
Enzo 3.0: An Introduction to Field Objects

James Larrue-Baulch

February 17, 2015

The Enzo code is open-source implementation of AMR for astrophysics written in a mix of C/C++ and
FORTRAN. Bryan et al. (2013) have given a high-level description of the software, while more details and
the source code can be accessed through the Enzo Project website1.

Prior to Enzo 3.0, adding new fields was a cumbersome process, particularly if the field values were not cell
centered. At a minimum, numerous constants needed to be added, and often new code needed to be threaded
throughout the application.

To faciliate adding new fields to Enzo, it was decided to introduce field objects in Enzo 3.0. Now, a field’s
values and properties are encapulated in a FieldDescriptor object, while a grid’s fields are collected in the
grid’s FieldRegistry object. The Enzo version with field objects provides all previous functionality and tests
indicate that its performance and memory are comparable with Enzo before field objects.

Field objects make manipulating fields much easier. New fields can now be easily created, regardless of the
field’s value-centering, dimensions, interpolation method, or other field properties.

Contents

1 Current State of Field Objects 2

2 How to Use Field Objects 3
2.1 Getting and Setting Field Values . 5
2.2 Field Arithmetic . 6
2.3 Adding a New Field . 7

2.3.1 Optional: Adding a Field Template . 7
2.3.2 Optional: Adding a Field Name Constant . 7

2.4 Creating a New Problem Type . 9
2.5 Value-Centering and Non-Standard Geometry . 12

3 Next Steps 13

4 References 14

1The website of the Enzo Project is at http://www.enzo-project.org/.

February 17, 2015 Page 1 of 14

http://www.enzo-project.org/

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

1 Current State of Field Objects

The field objects have been implemented throughout the code. The recent changes to the enzo-3.0 repository
were merged into the field object code on January 9, 2015. The two forks should be sychronized up to the
enzo-3.0 commit d4d9eb4.

The grid::BaryonField[] variable no longer exists, nor do the electromagnetic field variables. Several other
variables that still exist in the grid class could be moved to field objects, but have not yet been done. Before
converting any more fields to the field objects, we would like to get community feedback on the work thus
far.

The Enzo full test suite gives expected results, both with and without MPI. The tests in the push test
suite were used to test the speed performance of field objects. After some optimization using gprof, our test
durations with field objects are now comparable to those before field objects, with the exception of some
radiation transport tests. (See Next Steps for details.) This is the case with both with and without MPI.

In addition to testing with the test suite, we have also examined the memory usage. Our initial tests, using a
custom-created MHD scenario with AMR, showed an average of 7% less memory used during the simulation.

February 17, 2015 Page 2 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2 How to Use Field Objects

Prior to field objects, the field values were contained in various members of the grid class, such as BaryonField[]

and MagneticField[]. The value centering and dimensions of the fields were defined outside of the application
and separate code was needed to handle each of the different field-containing members. In the class diagram
of figure 1 (page 4), the grid class from before field objects has 37 public members, 64 protected members,
and 592 public methods. In comparison, the grid class with field objects has 20 public members, 56 protected
members, and 535 public methods. The removed members and methods have either been moved to be part
of the field objects, or else rendered unnecessary by field objects.

The main classes for field objects are the FieldRegistry and the FieldDescriptor. The FieldRegistry behaves like
the std::map<std::string, FieldDescriptor*> class, with a few exceptions and a few additional features. First,
the method FieldRegistry::operator[](std::string) with a non-existant key will not create a new entry, as it
would with std::map. Also, elements are added to the field registry with the FieldRegistry::add(FieldDescriptor*)

method. The key for the new element will be the name of the field descriptor. By requiring the FieldRegistry

::add(FieldDescriptor*) method to add elements, it is guaranteed that any elements in the field registry will
be a field descriptor (a pointer to a field descriptor, actually). Those elements can be iterated over with help
from the FieldRegistry::begin() and FieldRegistry::end() methods.

The FieldDescriptor class contains all the information concerning a field, including the current field values, the
old field values, the value centering, and the field dimensions. With all fields stored as FieldDescriptor objects,
the code can iterate over the field descriptors in a field registry and process them in a generic manner.

A key advantage of field objects is that no changes are required to accommodate different field geometries, as
was required before field objects. The FieldDescriptor class can represent new fields, whatever their geometry,
and by simply adding the new field descriptor to the field registry, the Enzo infrastructure will take care of
the rest.

February 17, 2015 Page 3 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

The grid class before field objects. The grid class with field objects.

Figure 1: Class diagrams before and with field objects, excluding classes not explicitly related to field objects.

February 17, 2015 Page 4 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2.1 Getting and Setting Field Values

Before field objects, to access field values, we might code the following in a method of the grid class:

// Get the field indices.

int DensNum , GENum , Vel1Num , Vel2Num , Vel3Num , TENum;

IdentifyPhysicalQuantities(

DensNum , GENum , Vel1Num , Vel2Num , Vel3Num , TENum

5);

// Set total energy from velocities.

BaryonField[TENum][index] = 0.5 * (

pow(BaryonField[Vel1Num][index], 2)

10 + pow(BaryonField[Vel2Num][index], 2)

+ pow(BaryonField[Vel3Num][index], 2)

);

// Create a variable from the old velocity values.

15 float OldTotalEnergy = 0.5 * (

pow(OldBaryonField[Vel1Num][index], 2)

+ pow(OldBaryonField[Vel2Num][index], 2)

+ pow(OldBaryonField[Vel3Num][index], 2)

);

The equivalent code with field objects would be:

FieldDescriptor *pVelocity1Field = Fields[FIELD_NAME_VELOCITY_1];

FieldDescriptor *pVelocity2Field = Fields[FIELD_NAME_VELOCITY_2];

FieldDescriptor *pVelocity3Field = Fields[FIELD_NAME_VELOCITY_3];

FieldDescriptor *pTotalEnergyField = Fields[FIELD_NAME_TOTAL_ENERGY];

5

// Set total energy from velocities.

// Option #1

pTotalEnergyField ->SetValue(

index ,

10 0.5 * (

pow(pVelocity1Field ->GetValue(index), 2)

+ pow(pVelocity2Field ->GetValue(index), 2)

+ pow(pVelocity3Field ->GetValue(index), 2)

)

15);

// Set total energy from velocities.

// Option #2 - Same result as option #1, different syntax

(* pTotalEnergyField)[index] = 0.5

20 * (

pow ((* pVelocity1Field)[index], 2)

+ pow((* pVelocity2Field)[index], 2)

+ pow((* pVelocity3Field)[index], 2)

);

25

// Create a variable from the old velocity values.

float OldTotalEnergy = 0.5 * (

pow(pVelocity1Field ->GetOldValue(index), 2)

+ pow(pVelocity2Field ->GetOldValue(index), 2)

30 + pow(pVelocity3Field ->GetOldValue(index), 2)

);

In the above code with field objects (and in all other examples with field objects), we could use Fields["Velocity1"]

rather than Fields[FIELD_NAME_VELOCITY_1]. An advantage of the latter is that the compiler will give an error if
you make a typo. In other regards, the two syntaxes are synonymous.

February 17, 2015 Page 5 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2.2 Field Arithmetic

Field objects simplify field arithmetic. The FieldDescriptor class has methods for addition, subtraction,
multiplication, and division. All four operators can accept a float value or a pointer to a FieldDescriptor

object.

Before field objects, we might code the following:

for (int field = 0; field < NumberOfBaryonFields; field ++) {

if (MakeFieldConservative(FieldType[field])) {

// Multiply by density

for (int k = 0; k < GridDimension [2]; k++) {

5 for (int j = 0; j < GridDimension [1]; j++) {

for (int i = 0; i < GridDimension [0]; i++) {

int index = i

+ GridDimension [0] * (

j + GridDimension [1] * k

10);

BaryonField[field][index] *= DensityValues[index];

}

}

}

15 }

}

With field objects, we could code:

for (

FieldRegistry :: iterator Iterator = Fields.begin();

Iterator != Fields.end();

++ Iterator

5) {

FieldDescriptor *pField = Iterator ->second;

if (pField ->GetInterpolationMethod () == MultiplyByDensity) {

pField ->Multipy(pDensityField);

}

10 }

With field objects, we use a FieldRegistry::iterator to iterate over the fields and we do not need to
iterate over the field elements, since the FieldDescriptor::Multiply method handles that.

February 17, 2015 Page 6 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2.3 Adding a New Field

Previously, to add a new field with cell-centered values and a standard geometry, we needed to:2

1. Add a field type ID to typedefs.h;

2. Add the field to Grid InitializeUniformGrid.C; and

3. Add the field to the DataLabel and DataUnit arrays.

Then, you would access your new field with:

int myFieldIndex = FindField(NewFieldTypeID , FieldType , NumberOfBaryonFields);

float *pMyFieldValues = BaryonField[myFieldIndex];

To add a new field that was not cell-centered, or not a standard geometry, we needed to:

1. Create a new float* variable in Grid.h;

2. Add the field to Grid InitializeUniformGrid.C (or a similar method);

3. Add code to pass your new field to other processors via MPI;

4. Add code to read and write your new field; and

5. Add more code in other places to handle your field.

Now, to add a new field, we must:

1. Call grid::CreateField("My New Field") in Grid InitializeUniformGrid.C (or in a similar method).

Now the grid has a field called ”My New Field” with cell centered values and the default number of ghost
zones. The field will be accessible with:

grid ->Fields["My New Field"]

There are various flavors of the grid::CreateField(...) method that control the value-centering, interpolation
method, and other properties of the resulting field.

2.3.1 Optional: Adding a Field Template

If the new field is going to be used in many different problems, we could add it as a field template in:

FieldRegistry :: FillFieldRegistry (...)

after which grid::CreateFieldFromTemplate("My New Field") can be used to create the field with the correct field
properties.

The difference between grid::CreateField(...) and grid::CreateFieldFromTemplate(...) is that any non-default
field properties must be specified in the parameters of the former, while the field properties of the template
field are inherited in the latter method.

2.3.2 Optional: Adding a Field Name Constant

If we want to be neat-and-tidy, we could also add a string constant for the new field name in FieldNameCosntants:

2See https://enzo.readthedocs.org/en/enzo-2.4/developer_guide/HowToAddNewBaryonField.html.

February 17, 2015 Page 7 of 14

https://enzo.readthedocs.org/en/enzo-2.4/developer_guide/HowToAddNewBaryonField.html

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

// In FieldNameConstants.h

class FieldNameConstants {

public:

...

5 static const std:: string FIELD_NAME_MY_NEW_FIELD;

...

}

// In FieldNameConstants.C

10 const std:: string FieldNameConstants :: FIELD_NAME_MY_NEW_FIELD = "My New Field";

Now, we can access the field with:

grid ->Fields[FIELD_NAME_MY_NEW_FIELD]

February 17, 2015 Page 8 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2.4 Creating a New Problem Type

The steps for creating a new problem type are described in the Enzo documentation for version 2.43. Many
of the steps are the same with field objects, so we will only discuss steps that are different, in particular
setting up the Data Labels and Data Units in the MyProblemInitialize method and initializing the fields in the
grid::MyProblemInitializeGrid method.

Prior to field objects, it was ABSOLUTELY ESSENTIAL to set up the Data Label array. Setting up
the Data Units array was optional. With field objects, the data labels and data units are stored in the
FieldDescriptor objects, so there is no need to set either.

In the grid::MyProblemInitializeGrid method, we used to set the grid::FieldType array, then initialize the grid

::BaryonField values:

// ////////

// Create the fields by setting the FieldType array.

// ////////

5 NumberOfBaryonFields = 0;

FieldType[NumberOfBaryonFields ++] = Density;

if (DualEnergyFormalism) {

FieldType[NumberOfBaryonFields ++] = InternalEnergy;

10 }

if(EquationOfState == 0) {

FieldType[NumberOfBaryonFields ++] = TotalEnergy;

}

FieldType[NumberOfBaryonFields ++] = Velocity1;

15 FieldType[NumberOfBaryonFields ++] = Velocity2;

FieldType[NumberOfBaryonFields ++] = Velocity3;

if (HydroMethod == MHD_RK) {

FieldType[NumberOfBaryonFields ++] = Bfield1;

FieldType[NumberOfBaryonFields ++] = Bfield2;

20 FieldType[NumberOfBaryonFields ++] = Bfield3;

FieldType[NumberOfBaryonFields ++] = PhiField;

}

...

25

// ////////

// Initialize the BaryonField values.

// ////////

30 int DensNum , GENum , Vel1Num , Vel2Num , Vel3Num , TENum;

IdentifyPhysicalQuantities(

DensNum , GENum , Vel1Num , Vel2Num , Vel3Num , TENum

);

35 // All fields have cell -centered values and have the default number of ghost

// zones (i.e. the same number as the grid).

for (int k = 0; k < GridDimension [2]; k++) {

for (int j = 0; j < GridDimension [1]; j++) {

for (int i = 0; i < GridDimension [0]; i++) {

40 int index = i

+ GridDimension [0] * (

j + GridDimension [1] * k

);

float x = Scale [0] * (i - GridStartIndex [0] + 0.5);

45 float y = Scale [1] * (j - GridStartIndex [1] + 0.5);

float v_x = v_o * sin(2 * pi * y);

float v_y = v_o * sin(2 * pi * x);

float v_z = 0.0;

50 BaryonField[DensNum][index] = InitialDensity;

BaryonField[Vel1Num][index] = v_x;

3See https://enzo.readthedocs.org/en/enzo-2.4/developer_guide/NewTestProblem1.html.

February 17, 2015 Page 9 of 14

https://enzo.readthedocs.org/en/enzo-2.4/developer_guide/NewTestProblem1.html

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

BaryonField[Vel2Num][index] = v_y;

BaryonField[Vel3Num][index] = 0.0;

if (DualEnergyFormalism) {

55 BaryonField[GENum][index] = InitialGasEnergy;

}

if (EquationOfState == 0) {

BaryonField[TENum][index] = (

InitialGasEnergy

60 + 0.5 * (

pow(CenteredB [0][index], 2)

+ pow(CenteredB [1][index], 2)

+ pow(CenteredB [2][index], 2)

)

65) / InitialDensity

+ 0.5 * (pow(v_x , 2) + pow(v_y , 2) + pow(v_z , 2));

} else {

BaryonField[TENum][index] = 0.0;

}

70 }

}

With field objects, we no longer have a FieldType array. Most fields of the required fields will be created with
the grid::CreateStandardFields() method. (See the API specification for a listing of which fields will be created
under which scenarios.) In the unsually case where we want to create fields that have not been created as
standard fields, we can use the grid::CreateFieldFromTemplate method or the grid:CreateField method. The
above code rewritten with field objects might look like:

// ////////

// Create the fields with the grid:: CreateStandardFields () method.

// ////////

5 CreateStandardFields ();

...

// ////////

10 // Initialize the field values.

// ////////

FieldDescriptor *pDensityField = Fields[FIELD_NAME_DENSITY];

pDensityField ->CopyFrom(InitialDensity);

15

// If we have DualEnergyFormalism , then the internal energy field will exist.

if (Fields.count(FIELD_NAME_INTERNAL_ENERGY) > 0) {

Fields[FIELD_NAME_INTERNAL_ENERGY]->CopyFrom(InitialGasEnergy);

}

20

FieldDescriptor *pVelocity1Field = Fields[FIELD_NAME_VELOCITY_1];

FieldDescriptor *pVelocity2Field = Fields[FIELD_NAME_VELOCITY_2];

FieldDescriptor *pVelocity3Field = Fields[FIELD_NAME_VELOCITY_3];

25 FieldDescriptor *pTotalEnergyField = Fields[FIELD_NAME_TOTAL_ENERGY];

FieldDescriptor *pMagneticField1 = Fields[FIELD_NAME_MAGNETIC_FIELD_1];

FieldDescriptor *pMagneticField2 = Fields[FIELD_NAME_MAGNETIC_FIELD_2];

FieldDescriptor *pMagneticField3 = Fields[FIELD_NAME_MAGNETIC_FIELD_3];

30

pVelocity3Field ->CopyFrom (0.0);

// Here , we are assuming that the fields are all the same size , which will

// be the case if they all use the same value -centering (e.g. cell centered)

35 // and if they all use the same number of ghost zones. We get the field

// dimensions from the velocity 1 field , but we could have used any field

// with the same dimensions.

for (int k = 0; k < pVelocity1Field ->GetFieldDimension (2); k++) {

for (int j = 0; j < pVelocity1Field ->GetFieldDimension (1); j++) {

February 17, 2015 Page 10 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

40 for (int i = 0; i < pVelocity1Field ->GetFieldDimension (0); i++) {

int index = pVelocity1Field ->GetIndex(i, j, k);

float x = Scale [0]

* (i - pVelocity1Field ->GetNumberOfGhostZones () + 0.5);

float y = Scale [1]

45 * (j - pVelocity1Field ->GetNumberOfGhostZones () + 0.5);

float v_x = v_o * sin(2 * pi * y);

float v_y = v_o * sin(2 * pi * x);

float v_z = 0.0;

50 pVelocity1Field ->SetValue(index , v_x);

pVelocity2Field ->SetValue(index , v_y);

if (EquationOfState == 0) {

pTotalEnergyField ->SetValue(

index ,

55 (

InitialGasEnergy

+ 0.5 * (

pow(pMagneticField1 ->GetValue(index), 2)

+ pow(pMagneticField2 ->GetValue(index), 2)

60 + pow(pMagneticField3 ->GetValue(index), 2)

)

) / InitialDensity

+ 0.5 * (pow(v_x , 2) + pow(v_y , 2) + pow(v_z , 2));

} else {

65 pTotalEnergyField ->SetValue(index , 0.0);

}

}

}

}

For this example, we have initialized some fields with the FieldDescriptor::CopyFrom(float) method, while other
fields have been initialized inside for-loops with the FieldDescriptor::SetValue(int, float) method. The choice
of one over another depends on the situation, though we can always use the for-loop method.

February 17, 2015 Page 11 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

2.5 Value-Centering and Non-Standard Geometry

Before field objects, all the fields in the BaryonField array contained cell-centered values and they all had the
default number of ghost zones. Fields that did not contain cell-centered values needed to be created outside
of the BaryonField data structure (e.g. ElectricField and MagneticField) and additional code was required to
handle those fields. The same situation occured with fields that did not contain the default number of ghost
zones (e.g. divB and gradPhi[]).

With field objects, field values can be cell-centered, face-centered, edge-centered, or vertex-centered. The
value-centering is stored as part of the FieldDescriptor and the field dimensions are increased as necessary
(e.g. +1 cell in one dimesion for face-centered values). The Enzo infrastructure has been modified to account
for each field’s value-centering, so the same code will work no matter what value-centering the fields have.

Similarly, fields that use a non-default number of ghost zones can be used without rewriting any of the Enzo
infrastructure code. For example, the field for ∇ ·B has zero ghost zones, while the normal default is 3 ghost
zones.

The following table compares various field dimensions before and after field objects. Before field objects, fields
inherited their dimensions directly from the grid. With field objects, while the field dimensions are based on
the grid dimensions, they are not necessarily the same.

Before Field Objects With Field Objects

grid:: GridDimension []

// Varies by case.

grid:: GridStartIndex []

grid:: GridEndIndex []

FieldDescriptor :: GetFieldDimensions ()[]

FieldDescriptor :: GetFieldExtensions ()[]

FieldDescriptor :: GetNumberOfGhostZones ()

FieldDescriptor :: GetFieldDimension(int)

- FieldDescriptor :: GetNumberOfGhostZones () - 1

February 17, 2015 Page 12 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

3 Next Steps

1. Community review of the code.

• The new code needs to be reviewed by the community so that we can both find further improve-
ments and identify any conceptual bugs (e.g. if some feature was misunderstood when the field
objects were implemented).

2. Community test of the code.

• The code has been tested, but by a very small number of people. It needs a more thorough testing
that can only be accomplished by the larger community.

3. Add developer documentation in Sphinx format.

4. Speed up the radiation transport tests.

• The grid::WalkPhotonPackage method is called many times and its calls to FieldDescriptor meth-
ods are resulting in a performance bottleneck. A solution is not expected to be difficult.

5. Write more unit tests.

• Some unit tests were initially written for field objects, but the feature set has grown significantly,
so more unit tests are required.

6. More stress-testing.

• We want to do some cosmology tests with MHD. Other tests by the community would be a great
benefit.

7. Incorporate community feedback.

• The community review will likely result in a list of desired changes. These need to be incorporated
and retested, or else prioritized for future development.

8. Resolve any blocker issues found during testing.

• Any issue that significantly hinders the normal use of the software must be resolved before the
field objects are merged with the main branch of enzo-3.0.

9. Merge field objects into enzo-3.0.

• Because so much of the code has been impacted by the migration to field objects, merging may
be more complex than usual. The main fork enzo-3.0 was last merged into the development fork
in early January 2015.

10. Prioritize future work items.

• The community review process will likely produce some good ideas for future development. These
ideas should be prioritized so that development can proceed in priority order.

February 17, 2015 Page 13 of 14

Enzo 3.0: An Introduction to Field Objects James Larrue-Baulch

4 References

Greg L. Bryan, Michael L. Norman, Brian W. O’Shea, Tom Abel, John H. Wise, Matthew J. Turk, Daniel R.
Reynolds, David C. collins, Peng Wang, Samual W. Skillman, Britton Smith, Robert P. Harkness, James
Bordner, Ji hoon Kim, Michael Kuhlen, Hao Xu, Nathan Goldbaum, Cameron Hummels, Alexei G. Kritsuk,
Elizabeth Tasker, Stephen Skory, Christine M. Simpson, Oliver Hahn, Jeffrey S. Oishi, Geoffrey C. So, Fen
Zhao, Renyue Cen, and Yuan Li. Enzo: An adaptive mesh refinement code for astrophysics. 2013.

February 17, 2015 Page 14 of 14

	Current State of Field Objects
	How to Use Field Objects
	Getting and Setting Field Values
	Field Arithmetic
	Adding a New Field
	Optional: Adding a Field Template
	Optional: Adding a Field Name Constant

	Creating a New Problem Type
	Value-Centering and Non-Standard Geometry

	Next Steps
	References

