained by solving
Eq. (19) in the two limiting situations

Vk = α(gre(φk))Ve , (31)

where α ≈ 3.9011 when taking gre(φk) = 106.75 and α ≈
1.8149 when gre(φk) = 10.75. After having determined
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φk(µ), Eq. (1) gives the solution for µ. In Table III we
summarize our results for this section.

V. CONCLUSIONS

We have studied model independent results for the
inflationary and reheating epochs following from the
formulas given by Eqs. (1) and (20). We have, in
particular, establish an equation (Eq. (4)) for the
tensor-to-scalar ratio in terms of the number of e-folds
Nk ≡ ln ae

ak
during inflation. From a bound b for r

follows a general bound for Nk (Eq. (5)) which at
present is r < 0.063 implying Nk < 56.3. These are all
model independent results in the sense that no model
of inflation is used to obtain them. At the end of
Section II we also give a bound to the size of patch of

the universe from where our observable universe comes
from. Section III discuses the reheating epoch and a
bound is given for the effective number of relativistic
degrees of freedom gre which translates into a bound for
the reheating temperature and bounds for the number
of e-folds during reheating and also during the radiation
dominated epoch. The constraint is given in Eq. (20)
in terms of a ratio Ve/Vk of the potential at the end of
inflation over the potential at horizon crossing. Tables
II and III show results for two specific models of inflation.
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