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Boundary elements of the Tetrahymena 
telomerase RNA template and alignment 
domains 

Chantal  Autex ier  and Carol W. Greider ~ 

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA 

Telomerase is a DNA polymerase fundamental to the replication and maintenance of telomere sequences at 

chromosome ends. The RNA component of telomerase is essential for the synthesis of telomere repeats. In 

vitro, the template domain (5'-CAACCCCAA-3') of the Tetrahymena telomerase RNA dictates the addition of 

Tetrahymena-specific telomere repeats d(TTGGGG)~, onto the 3' end of G-rich or telomeric substrates that 

are base-paired with the template and alignment regions of the RNA. Using a reconstituted in vitro system, 

we determined that altering the sequence of the alignment and template domains affects processivity of 

telomerase without abolishing telomerase activity. These results suggest that alternative template/alignment 

regions may be functional. In the ciliate telomerase RNAs, there is a conserved sequence 5'-(CU)GUCA-3', 

located two residues upstream of the template domain. The location and sequence of this conserved domain 

defined the 5' boundary of the template region. These data provide insights into the regulation of telomere 
synthesis by telomerase. 
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Telomerase is a DNA polymerase essential for the rep- 
lication and maintenance of telomere sequences at the 

ends of chromosomes. Without telomeres, which serve 
as protective caps, chromosomes are prone to fusion 

with other chromosomes and to other DNA rearrange- 

ments (Muller 1938; McClintock 1941; for review, see 
Biessmann and Mason 1992). Generally, telomeres con- 
sist of short (5-8 bp) G-rich repeats, although exceptions 

to this exist, most notably in certain yeasts, where the 
repeat is 16-26 bp in length, and in Drosophila where no 

simple telomere repeats have been detected (Zakian 

1989; Blackburn 1991; Greider 1991a; McEachern and 
Blackburn 1994; Mason and Biessmann 1995). Telo- 
merase is a ribonucleoprotein (RNP) containing an es- 

sential RNA component that dictates the synthesis of 
telomeric repeats onto DNA substrates, both in vivo and 
in vitro (Greider and Blackburn 1989; Yu et al. 1990). 

Telomerase activity and RNA components were first 
identified in unicellular ciliated protozoa (Greider and 

Blackburn 1985, 1989; Zahler and Prescott 1988; Ship- 
pen-Lentz and Blackburn 1989, 1990; Lingner et al. 1994; 
Melek et al. 1994}. Telomerase activity has also been 
identified in other organisms, including immortalized 

human and mouse cell lines, Xenopus laevis, and Sac- 

XCorresponding author. 

charomyces cerevisiae (Morin 1989; Prowse et al. 1993; 

Mantell and Greider 1994; Cohn and Blackburn 1995; 
Lin and Zakian 1995). Recently the genes encoding the 
RNA components of telomerase from S. cerevisiae, 
Kluyveromyces lactis, human, and mouse have been 
cloned (Singer and Gottschling 1994; McEachern and 

Blackburn 1995; Blasco et al. 1995; Feng et al. 1995), and 
the protein components of telomerase from Tetra- 
hymena thermophila have been identified and the cor- 
responding cDNAs cloned (Collins et al. 1995). 

In Tetrahymena cells expressing mutant telomerase 

RNAs, altered telomere sequences and lengths result in 
nuclear and cell division defects, and senescence (Yu et 
al. 1990). Disruption of the telomerase RNA gene in 
yeast results in shortened telomeres, a gradual increase 

in generation time, and a decrease in cell viability and 
cell death (Singer and Gottschling 1994; McEachern and 

Blackburn 1995). In primary human and mouse cell 
strains where telomerase activity is not detectable, te- 
lomere length decreases with increasing number of cell 
divisions in vitro and with age in vivo (Harley et al. 1990; 

Hastie et al. 1990; Allsopp et al. 1992; Prowse and Grei- 
der 1995). In unicellular ciliates telomere length is main- 
tained through the action of telomerase (Yu et al. 1990). 

Telomere length is also maintained in vertebrate germ- 
line cells, immortalized cells, and tumors in which 
telomerase activity is detected, indicating a critical role 
for telomerase in telomere length regulation and poten- 
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tially, in the growth of immortal cells (Counter et al. 
1994; Kim et al. 1994; Mantell and Greider 1994; Prowse 
and Greider 1995). 

The RNA component of telomerase is best character- 

ized in the ciliates where it has been cloned from 20 

species. The RNAs range from 148 to 191 nucleotides in 

length (Greider and Blackburn 1989; Shippen-Lentz and 

Blackburn 1990; Romero and Blackburn 1991; Lingner et 
al. 1994; McCormick-Graham and Romero 1995; Melek 

et al. 1994). Both in vitro and in vivo experiments have 

shown that the telomerase RNAs of different ciliate spe- 
cies contain short sequences (9-15 nucleotides)comple- 

mentary to the species-specific telomeric repeats. These 
RNA sequences direct the synthesis of telomeric repeats 
by providing a template. The template region generally 

consists of sequences complementary to more than one 
telomeric repeat (for Tetrahymena, 5'-CAACCCCAA- 

3'). In Tetrahymena, in vitro reconstitution of telo- 
merase activity from isolated protein and mutant RNA 

components showed that the extra residues in the tem- 
plate region (5'-CAACCCCAA-3') serve to align sub- 

strate and product DNA sequences (Autexier and Grei- 
der 1994). 

To understand the role of telomerase in telomere 

length maintenance it is necessary to understand the 

mechanism of telomerase action. To dissect the function 
of the telomerase RNA, we analyzed the activity of Tet- 
rahymena telomerase reconstituted in vitro with telo- 

merase RNA mutants. Altering the sequence of the 
alignment and template domains affected processivity 
without abolishing telomerase activity. These results 

suggest that alternative template/alignment regions ad- 

jacent to the wild-type template/alignment domains 
may be used. The location and sequence of a previously 

identified conserved region 5'-(CU)GUCA-3' (Romero 
and Blackburn 1991; Lingner et al. 1994; McCormick- 

Graham and Romero 1995) defined the 5' boundary of 
the template. These experiments provide insight into the 

regulation of telomere repeat synthesis. 

Results 

Changes in the length of the template region of 
telomerase RNA are accommodated by telomerase 

Addition of a C residue to the telomerase RNA template 
region (5'-CAACCCCCAA-3') specifies the synthesis of 
5'-GGGGGTT-3' repeats in vivo, indicating that the ex- 

tra C residue serves as a template residue (Yu et al. 1990). 

To determine the effects of template length changes in 
vitro, we used a reconstitution system (Autexier and 

Greider 1994) to test a similar mutant (5C) and mutants 
with fewer C residues in the template (3C and 2C). The 
sequences of the template and alignment domains of 
these mutants are illustrated in Figure 1. 

In vitro, Tetrahymena telomerase can elongate telo- 
meric substrates processively generating a distinct 6-nu- 
cleotide banding pattern or periodicity (Greider and 
Blackburn 1985; Greider 1991b). The strongly labeled 
product within the repeat pattern represents a pause in 

elongation after the addition of the first G residue in the 
sequence GGGGTT (Greider 1991b). After this pause, 
which occurs at the extreme 5' end of the template re- 
gion, the enzyme translocates to initiate another round 

of telomeric repeat synthesis (Greider and Blackburn 

1989). The sequence at the 3' end of telomeric substrates 

specifies the first nucleotide added in elongation reac- 

tions with telomerase. For example, a G residue will be 
added first to a telomeric primer ending in the sequence 

d(GGGGTT), whereas a T residue will be added to a 

primer ending in the sequence d(TTGGGG) (Greider and 
Blackburn 1987; Zahler and Prescott 1988; Morin 1989; 

Shippen-Lentz and Blackburn 1989). Dideoxynucleotides 
(ddNTPs) can be used to determine the nucleotide se- 
quence added onto telomeric primers by telomerase 

(Greider and Blackburn 1985; Greider 1991b; Autexier 

and Greider 1994). 
Elongation assays were performed using telomerase re- 

constituted with the 2C, 3C, wild-type, or 5C telomerase 
RNAs (Fig. 1). Elongation products in the presence of 
[oL-32p]dGTP and either dTTP or ddTTP were analyzed, 

using three different oligonucleotide primers with per- 

mutations of the telomeric sequence d(GGGGTT) 3. The 
potential alignment of each primer with the telomerase 

RNAs is shown in Figure 1. 
The length of the template region affected the synthe- 

sis of short and long elongation products. With each 
primer, [o~-32p]dGTP and dTTP, the 3C and 5C mutant 

generated short and long elongation products, although 

fewer than wild type, whereas the 2C mutant synthe- 
sized predominantly short products, corresponding to 

the synthesis of one repeat (e.g., lanes 1, 3, 5, 7). At a low 
efficiency, long products were generated by the 2C RNA, 
visible on longer exposures of this and other experiments 
(data not shown). With [~-32P]dGTP and dTTP, the 2C 

mutant specified the addition of 4 residues onto the 3' 

end of the primer d(GGGTTG)3 before stopping at the 5' 
end of the template (lane 1). Three residues were added 

onto the 3' ends of the primers d(GGTTGG)3 and d(GT- 
TGGG)3 (lanes 9, 17), indicating that these primers align 
at the same position within the RNA. With the 3C RNA, 
5, 4, and 3 residues were added onto the 3' end of the 

primers d(GGGTTG)a, d(GGTTGG)a, and d(GTTGGG)3, 
respectively, before translocation at the 5' end of the 

template. With the 5C RNA, 7, 6, and 5 residues were 

added onto the 3' end of the primers d(GGGTTG)3, d(G- 
GTTGG)3 , and d(GTTGGG)3, respectively, before stop- 
ping at the 5' end of the template (lanes 7, 15, 23). Not all 

primers rested were elongated with the same efficiency. 

Telomerase reconstituted with wild type RNA elongates 
all six Tetrahymena telomeric oligonucleotide permuta- 

tions with similar efficiencies (Autexier and Greider 
1994). The 5C mutant elongated only d(GGTTGG)3, 
d(GTTGGG)3, and less efficiently, d(GGGTTG)3. The 
other permutations tested resulted in few, if any visible 
products at the primer concentrations tested (data not 

shown). 
For the 2C, 3C, wild-type, and 5C RNAs, the incorpo- 

ration of ddTTP into elongation products was dictated by 
the number of C residues in the template region. In the 
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Telomerase RNA domain boundaries 

Figure 1. Reconstitution of telomerase activity 
using mutant telomerase RNAs of various tem- 
plate lengths. (Top) Schematic diagram of the mu- 
tant RNAs used in reconstitution aligned with 
the telomeric oligonucleotides used in the telom- 
erase assays. Nucleotides in bold represent nucle- 
otides added onto the 3' end of the primers before 
and including the addition of ddTTP (boxed T). 
The numbers to the right of the sequences ( + 1, 
+ 2, + 3, + 4, + 5) indicate the number of residues 
added onto the 3' end of the primers before incor- 
poration of ddTTP. P refers to primer size-labeled 
product (18 nucleotides), - 1 refers to a 17-nucle- 
otide-labeled product, and -2  to a 16-nucleotide 
labeled product. Arrows on top of the RNA se- 
quences indicate the extreme 5' end of the tem- 
plate (residue 43 of the RNA) and the position of 
primer or product cleavage (cleaved G residue is 
underlined). The curved arrows indicate translo- 
cation of the product DNA. (Bottom) Elongation 
products of telomerase reconstituted with 2C 
(lanes 1,2,9,10,17,18), 3C (lanes 3,4,11,12,19,20), 
wild type (WT) (lanes 5,6,13,14,21,22), and 5C 
(lanes 7,8,15,16,23,24) and assayed in the pres- 
ence of [c~-32p]dGTP and dTTP (lanes 1,3,5,7,9, 
11,13,15,17,19,21,23) or ddTTP (lanes 2,4,6,8,10, 
12,14,16,18,20,22,24) and telomeric primers 
d(GGGTTG)3 (lanes 1-8), d(GGTTGG)3 (lanes 
9-16), or d(GTTGGG)3 (lanes 17-24). The num- 
bers on the right of the elongation products indi- 
cate the number of residues added to the 3' end of 
the primers tested. The gel was exposed to film 
for 4 days (lanes 1-6; 9-24) or 6 days (lanes 7,8). 

schematic in Figure 1, the boxed T residues represent 

ddTTP and the numbers to the right of the primer se- 

quences indicate the number of residues (in bold), in- 

cluding ddTTP, added onto the 3' ends of the respective 

primers. In reactions with [o~-32p]dGTP, ddTTP, and 2C 

RNA, only 2 residues were added onto the primer 

d(GGGTTG)3 consistent with the addition of dGddT 

(lane 2). For the 3C RNA, chain termination occurred 

after the addition of 3 residues onto the same primer 

(lane 4). For wild-type RNA, chain termination occurred 

after the addition of 4 residues, as expected. For the 5C 

mutant, labeled products were present at position + 4 as 

well as +5 (lane 8), possibly attributable to misalign- 

ment of the primer with the longer template. Products at 

+ 5 are expected if all the C residues were serving as 

template nucleotides. In vivo, this mutant has reduced 

fidelity, generating T~G6_s as well as T2Gs repeats (Yu 

and Blackburn 1991), presumably the result of misalign- 

ment. During elongation of the d(GGTTGG)3 primer, in 

the presence of ddTTP, stops occurred at positions + 2, 

+3, and +4 for the 3C, wild-type, and 5C RNAs, respec- 

tively (lanes 12, 14, 16), and during elongation of the 

primer d(GTTGGG)3, with ddTTP, stops occurred at po- 

sitions + 1, + 2, and +3 for the 3C, wild-type, and 5C 

RNAs, respectively (lanes 20, 22, 24), indicating the al- 

tered templates were used to specify the added bases. 

Tetrahymena telomerase possesses a specific nude- 

olytic activity that cleaves primers that align at or be- 

yond the extreme 5' end of the template (position 43) 

(Collins and Greider 1993). The 2C mutant generated 

labeled products at positions primer minus one ( - 1) and 

primer minus two (-2) for primers d(GGTTGG)3 and 

d(GTTGGG)3, respectively (lanes 9, 10, 17, 18). This 

could be attributable to alignment of these primers be- 

yond the 5' end of the RNA template and cleavage of 2 or 

3 residues, before template-directed addition of 

[a-3~p]dGTP at positions - 1 or -2 ,  respectively (under- 

lined in Fig. 1). The 3C mutant also generated a labeled 

product at position - 2  with d(GTTGGG)3 (lanes 19, 20). 

A primer size-labeled product (P) that results from nu- 

cleolytic activity of telomerase was also detected for all 

RNAs tested with primer d(GGGTTG)3 (lanes 1-8}. 

Thus, altering the length of the template did not abolish 

the cleavage activity associated with telomerase. 

Altering the sequence of the template and alignment 
regions of telomerase RNA decreases processivity 

Previously we defined template (positions 43-48; 5'- 

CAACCCCAA-3') and alignment (positions 49-51; 5'- 

CAACCCCAA-3') domains in the telomerase RNA (Au- 

texier and Greider 1994). To determine whether the se- 

quence of the template and alignment regions of the 

telomerase RNA are essential to template function and 

GENES & DEVELOPMENT 2229 

 Cold Spring Harbor Laboratory Press on April 26, 2010 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


Autexier and Greider 

to the recognition and elongation of substrates by telo- 

merase, RNAs with circularly permuted sequences 

within the 9-nucleotide template and alignment regions 

of the telomerase RNA (called temperl-temperS) were 

tested in reconstitution assays. The sequence of residues 

43-54 of these RNA mutants and wild-type telomerase 

RNA are shown in Figure 2. Using the telomeric se- 

quence primer d(GGGGTT)3 , elongation products in the 

presence of [~-32P]dGTP and either dTTP or ddTTP were 

analyzed (Fig. 2). Most of the mutants generated few, if 

any, long products, although all have the correct 9 nu- 

cleotides to specify potentially wild-type d(GGGGTT)n 

repeats. Quantitation of the long and short products con- 

firmed the lower ratio of long-to-short products in the 

mutants. The ratios of the fourteenth to the first repeat 

were temperl, 0.14; temper2, 0.011; temper3, 0.025; 

temper4, 0.03; temper5, 0.05; and wild type, 0.25. This 

decrease in processivity suggests that alternative align- 

ment/template domains are being used. In the presence 

of [a-32P]dGTP and dTTP, temper3 generated products 

with a five, not six, base repeat (cf. lane 5 with lane 11). 

Temper2 generated products with a 2-nucleotide band- 

ing pattern, suggesting the primer might be aligning and 

translocating at more than one location (lane 3), as 

shown in Figure 2. Alternative primer alignments that 

potentially extend the template/alignment domain more 

than 9 nucleotides are also possible for temperl, tem- 

per4, and temper5 (underlined A residues in Fig. 2). 

With all RNAs except temper3, ddTTP incorporation 

occurred 5 residues from the 3' end of the primer 

d(GGGGTT)3 indicating the synthesis of wild-type re- 

peats (lanes 2,4,8,10,12). For temper3, termination oc- 

curred predominantly at position + 4 from the 3' end of 

primer d(GGGGTT) 3 (lane 6). There are two possible 

alignments of this primer with temper3 RNA, at posi- 

tions 52 and 53 or at positions 47 and 48. The 5 nucle- 

otide periodicity of the elongation products, with dTTP, 

and the strongly labeled product at position +4, with 

ddTTP, suggest that the alignment at positions 52 and 53 

can occur, resulting in the synthesis of d(GaT2) repeats 

rather than d(G4T2) repeats. If this is the case, the tem- 

plate region must also be 3' to the previously defined 

template region. In addition to a labeled product at po- 

sition + 4, with ddTTP, some termination occurred at 

position + 5 from the 3' end of primer d(GGGGTT)3 

(lane 6) suggesting that these primers can also align at 

positions 47 and 48 of the temper3 RNA. However, 

alignment at this position would not result in the ob- 

served 5-bp periodicity of products seen with dTTP. To 

generate products in which ddTTP is incorporated at the 

indicated positions, temper4 and temper5 can align with 

the tested primers as indicated in Figure 2. 

To address further whether alternative template/ 

alignment regions are functional, insertions were intro- 

duced at position 51 in the telomerase RNA. The se- 

quence of these RNAs and all possible primer align- 

Figure 2. Reconstitution of telomerase activity with RNAs containing permutations of the template and alignment sequences. (Left) 
Schematic diagram of the sequence of the template permutations of the telomerase RNAs (from residues 43-54 of the RNAs) aligned 
with the telomeric oligonucleotide d(GGGGTT)3. The features in the diagram are similar to those in Fig. 1. Underlined A residues 
indicate the positions where the extreme 3' end of the primer d(GGGGTT) 3 can align. (Right) The RNA mutants and oligonucleotide 
primer used are indicated in the figure: temperl (lanes 1,2), temper2 (lanes 3,4), temper3 {lanes 5,6), temper4 (lanes 7,8), temper5 (lanes 
9,10) or wild type (WT)(lanes 11,12). Elongation reactions were carried out in the presence of [c~-32P]dGTP and dTTP (lanes 1,3,5, 7, 9,11) 
or [c~-a2P]dGTP and ddTTP (lanes 2,4,6,8,1 O, 12) as described. The numbers in the figure indicate the number of nucleotides added onto 
the input primers. In lanes 3 and 4, products shorter than the primer are visible, indicating that temper2 may have some cleavage 
activity. The gel was exposed to film for 2 days; however, lanes 3 and 4 are taken from a lighter exposure of the negative to clearly show 
the short products. 
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ments are diagrammed in Figure 3. The 51 + 2U RNA 

contains 2 extra U residues at position 51, whereas the 

51 + 4C RNA contains 4 extra C residues at the same 

position, extending the template/alignment domain by 

4-6 residues. Elongation products of telomerase recon- 

stituted with 51 + 2U or 51 + 4C were analyzed and com- 

pared to wild-type elongation products (Fig. 3). Using 

primers d(GGGGTT)a or d(GGGTTG)3, and [a-B2p]dGTP 

and ddTTP, incorporation of ddTTP by telomerase re- 

constituted with wild-type, 51 + 2U, or 51 + 4C RNA oc- 

curred at positions + 5 and + 4 from the 3' end of each 

primer, respectively, consistent with the synthesis of 

d(G4T2) repeats (lanes 2, 4, 7, 10, 12, 14). With the same 

primers and [~-32p]dGTP and dTTP, long elongation 

products were generated by telomerase reconstituted 

with 51 + 2U RNA, similarly to wild type (cf. lanes 1, 3, 

5, and 9). Both wild-type and 51 +2U RNA generated a 

primer size-labeled cleavage product in elongation reac- 

tions with d(GGGTTG)3, indicating alignment of the 

primer with the 5' end of the template (lanes 3, 4, 9, 10). 

Elongation products generated by telomerase reconsti- 

tuted by 51+ 2U were not dependent on dATP and 

ddATP was not incorporated into elongation products, 
suggesting that the 2 inserted U residues in the 3' flank- 

ing region are not part of the template and that primer 

alignment is unlikely to be occurring 3' to the insertion 

in this mutant  (lanes 5, 6, 8). 

Elongation of telomeric primers by telomerase recon- 

stituted with 51 + 4C RNA generated few, if any, long 

products in telomerase reactions (lanes 11, 13). More- 

over, no primer size-labeled product was generated by 

this mutant  in elongation reactions with d(GGGTTG)3, 

suggesting that the alignment of this primer with 

51 + 4C RNA is not occurring at the extreme 5' end of 

the template (lanes 13, 14) and that extending the tem- 

plate/alignment domain from 9-15 residues resulted in 

nonprocessive synthesis of telomeric repeats. 

The location and sequence of the conserved region 
5'-(CU)GUCA-3' define the 5' boundary of the 
template domain 

In telomerase RNAs from 20 ciliate species, there is a 

conserved sequence 5'-(CU)GUCA-3', located 2 residues 

upstream of the template domain (Romero and Black- 

burn 1991; Lingner et al. 1994; McCormick-Graham and 

Romero 1995). To test the function of this conserved 

sequence, first we assayed mutations that changed the 

spacing or sequence between this region and the tem- 

plate (42G, A42, A43, and 42+U). All the mutant  se- 

quences, including the conserved region are illustrated 

in Figure 4A. The potential alignment of the primer 

tested, with the RNAs, the sequence and number of res- 

idues added (in bold) onto the primer are shown. Elon- 

gation products of telomerase reconstituted with these 

mutant  RNAs were compared to elongation products of 

telomerase reconstituted with wild-type telomerase 

RNA and the 43U mutant  RNA characterized previously 

(Autexier and Greider 1994)(Fig. 4B). 

Telomerase reconstituted with wild-type telomerase 

Telomerase RNA domain boundaries 

Figure 3. Telomerase can use alternative alignment regions. 
(Top) Schematic diagram illustrating the potential alignment of 
the telomeric primers d(GGGGTT)3 and d(GGGTTG)3 with 
wild type, 51 + 2U, and 51 + 4C telomerase RNAs. Residues 43- 
54 of the telomerase RNAs are shown. The features in the dia- 
gram are similar to those in Fig. 1. Our data (see text) suggest 
that certain alignments do not occur (crossed out in the sche- 
matic). Underlined 3'-AAC-5' residues indicate the positions 
where the extreme 3' end of the primers d(GGGGTT)3 (A resi- 
dues only) and d(GGGTTG)3 can align. (Bottom) Telomerase 
was reconstituted with wild type (WT) (lanes 1--4), 51+2U 
(lanes 5-10), or 51 +4C (lanes 11-14) telomerase RNA. Elonga- 
tion reactions were performed using primers d(GGGGTT)3 
(lanes 1, 2, 5-8, 11, 12) or d(GGGTTG)3 (lanes 3, 4, 9, 10, 13, 14) 
in the presence of [a-a2P]dGTP and the nucleotides indicated in 
the figure. The numbers refer to the number of nucleotides 
added onto the input primer (P). The gel was exposed to film for 
2 days (lanes 1-4) and 4 days (lanes 5-14). 

RNA generates long products with [a-32P]dGTP and 

dTTP, whether dATP is added or not (Fig. 4B, lanes 1,2; 

Autexier and Greider 1994). ddATP is not incorporated 

into elongation products generated by wild-type RNA 

(lane 4; Autexier and Greider 1994), suggesting that the 2 

U residues upstream of position 43 are not template res- 

idues, ddTTP incorporation occurred at the expected po- 

sition (+ 2) from the 3' end of the primer d(GTTGGG)a 
(lane 3). To test if changing the sequence of position 42 

would result in incorporation of this residue into the 

template, the U residue was changed to all possible other 

nucleotides. No alteration in telomerase products was 

seen for these mutants (data not shown). For example, 

elongation products of telomerase reconstituted with 
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Figure 4. Location of the upstream con- 
served region 5'-(CU)GUCA-3' defines the 
5' boundary of the template. (A) Schematic 
diagram illustrating the potential align- 
ment of the telomeric primer d(GT- 
TGGG)3 with wild-type (WT), 42G, A42, 
A43, 43U, and 42+U telomerase RNAs. 
Residues 35-51 are shown, including the 
conserved region 5'-(CU)GUCA-3' {boxed). 
The potential 2-residue spacer region be- 
tween the 5' end of the template and the 
conserved sequence is underlined. Dele- 
tions are indicated by spaces in the RNA 
sequence. Boxed residues indicate ddTTP 
or ddATP incorporation. The features in 
the diagram are similar to those in Fig. 1. 
(B) Telomerase reconstituted with wild- 
type telomerase RNA {lanes 1-8), 42G 
RNA (lanes 9-12), A42 RNA (lanes 13,14), 
A43 RNA {lanes 15-18), 43U RNA {lanes 
19-22), or 42 + U RNA {lanes 23--26). Elon- 
gation reactions were performed using 
primer d(GTTGGG)3 with [a-32p]dGTP 
and the combination of nucleotides as 
shown in the figure. The numbers refer to 
the number of nucleotides added onto the 
input primer. The gel was exposed to film 
for 6 days except for lanes 1--4 (1 day) and 
lanes 5-12 (5 days). Note that lanes 5-12 
were from a different experiment than 
lanes I-4 and 13-26, thus the longer prod- 
ucts do not align with those in other lanes. 

42G RNA, in which  the U at position 42 was changed to 

a G, were s imilar  in the presence or absence of dCTP or 

ddCTP (Fig. 4B, lanes 9, 10, 12), like wild type (lanes 5, 

6, 8). With the primer d(GTTGGG)3, [a-32p]dGTP, dTTP, 

and ddCTP the 42G mutan t  did not incorporate ddCTP, 

further indicating that position 42 is not a template res- 

idue (lane 12). Chain  te rminat ion  occurred at position 

(+ 2) in the presence of ddTTP, like wild type {lane 11). 

To test further the role of position 42, residue 42 was 

deleted (z~42). Telomerase reconstituted wi th  this mu- 

tant RNA generated long products in the presence of 

d(GTTGGG)3, [a-32P]dGTP and dTTP. There was a more 

predominant  pause at position 44A, indicating translo- 

cation now occurs after the addition of the second T 

residue rather than at the first G residue in the repeat 
{lane 13). Chain  terminat ion occurred at + 2 from the 3' 

end of the primer in the presence of ddTTP (lane 14). In 

elongation assays wi th  d(GGGTTG)3, A42 did not gen- 

erate a primer size- labeled product, suggesting that the 

C residue, now at position 42, is no longer the 5' end of 

the template {data not shown}. This  is consistent wi th  

the maintenance  of 2 residues between the conserved 

domain and the template 5' end or wi th  the main tenance  

of a specific number  of residues between the template  5' 

end and some other e lement  5' of the template, for in- 

stance, stem I or s tem II (see Discussion}. 

Elongation of the primer d(GTTGGG)3 by telomerase 

reconstituted wi th  A43 RNA was s imilar  to the elonga- 

tion of d(GTTGGG)3 by 442, wi th  a predominant  pause 

at position 44A (Fig. 4, lanes 15-18). No incorporation of 

dATP or ddATP occurred and ddTTP incorporation oc- 

curred at the same position from the 3' end of the primer 

as wild type (+2; lanes 15-18}. The 6 nucleotide period- 

icity of the elongation products, wi th  dTTP, suggests 

that d(GGGGTT) repeats are synthesized and that resi- 

due 49 is now used as a template residue in this mutant .  

Incorporation of dATP or ddATP into elongation prod- 

ucts generated by telomerase reconsti tuted by 43U RNA 
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did occur, as described previously (lanes 20 and 22; Au- 

texier and Greider 1994). In contrast to our previous ob- 

servation (Autexier and Greider 1994) with this more 

active preparation of telomerase, some short products 

were generated by 43U in the absence of dATP. This 

suggests that under these conditions, translocation can 

occur at position 44, bypassing the U at position 43 and 

that d(GGGGTT) repeats are synthesized instead of 

d(GGGTTA) repeats (cf. lane 19 with lane 20). Synthesis 

of d(GGGGTT) repeats by 43U, with dTTP, suggests that 

residue 49 is a template residue under these, conditions. 

ddATP terminated predominantly at position + 4 from 

the end of the primer; however, premature translocation 

could bypass this site and generate products seen at po- 

sition + 10 (lane 22). In the presence of ddTTP, chain 

termination occurred at position + 2, like wild type (lane 

21). Results with 43U are consistent with position 43 

being at the 5' end of the template (Autexier and Greider 

1994). 

Similar to 43U, elongation products were generated by 

42+U RNA in the absence of dATP (lane 23). Unlike 

43U, however, elongation products were longer in the 

absence of dATP than in the presence of dATP. With 

dATP, a predominant labeled product was observed at 

position + 5, most likely template-directed by the extra 

U residue (lane 24). ddATP incorporation also occurred 

at position + 5, indicating that the extra U residue is 

now part of the template region (lane 26). ddTTP incor- 

poration occurred 2 residues from the 3' end of d(GT- 

TGGG)3 as for wild type (lane 25). This suggests that 

increasing the number of U residues between the tem- 

plate and sequences 5' of the template (possibly the con- 

served region) results in incorporation of the extra U res- 

idue into the template. 

To characterize further the role of the conserved re- 

gion, we mutated the sequence of this region. Not to 

disrupt a potential stem-loop structure involving 5'- 

(CJUG-3' (Romero and Blackburn 1991), we changed the 

5'-(C)UGUCA-3' sequence only at the 3' end, to 5'- 

(C)UGAGU-3' (38-40AGU). To analyze the products 

generated by the 38--40AGU mutant, telomerase recon- 

stituted with this RNA was assayed using d(GGGGTT)3 

or d(GGGTTG)3 and [e~-32P]dGTP and various combina- 

tions of dTTP, ddTTP, dATP, and ddATP (Fig. 5). This 

mutant  generated fewer long products than wild type 

when assayed with either primer in the presence of 

[~-32P]dGTP and dTTP (lanes 1, 2, 7). Incorporation of 

ddTTP occurred at the same positions as wild type from 

the 3' end of d(GGGGTT)3 ( + 5) and d(GGGTTG)3 ( + 4) 
(lanes 4 and 8). Like for wild type, a primer size-labeled 

product was generated with d(GGGTTG)3 (lanes 7, 8), 

indicating cleavage still occurs in this mutant.  In reac- 

tions with [a-g2P]dGTP, dTTP (or ddTTP), and dATP, 

elongation products stopped at position + 3 from the 3' 

end of the primer d(GGGGTT)3 , suggesting that the 2 U 

residues at positions 41 and 42 are used as template res- 

idues (lanes 3, 5). In reactions with [~-32P]dGTP, dTTP, 
and ddATP, chain termination occurred at position + 2 

from the 3' end of the primer d(GGGGTT)3 , suggesting 

that dATP addition is template-directed by the U at p o -  

Figure 5. The sequence of the upstream conserved region 5'- 
(CU)GUCA-3' defines the 5' boundary of the template. (Top) 
Schematic diagram illustrating the potential alignment of the 
telomeric primer d(GGGTTG)3 with wild-type (WT) and 38- 
40AGU telomerase RNAs. Residues 35-51 are shown, includ- 
ing the conserved region 5'-{CU)GUCA-3' (boxed). The 2-resi- 
due spacer region between the 5' end of the template and the 
conserved sequence is underlined. The features of this diagram 
are similar to those in Figs. 1 and 4. (Bottom) Telomerase was 
reconstituted with wild-type (lane 1) or 38-40AGU (lanes 2-8) 
telomerase RNA. Elongation reactions were performed using 
primer d(GGGGTT) 3 (lanes 1-6) or d(GGGTTG)3 (lanes 7,8) in 
the presence of [e~-32p]dGTP and the other nucleotides indicated 
in the figure. The numbers refer to the number of nucleotides 
added onto the input primer (P). The gel was exposed to film for 
l0 days. 

sition 42 (lane 6). These data indicated that altering the 

sequence of the conserved region allows copying past the 

5' boundary of the template. 
To examine further whether the U residues between 

the original template 5' end and the conserved domain in 

the 42+U and 38-40AGU RNA are template residues, 

telomerase reconstituted with 42 + U or 38--40AGU was 

assayed using the primer d(GGGTTG)3 and [~-32P]dATP, 
dTTP, and dGTP (Fig. 6). Telomerase reconstituted with 

wild-type, A42, A43, or 43U was also assayed under the 
same conditions. Incorporation of [~-32P]dATP into elon- 

gation products generated by telomerase reconstituted 

with 43U was detected as described previously (Fig. 6, 

lane 5; Autexier and Greider 1994). The addition of 
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tion of the radiolabeled product at position + 1. No spe- 

cific incorporation of [a-g2P]dATP by telomerase recon- 

stituted with wild type, A42, or A43 occurred (lanes 2-4). 

These data further support the conclusion that altering 

either the spacing between the template 5' end and the 

conserved region, or the sequence of the conserved re- 

gion, alters the 5' boundary of the template. 

Figure 6. Incorporation of [c~-32p]dATP by telomerase reconsti- 
tuted with mutant telomerase RNAs. (Top) Schematic diagram 
of predicted alignments between 43U, 42 + U, and 38-40AGU 
telomerase RNA and the telomeric primer d(GGGTTG}3. The 
sequence of wild-type {WT), A42, and A43RNAs from residues 
35-51 are also shown, including the conserved region 5'- 
(CU)GUCA-3' (boxed). The potential 2-residue spacer region be- 
tween the 5' end of the template and the conserved sequence is 
underlined. Nucleotides in bold represent nucleotides added. 
{Bottom} The primer d(GGGGTT)3 and [a-32p]dGTP were used 
in telomerase reactions in lane I. Telomerase was reconstituted 
with wild-type telomerase RNA (lanes I, 2), A42 RNA (lane 3), 
A43 RNA (lane 4), 43U RNA (lane 5), 42 + U RNA (lane 6), and 
38--40AGU (lane 7) using primer d(GGGGTT)a (lane 1) and 
d(GGGTTG)3 (lanes 2-7) in elongation reactions. The numbers 
refer to the number of nucleotides added onto the input primers 
(P). The gel was exposed to film for 4 days. 

[~-32P]dATP occurred at the predicted positions, primer 

size {P) and + 6. [~-32P]dATP was also incorporated into 
elongation products of telomerase reconstituted with 

42+U and 38-40AGU (lanes 6, 7). The addition was 

probably template-directed by the extra U (42 + U) or the 

U at position 42 (38--40AGU) as suggested by the posi- 

Discussion 

Alternative template and alignment domains of the 
Tetrahymena telomerase RNA 

The Tetrahymena telomerase template is complemen- 

tary to one and a half repeats of the telomere sequence. 

Part of this region is used to align substrates and part is 

used as a template to specify nucleotide incorporation 

(Autexier and Greider 1994). We report here that altering 

the sequence of the alignment and template domains 

affected processivity of telomerase without abolishing 

telomerase activity, suggesting that alternative tem- 

plate/alignment domains 3' of the wild-type template/ 

alignment region can be functional. Two sites have been 

proposed for the recognition of telomeric primers (Har- 

rington and Greider 1991; Collins and Greider 1993; Lee 

and Blackburn 1993). One site, on the telomerase RNA, 

binds the most 3' telomeric repeat of the primer or prod- 

uct DNA. The other site, referred to as the anchor site, 

may be a protein component that binds residues 5' of, 

and adjacent to, the sequences bound to the RNA. One of 

the recently cloned protein components specifically 

binds primer oligonucleotides {Collins et al. 1995). 

Telomerase was active when reconstituted with RNAs 

containing template domains of different lengths (Fig. 1 ). 

The position of ddTTP incorporation indicated that d(G- 

GTT), d(GGGTT), and d(GGGGGTT) repeats could be 

synthesized by telomerase reconstituted with 2C, 3C, 

and 5C telomerase RNA, respectively. However, telo- 

merase reconstituted with the 2C RNA did not generate 

as long elongation products as telomerase reconstituted 

with the 3C or wild-type RNA; this may reflect steric 

constraints during movement of the catalytic site or 

RNA, difficulties in aligning primer or product se- 

quences with the mutant RNAs, the synthesis of non- 

wild-type telomeric repeats (Yu et al. 1990; Autexier and 

Greider 1994) or specific sequence preferences of the an- 

chor site. Synthesis of noncanonical telomeric repeats, 

for instance, could affect the interaction of the elonga- 

tion products with telomerase proteins and the align- 

ment and template domains of telomerase RNA, result- 

ing in inefficient polymerization and translocation. In 

vivo, Tetrahymena cells that synthesize d(GsT2) repeats 

become arrested in cell division and die {Yu et al. 1990), 

suggesting that the sequence alteration of telomere re- 

peats may inhibit telomerase protein-DNA interactions 
involved in telomere function, thereby affecting telo- 

merase efficiency or processivity. In vivo the 5C mutant 

has reduced fidelity, generating T2G6_ s as well as T2G s 

repeats (Yu and Blackburn 1991). In vitro, pausing and 
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chain termination at different positions also suggests re- 
duced fidelity of the 5C mutant.  

Telomerase was active when reconstituted with RNAs 

having permuted template and alignment domains, indi- 

cating that the sequence of the template and alignment 

domain is not stringent (Fig. 2). Telomerase reconsti- 

tuted with the template permutations generated fewer 

long products than telomerase reconstituted with wild- 

type RNA. Although all permutations can potentially 

specify wild-type repeats, the fact that wild-type activity 

is not regenerated suggests either specific nucleotides are 

required at specific template positions or sequences out- 

side the alignment domain are used differently in the 

mutants. Alternatively if the sequence of the RNA con- 

tributes to a structure that is required for translocation 

the permutations may affect the three-dimensional con- 

formation of the active site and inhibit translocation. 

The lowered efficiency of mutants with different length 

template/alignment domains suggests that there must 

be an active mechanism to specify the boundaries of 
these domains. 

Our data indicate that d(G3T2) repeats were synthe- 
sized by temper3, suggesting that the alignment of prim- 

ers occurs at positions 3' to the previously defined align- 

ment region (Autexier and Greider 1994). The decrease 

in processivity suggests that the 3' flanking region could 

also be used for alignment of primers to temper4, tem- 

per5, and 51+4C (Figs. 2 and 3). The absence of long 

products and the inability of telomerase reconstituted 

with 51 +4C RNA to cleave d(GGGTTG)3 suggests that 

alignment of primers with this RNA occurs at the in- 

serted residues. This supports a requirement for a spe- 

cific number of residues in the template and alignment 

domains or in the spacing between substrate bound at 

the anchor site on the protein and at the template site. 

Functional template and alignment domains in the 
recognition and elongation of substrate DNA may be im- 

portant to telomerase function in vivo. During develop- 

mentally controlled chromosome healing in Tetrahy- 
mena, telomerase adds telomeric DNA directly de novo 

onto nontelomeric sequences (Yu and Blackburn 1991). 

Generally, in vitro, telomerase adds telomeric repeats 

onto telomeric or G-rich substrates, but usually not onto 

nontelomeric or non-G-rich DNA (Blackburn et al. 1989; 

Harrington and Greider 1991; Morin 1991; Collins and 

Greider 1993; Lee and Blackburn 1993). Perhaps, in vivo, 

nontelomeric or non-G-rich substrates align with alter- 

native regions of the telomerase RNA, such as the 3' 

flanking regions of the RNA template/alignment do- 

main. Synthesis of telomeric repeats could then occur 

using the template/alignment domain as template. After 

translocation and alignment of the newly synthesized 
wild-type telomeric repeats with the conventional align- 

ment and template domains, a second round of telomere 
repeat addition could occur. 

In certain organisms, including Tetrahymena and As- 
caris, the telomeric sequences added onto newly created 

chromosome break sites are precise, with no noncanon- 

ical telomere sequences found at the junction between 
the chromosome and the newly added telomere se- 

quences (Budarf and Blackburn 1987; Mtiller et al. 1991; 

Yu and Blackburn 1991). In these organisms, alternative 

alignment domains may be used for the initial recogni- 

tion of nontelomeric sequences; subsequent reposition- 

ing may result in the synthesis of only wild-type telo- 

meric repeats. However, in Plasmodium falciparum, 
where the telomeric repeats consist of d(TT(T/C)AGG) 

sequences, an irregular pattern of heterogeneous telo- 

mere repeats is added initially onto broken chromosome 

ends (Scherf and Mattei 1992). In other organisms, such 

as S. cerevisiae and Dictyostelium discoideum telomeric 

repeats consist of a mixture of different sequences 

d(TGI_3) and d(AGI_8), respectively (Emery and Weiner 
1981; Szostak and Blackburn 1982). Flexibility in the rec- 

ognition of and telomere addition onto nontelomeric 

substrates may, in such organisms, be inherent to the 

telomere complementary region of the telomerase RNA. 

For instance, although yeast telomeres have irregular re- 

peats, the sequences found at healed yeast chromosomes 

are complementary to the template domain of S. cerevi- 
siae telomerase RNA (Kramer and Haber 1993; Singer 

and Gottschling 1994). 

The location and sequence of the conserved region 
5'-(CU)GUCA-3' define the 5' boundary of the 
template 

Our data indicate that the sequence and location of the 

conserved region 5'-(CU)GUCA is essential in defining 

the 5' boundary of the template domain (Figs. 4--6). In 

wild-type telomerase RNA, there are two residues be- 

tween the conserved domain and the template domain. 

Telomerase reconstituted with 42G, A42, A43, or 43U 

RNA maintains this 2 residue spacing between the con- 

served sequence or other sequences 5' of the template 

and the start of the template, even for A42, when this 

results in the exclusion from the template domain of a 

residue normally in the template (C at position 43). The 

use of the U residue 5' of 3'-AACCCCAAC-5' as a tem- 

plate residue by telomerase reconstituted with 42 + U  

RNA indicates that increasing the number of residues by 

one between the conserved region and the original 5' end 

of the template results in the addition of 1 nucleotide to 

the 5' end of the template domain (Figs. 4 and 6). How- 

ever, in the presence of dATP, elongation by 42 + U, un- 

like wild type, is nonprocessive, suggesting copying past 

the normal template region inhibits translocation. Thus, 

most products either dissociate or remain paused at the 

extra U position, resulting in the generation of mostly 

short products. This differs from the 43U mutant  that 

generates processive A residue-containing products in re- 

actions with dATP. Perhaps a specific structure is re- 

quired in the RNA for translocation and the correct lo- 

cation of the conserved sequence contributes to that 

structure. Moving the conserved sequence in the 42 + U 

mutant  may cause steric constraints generated by copy- 

ing the sequence 5' of the template. 

Altering the number of residues 5' of the template al- 

ters the relative distance between the template region 

and all elements 5' of the template, including the con- 
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served domain and stems I and II. The conserved domain 

is the best candidate as an essential functional element 

in the determination of the 5' template boundary. Stem 

II is not conserved in other Tetrahymena species (Mc- 

Cormick-Graham and Romero 1995). Deletion of 8 nu- 

cleotides at the 5' end of the RNA abolishes stem I; 

however, in vitro reconstitution of telomerase activity 

with this RNA generates a wild-type 6 base repeat that is 

not terminated in the presence of dATP (data not shown) 

unlike products generated by the 42 + U and 38-40AGU 

mutants under the same conditions. 

Changing the sequence at the 3' end of the conserved 

region 5'-(CU)GUCA-3' to 5'-{CU)GAGU-3' resulted in 

copying past the normal 5' template boundary (Figs. 5 

and 6), further indicating that the conserved sequence 

functions to define the 5' boundary of the template. Te- 

lomerase activity reconstituted with 38-40AGU is non- 

processive suggesting that the change in the conserved 

sequence or the use of the spacer as a template region 

inhibits translocation. During the course of this work, 

Lingner and co-workers (1994) published the telomerase 

RNA sequences from additional ciliate species, all of 

which contained the sequence 5'-(C)UGUCA-3' two 

bases upstream from the template region. They proposed 

that this conserved sequence is engaged in a RNA-RNA 

or RNA-protein structure involved in preventing poly- 

merization beyond the 5' end of the template, essentially 

defining the 5' boundary of the template domain (Ling- 

net et al. 1994). Our data support this hypothesis. The 

yeast and mammalian telomerase RNAs lack the con- 

served sequence present in ciliate telomerase RNAs 

(Singer and Gottschling 1994; Blasco et al. 1995; Feng et 

al. 1995; McEachem and Blackburn 1995). Budding yeast 

telomeres, which consist of TG~_ 3 repeats for S. cerevi- 
siae and of 23 and 25 bp repeats for Candida albicans 
and K. lactis, respectively (Szostak and Blackburn 1982; 

McEachem and Hicks 1993; McEachem and Blackburn 

1994) may have evolved from simpler sequence repeats 

through mutation of the conserved region. Absence of a 

5' template boundary regulation may have resulted in 

polymerization beyond the 5' end of an originally short 

template domain and copying of adjacent sequences. 

The diagram in Figure 7 illustrates the secondary 

structure of the T. thermophila telomerase RNA 

(Romero and Blackburn 1991; ten Dam et al. 1991; Mc- 

Cormick-Graham and Romero 1995)with all of the func- 

tional domains identified to date. These include the tem- 

plate and alignment domains that appear to be flexible 

with respect to length, sequence, and position within the 

telomerase RNA. The relaxed specificity of these do- 

mains may be important in vivo for the recognition of 

nontelomeric substrates during chromosome healing. 

The observation that the location and sequence of the 

conserved region upstream of the template domain af- 

fects the 5' boundary of the template region in vitro ar- 

gues for a role of this conserved sequence as an element 

in template boundary determination in vivo. This is the 

first evidence for a functional domain within the telo- 

merase RNA, other than the template/alignment do- 

main, important in telomere elongation. 

Mater ia l s  and m e t h o d s  

Purification of oligonucleotides 

Oligonucleotides were synthesized by Operon Technologies 
(Alameda, CA). Oligonucleotides were purified as described pre- 
viously (Autexier and Greider 1994) and concentrations were 
determined spectrophotometrically assuming 10D26 o unit 
equals 20 ~g/ml. 

Preparation of Tetrahymena telomerase 

Tetrahymena telomerase was purified using a protocol modified 
from Collins et al. (1995). Tetrahymena strains CU428 (kindly 
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Figure 7. Diagram of the functional domains of 
the telomerase RNA (secondary structure based 
on Romero and Blackburn 1991; ten Dam et al. 
1991). The telomerase RNA sequence is shown 
with the upstream conserved region 5'- 
(CU)GUCA-3' (residues 35-40; boxed) and the 
template and alignment regions 5'-CAAC- 
CCCAA-3' (residues 43-51). The 5'-most 6 resi- 
dues (boxed) termed the "template" direct syn- 
thesis of telomeric repeats. The 3'-most 3 resi- 
dues (box) termed the "alignment region" direct 
the alignment of substrate and product DNA se- 
quences. However, under certain conditions, as 
discussed in the text, residues 3' to the alignment 
region, including the A residues from positions 
52-54 can serve as an alignment domain (under- 
lined) and thus residues 3' of the template are 
copied (see text). Data presented provide evidence 
that the location and sequence of the upstream 

conserved sequence define the 5' boundary of the template. It has been suggested previously that this conserved sequence may be 
involved in RNA-protein or RNA-RNA interactions that prevent DNA polymerization beyond the 5' boundary of the template 
{Lingner et al. 1994). 
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provided by Martin Gorovsky, University of Rochester, NY) 

were grown, shaken at 30~ to a density of 4.0x 105 cells/ml in 

2x36 liters of media (2% proteose peptone, 0.2% yeast extract, 

10 ~M FeCls) supplemented with 250 ~g/liter of both ampicillin 

and streptomycin. After harvesting, the cells were resuspended 

in Dryls starvation media (1.7 mM sodium citrate, 2.4 mM so- 

dium phosphate, 2 mM CaCIr and incubated at 30~ for 18 hr. 

Cells were harvested and resuspended in twice the volume of 

the cell pellet, of T2MG [20 mM Tris-HC1 (pH 8.0), 1 mM MgC12, 

10% glycerol] with 5 mM 13-mercaptoethanol (B-me), 0.1 mM 

PMSF, and protease inhibitors (0.25 ~xg/ml each leupeptin and 

pepstatin; Sigma). Lysis was enhanced by stirring the cells in 

this buffer at 4~ for 20 min in the presence of 0.2% NP-40 

(Sigma). The lysed cells were centrifuged at 40,000 rpm for 1 hr 

in a Ti45 rotor (Beckman) at 4~ and the supernatant (S130 

extract) collected and stored at -70~ after quick freezing in 

liquid nitrogen. 

DEAE-purified telomerase was prepared as follows. S130 ex- 

tract (255 ml; 1900 mg of protein) was loaded onto a 150-ml 

ceramic hydroxyapatite (AIC) column equilibrated in T2MG 

with B-me and protease inhibitors as described above. Proteins 

were eluted with a 380-ml gradient to 0.2 M K2HPO 4 in T2MG. 

The ceramic hydroxyapatite column was regenerated and equil- 

ibrated in T2MG and the second S130 fraction (225 ml; 2700 mg 

of protein) loaded onto the column. Similarly, proteins were 

eluted with a 380 ml gradient to 0.2 M KzHPO 4 in T2MG. Frac- 

tions containing maximal telomerase activity from the first ce- 

ramic hydroxyapatite column (580 rag) were loaded, after dilut- 

ing three-fold with T2MG onto an 18-ml spermine agarose 

(Sigma) column equilibrated in T2MG with 0.15 M potassium 

glutamate (Kglu). Proteins were eluted in T2MG with 0.65 M 

Kglu. Fractions containing maximal telomerase activity from 

the second ceramic hydroxyapatite column (95 mg) were loaded, 

after diluting three-fold with T2MG on a 3-ml spermine agarose 

column as done previously. Proteins were eluted in T2MG with 

0.65 M KGlu. Fractions with maximal telomerase activity from 

both spermine agarose columns were pooled (60 ml; 48 rag) and 

loaded onto a 6-ml phenyl Sepharose (Pharmacia) column equil- 

ibrated in T2MG with 0.6 M Kglu. Proteins were eluted in 

T2MG without salt and in T2MG with 1% Triton X-100. Frac- 

tions containing maximal telomerase activity in the no salt 

elution (45 ml; 6 mg) were loaded, after adjusting to no salt, onto 

a 2-ml DEAE-agarose (Bio-Rad) column equilibrated in T2MG. 

Protein was eluted in T2MG with 0.4 M Kglu. The peak of te- 

lomerase was in fraction 3 (2 ml; 4 rag). DEAE-purified telo- 

merase (2 mg of protein/ml of extract) was diluted 10-fold with 

T2MG before use in reconstitution reactions. The extract prep- 

arations remained active in elongation assays and in reconsti- 

tution assays for at least 5 months when stored at - 70~ Pro- 

tein concentrations were determined by a Bradford assay with 

Bio-Rad dye reagent. 

Telomerase elongation activity assay 

Telomerase assays were done as described previously (Greider 

and Blackburn 1985). Briefly, 20 ~1 of extract was added to 20 ~1 

of a 2x reaction mix. The final concentrations of the compo- 

nents in the assay are 1 x telomerase buffer [50 mM Tris -HC1 

(pH 8.5), 1 mM spermidine, 5 mM [3-me, and 50 mM KOAc], 800 

nM primer oligonucleotide (0.2 fzg), 100 ~M dTTP and 0.3125 IxM 

[a-32P]dGTP (1 Ixl of 800 Ci/mmole; New England Nuclear). In 

assays with telomerase reconstituted with certain mutant 

RNAs, reaction mixes contained 100 ~M of both dTTP and 

dATP or 100 mM of both dTTP and dCTP. Reactions with 2.5 

~M [a-s2P]dATP (4 ~1 of 400 Ci/mmole; New England Nuclear) 

contained 100 IxM dTTP and 50 IXM dGTP. In reactions with 

dideoxynucleotides, ddTTP {100 ~M) replaced dTTP, ddATP 

(100 IxM) replaced dATP, or ddCTP (100 ~M) replaced dCTP. In 

Figure 1, reactions contained 1 mM ddTTP. Reactions times 

were 1 hr at 30~ Reactions were stopped by adding 100 ~1 of 21 

mM EDTA, 10 mM Tris-HC1 (pH 7.5), and 1.5 mg/ml  of DNase- 

free RNase (Boehringer Mannheim). After phenol extraction, 60 

~1 of 2.5 M NHaOAc, 100 ~g/ml Escherichia coli tRNA (Sigma), 

and ethanol was added to the reactions and precipitated over- 

night at -20~ Products were centrifuged, pellets dried, and 

resuspended in formamide containing xylene cyanol. Samples 

were boiled, cooled on ice, and loaded onto 8% polyacrylamide, 

7 M urea gels and electrophoresed at 1500 V for 2 hr using 0.6 x 

TBE buffer. Gels were dried and then exposed to Fuji Phos- 

phorImager screens overnight and then to film (XARS) for the 

indicated times. 

Micrococcal nuclease treatment and reconstitution assay 

conditions 

DEAE-purified Tetrahymena telomerase extract was incubated 

with 0.1 units of micrococcal nuclease (MNase; Pharmacia) per 

microliter of extract and 1 mM CaC12, for 10 rain at 30~ The 

MNase was inactivated by adding 2.5 mM EGTA. MNase was 

prepared as described previously (Autexier and Greider 1994). In 

standard reconstitution conditions MNase-treated telomerase 

extract (-0.2 mg/ml of protein) containing no detectable telo- 

merase activity was incubated with 5 mM EDTA and 200 ng of 

in vitro transcribed telomerase RNA per 20 ~1 of extract for 5 

min at 37~ One microliter of 200 mM MgCI~ was added before 

assaying for elongation activity. 

Site-directed mutagenesis 

Using methodology similar to that previously described (Autex- 

ier and Greider 1994), plasmids containing mutant versions of 

the Tetrahymena telomerase RNA gene were constructed. Oli- 

gonucleotides with sequences corresponding to mutations at 

the desired positions in the RNA gene were synthesized and 

used in PCR, with pT7159 digested with EcoRI and HindIII as a 

template. Briefly, oligonucleotides corresponding to the desired 

mutation and complementary to the 3' (3' T7PCR) regions of 

the RNA gene were used in PCR with pT7159 cleaved with 

EcoRI and HindIII as the template. The sequence of the 

3' T7PCR oligonucleotide was 5'-CAGTGAATTCGAGCTGG- 

GTACCCGGGG-3', which includes an EcoRI restriction site. 

The sequences of the mutation specific oligonucleotides 

were 5 '-CATTCAGATGTGTAATAGAACTGTCATTCA-AC- 

CAAAAATC-3' (Tem2C), 5'-CATTCAGATCTGTAATAGAA- 

CTGTCATTCAACCCAAAAATC-3' (Tem3C), 5'-CATTCA- 

GATCTGTAATAGAACTGTCATTCAACCCCCAAAAATC- 

3' (Tem5C), 5'-CATTCAGATGTGTAATAGAACTGTCAT- 

TAACCCCAACAAATC-3' (TEMPER1), 5'-CATTCAGATCT- 

GTAATAGAACTGTCATTACCCCAACCAAATC-3' (TEM- 

PER2), 5'- CATTCAGATCTGTAATAGAACTGTCATTCCC- 

CAACCGAAATC-3' (TEMPER3), 5'-CATTCAGATCTGTA- 

ATAGAACTGTCATTCCCAACCCCAAATC-3' (TEMPER4), 

5'-CATTCAGATCTGTAATAGAACTGTCATTCCAACCCC- 

AAAATC-3' (TEMPERS), 5'-CATTCAGATCTGTAATAG- 

AACTGTCATTAACCCCAAAAATC-3' (5'A43), 5'-CATTCA- 

GATCTGTAATAGAACTGTCATGCAACCCCAAAAATC-3' 

(5'42G), 5'- CATTCAGATCTGTAATAGAACTGTCATCAA- 

CCCCAAAAATC-3' (A42), 5'-CATTCAGATCTGTAATA- 

GAACTGTCATTTCAACCCCAAAAATC-3' (42 + T), 5'-CAT- 

TCAGATCTGTAATAGAACTGAGTTTCAACCCCAAAA- 

ATC-3' (38--40AGT), 5'-CATTCAGATCTGTAATAGAACT- 

GTCATTCAACCCCAATTAAATC-3' {51 + 2T), and 5'-CAT- 
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TCAGATCTGTAATAGAACTGTCATTCAACCCCAACCC- 

CAAATC-3' {51 +4C). PCR amplification was done in a 100 wl 

volume in the presence of 1 ~M of each primer and 1 ng of EcoRI 

and HindIII digested pT7159 plasmid DNA using 5 units of Taq 

polymerase {Perkin-Elmer Cetus) in 1 x PCR buffer [50 mM 

KC1, 10 mM Tris-HC1 (pH 8.3), 1.5 m_M MgC12] and 250 ~M 

dNTPs. Reactions were cycled 30 times for 1 rain at 94~ 1 min 
at 46~ and 1 min at 72~ 

The PCR amplified DNAs were cleaved with EcoRI and BglII 

and cloned into pT7159 cleaved with the same enzymes using 

conventional cloning techniques {Sambrook et al. 1989). The 

resulting clones (listed below) contained the mutant versions of 

the telornerase RNA gene downstream of the T7 promoter, as 

confirmed by sequencing both strands of the inserted DNA by 

the dideoxy-mediated chain termination method as per the 

manufacturer's instructions {U.S. Biochemical). pT743T was 

made as described previously (Autexier and Greider 1994). 

Preparation of RNAs 

RNAs used in reconstitution assays were transcribed in vitro 

with T7 RNA polymerase (Stratagene)using pT7159, ptem2C, 

ptem3C, ptem5C, ptemperl, ptemper2, ptemper3, ptemper4, 

ptemperS, pA43, p42G, pA42, p5'43T, p42+T, p38-40AGT, 

p51 + 2T, or p51 + 4C digested with FokI, as templates. Standard 

in vitro transcription reaction conditions recommended by the 

T7 RNA polymerase manufacturer were used. The transcription 

reactions were treated with RNase-free DNase {Boehringer 

Mannheim). The RNA concentrations were determined by flu- 

orometer. The in vitro transcribed RNA was 3 nucleotides 

longer than the endogenous RNA because of the addition of 3 G 
residues at the 5' terminus. 
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