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A B S T R A C T   

As a result of ongoing climate change and more frequent heat events, the regulating services of land cover in 
terms of moderating and mitigating local temperatures are increasingly important. While the reduced temper
atures found in forests and wetlands are recognized, their wider contribution to regional landscape cooling re
mains largely uncharacterized and unquantified. Herein, we propose and test a new method that estimates the 
temperature response and inertia of landscapes in high temperatures, based on land cover share. In order to 
achieve this goal, we combined the MODIS daytime land surface temperature (henceforth LST) time series and 
CORINE land cover data. We classified the time series in two ways, i.e. by stepwise temperature range (− 10/− 5 
◦C to +35/+40 ◦C) and by the occurrence of hot days (days with a mean LST ≥ 30 ◦C). As an explanatory 
variable, we developed and used a greenest pixel composite of the MODIS normalized difference vegetation index 
(NDVI) time series. In our study area, covering parts of northeastern Germany and western Poland, the frag
mented landscape has heterogeneous temperature patterns, including urban heat islands, warm agricultural 
areas, cool forests and cold wetlands. We found that at high temperature ranges only forests and wetlands 
remained comparably cool, with LSTs up to 20.8 ◦C lower than the maximum LST in the study area. The analysis 
of land cover shares and LSTs revealed the substantial cooling effect of forests and wetlands in line with 
increasing land cover share in higher temperature ranges, as well as on hot days. The relation between LST and 
the NDVI indicated vegetation cover as the cause. We propose the corresponding metrics to quantify landscape- 
level temperature regulation. Equally, we advocate for management to identify these ecosystem services and 
their current and potential contributions, along with implications for sustaining and increasing, both tree cover 
and wetlands and thereby adapting landscapes to climate change.   

1. Introduction 

Increases in temperature, which are among the most dangerous im
pacts of climate change, threaten socioeconomic activities (Chen et al., 
2020), ecosystem functioning (Fisher et al., 2017) and human health 
(Luber and McGeehin, 2008; Mora et al., 2017). Human mortality esti
mates based on data from climate-related heat exposure and deaths in 
732 locations over 43 countries suggest a mean of 37.0% (range 
20.5–76.3%) between 1991 and 2018, with increased mortality seen on 
all continents (Vicedo-Cabrera et al., 2021). Heat also contributes to 
other climate-related challenges such as increased water-stress and 
drought (Fisher et al., 2017; Teuling et al., 2013). One way to avoid 

these negative effects is to prevent or moderate temperature extremes 
(Hatfield and Prueger, 2015). 

The relationship between remotely sensed land surface temperature 
(LST) and land cover has been investigated in various contexts (Alkama 
and Cescatti, 2016; Bonan, 2008; Bright et al., 2017; Jin and Dickinson, 
2010). Different land covers are associated with different thermal 
properties, especially the heat island effects that occur in urban and 
other built-up areas (Bartesaghi-Koc et al., 2020; Feizizadeh and 
Blaschke, 2013; Liu et al., 2018; Su et al., 2010; Tran et al., 2017). Land 
cover proportion has been used in a study of an urban area to investigate 
to what extent landscape metrics can explain LST (Liu et al., 2018), as 
well as for a vegetation fraction cover analysis (Duveiller et al., 2018; 
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Schwaab et al., 2020). However, the response of hot-day LSTs in relation 
to land cover shares at different temperature ranges with a focus on 
multiuse landscapes with urban, forest and agricultural land rather than 
urban landscapes has not been studied to date. 

Greenness, or vegetation productivity measured via the Normalized 
Difference Vegetation Index (NDVI), is commonly applied to quantify and 
substantiate the impacts of different land cover types on LST. In this 
regard, a correlation between LST and the NDVI has been detected in 
various studies (Weng et al., 2004; Xiao and Weng, 2007; Yuan and 
Bauer, 2007). Vegetated areas with high NDVI show lower LSTs (Deng 
et al., 2018). The NDVI provides insights into the condition of the 
vegetation and serves as an explanatory variable for measured LST (Su 
et al., 2010). 

The use of LST to scrutinize the cooling function of forests is well 
established, as seen in a global study that compared LST and station air 
temperatures (Mildrexler et al., 2011). Equally, the moderate cooling of 
temperate forests in summer was observed in a global study using 
MODIS LST (Li et al., 2015). LST observations have also confirmed 
cooling resulting from afforestation in China (Peng et al., 2014), while a 
study of restored oak woodland in Canada found LST declined as the 
forest matured (Hamberg et al., 2020). Higher LSTs were found 
following a decline in forest cover due to bark beetle attack following 
drought conditions in the Czech Republic, thereby demonstrating the 
utility of remotely-sensed LSTs: rising temperatures in drought-damaged 
forests led to advection effects and extracted water vapor from the 
landscape, further promoting landscape desiccation (Hesslerová et al., 
2018). In various case studies in Germany, it has been shown that sur
face temperatures are a good indicator for assessing the functioning of 
forests and the influence of land use as well as edge effects (e.g. 
Blumröder et al., 2019a, 2019b; Blumröder et al., 2020; Blumröder 
et al., 2021; Ibisch et al., 2019). 

The threat of high temperature extremes on plants is evident in the 
drying effect as a result of high air temperatures that absorb more water, 
while at the same time plants have an increased vapor pressure deficit 
and atmospheric water vapor demand (Hatfield and Prueger, 2015; 
Hesslerová et al., 2018). In forest ecosystems, increasing vapor pressure 
deficit has been linked to increased tree mortality (Breshears et al., 
2013; Grossiord et al., 2020; Williams et al., 2013). At the same time, 
water evaporation from vegetation is an important source of atmo
spheric moisture (Sheil, 2018). Total water vapor emissions from forests 
(combined transpiration and evaporation from other sources) are typi
cally higher than for other vegetation, and they can be even higher than 
for open water (Sheil, 2018). Maintaining cool and healthy forests is also 
important for preserving microclimatic refuges for many organisms 
threatened by climate change (Suggitt et al., 2011), while the cooling 
effects of vegetation contribute to ecosystem-based adaptation and 
nature-based solutions to heat stress (Bright et al., 2017). 

Wetlands, in this study referring equally to water bodies and 
marshes, influence regional temperatures and play a major role as an 
ecosystem service in regulating regional climates (Hesslerová et al., 
2019; Ramsar Convention Secretariat, 2018; Pokorný et al., 2016). The 
general cooling function of wetlands in high temperatures is caused by 
its albedo and evaporation characteristics (Hesslerová et al., 2019). 
These biophysical processes are not only relevant regarding climate 
change but functioning wetlands also have a positive effect on the car
bon circle and greenhouse gas emissions (Pokorný et al., 2016). 

The loss of wetland cover globally is increasing, primarily as a result 
of human activities (Ramsar Convention Secretariat, 2018). Using 
remote sensing data, regional studies in China have determined that 
marshland loss implies warmer local LST (Shen et al., 2020) whereas 
maintained water bodies and their surroundings have lower LSTs than 
adjacent urban areas and thereby decrease the UHI effect (Wu and 
Zhang, 2019). On a global scale, an LST-based analysis distinguished 
between the regional cooling effect of wetlands in tropical regions 
throughout the year and seasonal effects in boreal regions with warming 
effects in winter and cooling effects in summer (Wu et al., 2021). More 

generally, it is important to understand and foster the daytime cooling 
capacity of different land covers, particularly when the key factors can 
be modified through management. 

In this paper, we examine the landscape-scale influence of forests 
and wetlands on moderating high temperature events by applying a new 
method that relates land cover share to temperature range and to hot 
days. We use spatial time series based on the large-scale remote sensing 
data of land surface temperature, classified into temperature ranges and 
a hot-day composite, to investigate temperature changes in relation to 
increasing forest and wetland cover. We investigate land cover specific 
greenness (NDVI) as a possible cause of spatial temperature patterns, 
and we also discuss the integration of this ecosystem service regulating 
temperature into landscape management planning. 

2. Material and methods 

2.1. Study area 

We chose a landscape in northeastern Germany sitting on the border 
with Poland (10,726.8 km2) and about 100 km south of the Baltic Sea. 
There is a pronounced land use gradient from the metropolitan region of 
Berlin in the south to rural ecosystems in the north, comprising both 
intensively managed agricultural areas and forested regions (Fig. 1). For 
a European lowland area, the region is quite unique, as within a range of 
100 km there is both a large urban area and a forest-dominated land
scape, including smaller patches of old-growth forests. In the cultural 
landscape of the northeastern part of the state of Brandenburg and 
southeastern Mecklenburg Western Pomerania, large agricultural areas 
and forests dominate. Roughly 70% of the forest area is dominated by 
Scots pine (Pinus sylvestris L.) plantations, and only smaller parts of the 
native deciduous broad-leaved forest comprise old-growth forest, most 
of which is dominated by beech (Fagus sylvatica L.) (Ibisch et al., 2018). 
There are a few scattered lakes of postglacial origin. The soil pattern in 
the study area is relatively homogenous (Panagos, 2006; Van Liedekerke 
et al., 2006), and the topography is characterized by small differences in 
altitude in the range of − 10 and 168 m above sea level and a mean slope 
value of less than 1.7% (Jarvis et al., 2008) (Appendix 1). 

2.2. Satellite imagery 

We used three preprocessed datasets to examine LST, the NDVI and 
land cover. Surface temperature information was taken from MODIS 
(Moderate Resolution Imaging Spectroradiometer) satellite data 
(Table 1). MODIS is a radio spectrometer on board NASA's Aqua EOS- 
PM1 satellite, which produces images of the Earth's surface over a wide 
spectral range and thus allows, among other things, a large-scale 
investigation of the radiation budget. From the measured radiation in
tensity in the infrared range (bands 31 & 32 with 10.8–12.3 μm), daily 
surface temperature is calculated at a resolution of about 1 km, taking 
into account emissivity and the water vapor content of the air column 
with the help of the “Generalized Split Window Algorithm” (Wan et al., 
2015). 

Surface temperature results from various factors such as albedo or 
emissivity, and it can be locally heterogeneous. Land surfaces can heat 
up much more during the day than the air above (station air tempera
ture), but there is usually a continuous exchange of heat (Jin and 
Dickinson, 2010; Mildrexler et al., 2011). 

NDVI data was also acquired from a MODIS time series (Table 1). The 
NDVI is calculated by using the near-infrared and visible spectra pro
vided by satellite imagery, with a 1 km resolution ranging from − 1 to 1 
(Didan, 2015). 

Land cover information was derived from the CORINE dataset of the 
European Environment Agency's Copernicus program (CORINE: Coor
dination of Information on the Environment; Table 1). Areas coded in 
the CORINE dataset as “non-irrigated land” and “pastures” are hence
forth referred to as “agricultural land”, and areas coded as 
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“discontinuous urban fabric” and “industrial or commercial units” are 
henceforth referred to as “urban areas”. If not stated otherwise, “forest” 
is a summary of areas coded as “broad-leaved”, “coniferous” and 
“mixed” forest. The different water body types (“water bodies”, “water 
courses”, “inland marshes”) are summarized under the term “wetlands”. 

2.3. Data-processing and statistical analysis 

For data acquisition, data-processing and statistical analysis, we used 
the Google Earth Engine (Google, 2021; Gorelick et al., 2017) as well as 
the integrated development environment R (R Core Team, 2021). 

We generated the temperature range dataset by filtering the mean 
LST of each image in the whole MODIS LST time series, sorting them 
stepwise by 5 ◦C temperature ranges (− 10/− 5 ◦C to +35/+40 ◦C) and 
calculating a per-pixel mean image for each temperature range. This 
resulted in ten images with mean values associated with the ten tem
perature ranges. 

The analysis of extreme weather conditions focuses on “hot days” 
occurring in the period July 2002 – December 2020. The definition of a 

“hot day” follows Germany's national meteorological service (Deutscher 
Wetterdienst, DWD), i.e. a maximum air temperature of at least 30 ◦C 
(DWD, 2021). In our study, a “hot day” is an image with at least one LST 
pixel value ≥30 ◦C. Although the number of days with LST data ≥30 ◦C 
is most likely higher than the number of days with corresponding air 
temperatures, LST data with the chosen threshold represent extreme 
temperatures at the surface and are therefore suitable for our approach. 
We reduced the resulting MODIS LST time series with only hot days to a 
single image with the per-pixel mean of all hot days, which we hence
forth refer to as the hot day composite. 

To quantify the cooling capacities of different land cover types on hot 
days, we examined the hot-day LST range per land cover type across the 
area. Land cover changes between 2000 and 2018 were negligible 
(Appendix 2), so we combined the hot day composite (2002− 2020) with 
the land cover data from 2018. The study area includes 13,300 LST 
pixels at a 1 km resolution, with each pixel comprising approximately 
155 land cover pixels at a 100 m resolution. To identify possible dif
ferences between land cover types, we grouped and plotted hot-day LSTs 
per land cover type, attributing LSTs to all land cover shares ranging 

Fig. 1. Map showing the location of the study area (10,726.8 km2) and its corresponding land cover types.  

Table 1 
Properties of the used datasets.  

Sensor, provider and product ID Spatial 
resolution 

Temporal coverage Selected time series Sequence and time of recording Number of 
images 

MODIS Aqua, NASA, MYD11A1.006, 
LSTa 

1 km 04.07.2002 to 13.08.2021a 04.07.2002 to 
31.12.2020 

Time series, 1 day, ~1.30 pm 6618 

MODIS Aqua, NASA, MYD13A2.006, 
NDVIb 

1 km 04.07.2002 to 20.07.2021b 04.07.2002 to 
31.12.2020 

Time series, 16-day composite, 
~1.30 pm 

426 

Copernicus, EEA, Corine Land Coverc 100 m 1990, 2000, 2006, 2012, 
2018 

2018 Snapshot 2018 1  

a (Wan et al., 2015). Available time resolution state 17.08.2021. doi:https://doi.org/10.5067/MODIS/MYD11A1.006 
b To generate the 16-day NDVI composite, the product is run through an algorithm that selects the best pixel with low clouds, a low view angle and the highest NDVI 

value (Didan, 2015). Available time resolution state 17.08.2021. doi:https://doi.org/10.5067/MODIS/MYD13A2.006 
c (Copernicus, 2018). https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_CORINE_V20_100m 
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from 0 to 100%. We also modelled scenarios in which 1, 5 and 10% of 
agricultural land is replaced by forest to determine whether the tem
perature in the study area is affected (Appendix 3). For this purpose, the 
influence on the mean hot-day LST in the study area was calculated 
when pixels with 100% agricultural land share were replaced by 100% 
forest. To quantify the cooling capacities of forests and wetlands, we 
selected temperature pixels consisting of forests and wetlands with a 
cover share of ≥50%, thereby illustrating the varying ranges of hot-day 
LSTs for increasing land cover share from 50 to 100%, without the 
substantial impacts of mixed pixels with shares between 0 and 50%. For 
simplicity, we focus on single land covers and omit LST responses due to 
mixed land cover shares. 

To search for LST patterns and land cover share across all tempera
ture ranges, we generated 10 mean images per temperature range (− 10/ 
− 5 ◦C to +35/+40 ◦C) and combined them with the land cover image. 
For each temperature range, we chose all LST values with a forest or 
wetland cover share of ≥50% and generated linear models for each land 
cover type and its associated temperature range. This allowed us to 
compare the linear model coefficients (the slope representing the rela
tion between LST and land cover share increase) of each land cover type 
per temperature range. 

We used the NDVI to examine possible explanations for dissimilar
ities in hot-day LSTs for different land cover types. However, the NDVI 
time series is not processed using the hot-days approach, since a dis
torted picture of vegetation may arise during heat stress. Therefore, we 
averaged the “greenest” pixels (i.e. the highest NDVI value) of the 16- 
day summer month composites (June, July, August) in the MODIS 
NDVI time series 2002–2020 for our region (henceforth the greenest 
composite). 

We combined the hot day composite (averaged LST image of hot 
days), the greenest composite and the land cover image to find tempera
ture regulation patterns in the study area. We selected only LST and 
NDVI values with land cover shares ≥50%. For comparison, we centered 
(subtracted the mean per value) and scaled (divided the standard de
viation per value) LST and the NDVI. To determine if LST varies 
significantly between different land cover types, we performed an 
analysis of variance (ANOVA). To clarify possible covariance between 
land cover and the NDVI in explaining LST, we additionally performed 
an analysis of co-variance (ANCOVA). For a spatial analysis of LST and 
the NDVI in forested areas, we produced a bivariate map for areas with a 

≥ 50% forest share, using the averaged LST image for hot days and the 
greenest NDVI image. 

3. Results 

3.1. Landscape temperatures 

Deviation in the mean LST indicated land cover-related patterns 
across the study area for each temperature range considered herein 
(Fig. 2). Berlin - in the south - was consistently warmer across all tem
perature ranges. In the higher temperature ranges, from 10 to 15 ◦C 
upwards, forests and wetlands tended to show below-average variations, 
indicating that the heating of these systems lags behind other parts of the 
landscape. This delayed response allows temperature differences be
tween the faster heating (warmest) and slower heating (coolest) pixels to 
increase in the higher temperature bands. In the hottest temperature 
range (35–40 ◦C), the LST difference between the hottest pixel (44.1 ◦C) 
and the coolest pixel (23.3 ◦C) reached 20.8 ◦C. 

3.2. Land cover shares and temperature effects 

The regional distribution of hot-day LST values in relation to the 
percentage of forest and wetland coverage per pixel indicated a signif
icant negative relationship (Fig. 3). The strongest signal can be observed 
for wetlands (slope − 7.98), followed by coniferous and broad-leaved 
forests. Data for mixed forests is relatively sparse and yielded no clear 
pattern (slope 0.36). 

Similar patterns were observed when relating the land cover share 
gradient (= temperature change with increasing share of one land cover 
from 50 to 100%) to temperatures summarized in 5 ◦C stepwise tem
perature ranges, from − 10/− 5 ◦C to +35/+40 ◦C (Fig. 4). The linear 
model coefficient (LST ~ land cover share) was depicted for differenti
ated and summarized land cover types per temperature range. With 
increasing temperatures, the lm-coefficient became increasingly nega
tive for wetlands, as well as, albeit to a lesser extent, for broad-leaved 
and coniferous forests (Fig. 4 A). The summarized land cover types 
indicated negative slopes for forests and wetlands when temperatures 
rise, whereas agricultural and urban areas showed a positive slope with 
rising temperature ranges (Fig. 4 B). 

The hot day composite (mean image of the selection of hot-day LSTs 

Fig. 2. Ten temperature ranges between − 10 and − 5 ◦C and 35 and 40 ◦C in 2002–2020 for the study area (as per Fig. 1), showing the per-pixel deviation of mean 
LSTs. The respective mean value of each range is depicted in white, negative deviations (LSTs cooler than the mean) are blue and positive deviations (LSTs warmer 
than the mean) are red. For scale and locations, see Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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with at least one regional value ≥30 ◦C) revealed an anticipated pattern 
with higher LSTs in urban areas and lower LSTs in forests and wetlands, 
using all land cover shares ranging from 0 to 100% (Fig. 5 A). Urban 
areas, i.e. industrial areas, settlements and non-contiguous urban areas, 
as well as agricultural areas showed values well above 26 ◦C, while 
forests (deciduous, coniferous and mixed) and wetlands were between 
22 and 25 ◦C. 

The study area comprises 6.6% continuous forest and 13.9% 
continuous agricultural land. When modelling the replacement of 1%, 
5% and 10% forest with agricultural land, a change in the mean tem
perature on hot days is evident in the study area (Fig. 5 B, Appendix 3). A 
10% increase in forest cover would lead to an estimated decrease of 0.9 
◦C in the mean temperature on hot days in the study area. 

3.3. LST and the NDVI 

Scaled values for the hot day composite and the greenest NDVI image 
were inversely related (Fig. 6). Only LST and NDVI values with ≥50% of 
one land cover type were included in the analysis. Urban areas indicated 
high LST and low NDVI values, whereas forests and wetlands indicated a 
reverse dispersion with a high NDVI and low LST. Weaker variances in 
LST and NDVI values were captured for agricultural land, while differ
ences between LSTs for land cover types were significant (ANOVA, n =
13,300, p < 0.000). ANCOVA testing (Type III for unbalanced designs) 
revealed that with and without land cover as a co-variable, the NDVI had 
a significant relationship with LST (n = 13,300, p < 0.000). 

Bivariate mapping of the distribution of LST and the NDVI for pixels 
with a ≥ 50% share of all forest types revealed a distinctive pattern 
(Fig. 7). Forest areas in the northwest of the area were cold and high in 

Fig. 3. Hot-day LST values in ◦C by shares of forest and wetland cover from a 
50% to a 100% share. Each LST pixel comprises ~155 land cover pixels. Each 
LST value is related to the share of each land cover type per LST pixel. ‘p’ is the 
probability, ‘AR’ is the adjusted R-squared and ‘CI’ is the 95% confidence in
terval. Numbers of observations (‘n’) and the slope of the linear model are 
depicted in the plot. 

Fig. 4. Relation between the linear model coefficient (LST/range ~ 50–100% share) in stepwise ranges of 5 ◦C from − 10/− 5 ◦C to 35/40 ◦C for different land covers. 
Linear model 95% confidence intervals are depicted for each land cover type coefficient in its associated temperature range. Image count per temperature range is 
indicated on the x-axis. ‘p’ indicates the probability, ‘AR’ the adjusted R-squared and ‘m’ the slope of the linear model. A) Diagram of differentiated forest types and 
wetlands. B) Diagram of summarized land cover groups, namely wetlands, urban areas, forests and agricultural areas. 

Fig. 5. A) Temperatures comprising different land cover types on days with a 
maximum temperature ≥ 30 ◦C (hot day composite) in the study area. Pixel 
count per class is indicated on the x-axis. Median value per class is depicted in 
each boxplot. B) Coverage and temperature changes in the study area for three 
models. Bars show scenarios when forests replace agricultural land by 1, 5 and 
10%. Line plot shows the declining hot day composite temperature in the study 
area up to 0.9 ◦C with respective forest cover gain. 
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greenness (marked in blue), while large conifer plantations at the center 
of the region were cold but less productive in terms of vegetation 
(marked in yellow). Smaller forest patches showed a lower NDVI and 
higher LSTs. 

4. Discussion 

We have quantified the cooling of landscapes associated with forests 
and wetlands - or, more precisely, reduced warming - by applying a new 
method that estimates temperature changes in line with increasing land 
cover fractions for different temperature ranges. The general tempera
ture mitigation effects of forests and wetlands are consistent with pre
vious studies (e.g. Alkama and Cescatti, 2016; Bonan, 2008; Bright et al., 
2017; Frenne et al., 2019; Zellweger et al., 2019). Our quantitative 
approach is novel, and it demonstrates that we can estimate and manage 
these contributions and thus moderate temperature extremes across 
complex landscapes. We now examine the implications of these methods 
and results. 

4.1. Landscape thermal effects of forests and wetlands 

We measured daytime thermal effects as the slope of the temperature 
difference versus the relative share of a specific land cover type per LST 
pixel for temperatures ranging from − 10/− 5 ◦C to +35/+40 ◦C; all 
resulting relationships were statistically significant (p < 0.005, adjusted 
R-squared >0.5). Increasing forest cover (all forest types combined, or 
differentiated by broad-leaved, coniferous and mixed forest) reduces 
temperatures during heat events compared to other land cover types 
(Fig. 3 A). Urban areas and agricultural land heat up more (Fig. 3 B), 
while wetlands reveal the greatest temperature differences at high 
temperatures and warming at the coldest temperature. Previous studies 
have established that such thermal reactions in wetlands can be 
explained not only by albedo and evapotranspiration, but also by soil 

heat flux, i.e. energy absorbed in the summer and then released in the 
winter (Shen et al., 2021, 2020; Wu et al., 2021). 

We observed that the cooling – or warming – of a given pixel depends 
on the relative share of each land cover type. The analysis of land cover 
share influence on hot days (hot day composite) indicated that while 
wetlands have the highest cooling effect when a pixel is 100% covered 
by wetland (lm coefficient − 7.98), coniferous forest (lm coefficient 
− 1.71) and broad-leaved forest (lm coefficient − 1.01) also exhibit 
significantly lower LSTs if the share is closer to 100%. Only the influence 
of mixed forest (lm coefficient 0.36) was not clearly related to its share 
(Fig. 3), most likely a result of the lower number of observations leading 
to inadequate statistical power (Fig. 8). These findings are in congruence 
with the results of a study that showed how land cover proportion 
characterizes LST in a Chinese urban landscape (Liu et al., 2018). The 
stronger influence of coniferous forest in comparison to broad-leaved 
forest could be a result of more data points and planting densities. 
However, the absolute values show cooler LSTs in broad-leaved forests 
than in coniferous forests, which is consistent with a study of forest 
cover proportions across Europe (Schwaab et al., 2020). 

The comparison of hot day composite temperatures (landscape mean 
of a day ≥30 ◦C) for different land cover types (with 0–100% share) at a 
scale of 100 m shows that forested areas and wetlands are up to 5 ◦C 
cooler than urban areas and agricultural lands (Fig. 5 A). Similar results 
in the southeastern United States have found that forests are 4–6 ◦C 
cooler than grasslands, and air temperatures are 2–3 ◦C lower (Novick 
and Katul, 2020). We have not dwelt here on the mechanisms by which 
this land surface temperature buffering is achieved, but these include 
both the thermal inertia that results as heat passes from warmer to 
colder bodies, particularly water, and the energy that is absorbed when 
water evaporates, both of which rely on the presence of water. The 
availability of water is of course also influenced by the presence of trees 
and wetlands and these influences are also potentially complex and 
involve a range of local to regional scales (Ellison et al., 2017; Sheil, 

Fig. 6. Scaled distribution of the mean LST of hot days and the greenest NDVI for land cover types with a share of ≥50%. Colored numbers show the numbers of data 
points per boxplot. Hot-day LSTs are the means of each pixel of the time series 2002–2020 with a daily mean LST ≥ 30 ◦C. Greenest composite NDVI are the maximum 
values of each pixel of a time series 2002–2020 for the summer months (June, July, August). Both datasets are centered (subtracting the mean per value) and scaled 
(dividing the standard deviation per value). Designation and order follow the CORINE land cover classification. 
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2018). The cooling functions of forests and wetlands at high tempera
tures are closely linked to ecohydrological functions that support the 
extraction, recycling and storage of water in the ecosystem (Ellison 
et al., 2017). Evaporation, transpiration and shade (in forests) offered by 
forests and wetlands ensure local cooling during the daytime (Ellison 
et al., 2017; Maes et al., 2011; Shen et al., 2020). However, decreased 
soil moisture due to heat extremes can interfere with temperature- 
moderating functions (Teuling et al., 2010). In sum, land cover tem
perature mitigation provided by forests and wetlands comprises 
different local and regional factors, such as evaporation, albedo and 
energy dissipation, as well as supra-regional factors such as landscape 
land cover composition and clouds (Wu et al., 2021; Shen et al., 2020; 
Bright et al., 2017; Zeng et al., 2017; Bonan, 2008; Benayas et al., 2008; 
Zaitchik et al., 2006; Schneider and Kay, 1994). 

4.2. Forest cooling, greenness and landscape modelling 

The pattern of the hot day composite of LSTs and the greenest com
posite of the NDVI shows contradictory relations for urban areas (high 
LST, low NDVI) and forests (high NDVI, low LST) (Fig. 6). The ANCOVA 
test for an effect of the NDVI on LST accounting for land cover types, 
provides a significant result. As the NDVI and LST are negatively 
correlated, we conclude that more productive vegetation is associated 
with a lower LST, and the greenest pixel in a time series provides an 
indicator for LSTs. The local cooling function of forests is known to be 
maximized in dense biomass-rich stands (De Frenne et al., 2019; Norris 
et al., 2012; Zellweger et al., 2019; Schwaab et al., 2020), which is 
consistent with the results of another study on the island of Madeira, 
where thermal infrared radiation as a function of LST was used to 
identify different land cover types. The research determined that older 

ecosystems with more complex structures have lower average temper
atures (Avelar et al., 2020). 

Our models suggest that replacing 10% of agricultural land with 
forest would reduce the mean temperature of the hot day composite in the 
study area by 0.9 ◦C (Fig. 5 B). It is noteworthy that the models remain 
conservative estimates, as we neglected edge effects where cooling spills 
from one pixel to its neighbors - an influence that should be evaluated in 
future work. In general, an increase in forest area can be achieved by the 
natural succession of abandoned agricultural land, by planting trees or a 
combination of both. Benayas et al. (2008) proposed “woodland islets”, 
i.e. many small afforested areas providing ecosystem services and 
enhancing biodiversity (Benayas et al., 2008). Investigations into the 
ability of these “woodland islets” to cool the landscape are necessary in a 
landscape management seeking cooling functions. 

4.3. Implications for ecosystem-based adaptation for climate change 

The advancing climate crisis, with the increasing risk of extreme heat 
events, highlights the importance of maintaining landscapes where 
extreme temperatures are avoided as much as possible. To study the 
regulating ecosystem services of forests and wetlands further, we 
recommend the analysis of hot-day LSTs (days with a mean ≥30 ◦C in 
our region) in combination with the greenest pixel NDVI composite. The 
use of preprocessed spatial data (MODIS LST and NDVI, CORINE land 
cover) facilitates analysis. However, inaccuracies in spatiotemporal 
data, such as database errors, topographic characteristics and land cover 
changes, influence the results and need to be addressed. The spatial 
resolution of the MODIS Aqua satellite (1 km) is a limitation; however, it 
is sufficient to detect temperature buffers in our study region. A higher 
spatial resolution, available from Landsat, ASTER and Sentinel, would 

Fig. 7. Bivariate map of LST (means of each pixel of a time series 2002–2020 for hot days) and NDVI (max of each pixel of a time series 2002–2020) of forest areas 
with ≥50% share. Blue: NDVI high/LST low; Green: NDVI/LST high; Red: NDVI low/LST high; Yellow: NDVI low/ LST low. For scale and locations, see Fig. 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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permit assessments on finer scales (e.g. Avelar et al., 2020; Hesslerová 
et al., 2018; Liu et al., 2018). It is important to note that the measured 
LSTs are not necessarily the daily maximum values, as the MODIS Aqua 
satellites take these measurements at around 1.30 pm each day, and the 
temperature often increases later in the day. This is particularly rele
vant, because the temperature mitigation of forests and wetlands is even 
greater in higher temperature bands (Fig. 2). While extreme heat exerts 
huge stress on ecosystems and people, we see that the presence of forests 
and wetlands can reduce such impacts (Fig. 3). 

The thermal effects of forests and wetlands offer ecosystem-based 
adaptation, in order to reduce heat stress related to climate change (e. 
g. Kupika et al., 2019; Nanfuka et al., 2020; Schumacher et al., 2018). 
Furthermore, forest and wetland loss are therefore not only potential 
drivers of increasing heat stress, but they also most likely influence 
relevant biogeochemical functions such as carbon storage and the 
regulation of greenhouse gas emissions (Laurance et al., 1998; Liu et al., 
2019; Pugh et al., 2020; Shen et al., 2020). We need to recognize these 
functions in landscape management and consider a number of goals and 
incentives (Lusiana et al., 2017). In addition, further work is required to 
assess the costs and benefits of different arrangements within a land
scape (e.g. Parks and Hardie, 2018). More forests and more wetlands 
will provide greater adaptation benefits by mitigating extreme heat than 
any other type of land cover. 

5. Conclusion 

We quantified the thermal influence of forests and wetlands over a 
large area north of Berlin, Germany, by developing a novel pixel-based 
approach. The ability of forests and wetlands to moderate temperatures 
increases in line with spatial coverage and increased heat. Our approach, 
using readily available data, accounts for yearly and seasonal variance 
and shows patterns of expected temperature ranges for all land cover 
types. Our results highlight the value of forests and wetlands in reducing 
peak temperatures and thus mitigating some of the more severe impacts 
of climate change that are increasingly dangerous for human health. Our 
quantification of landscape cooling is valuable for the analysis of 

temperate landscapes, and its application could be implemented in other 
regions, without considerable effort. We recommend that the regulation 
of ecosystem services, including the avoidance of extreme heat, should 
play a greater role in landscape planning and management. 
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Appendix 1

Elevation (range − 10 to 168 m) and slope (range 0 to 1.8◦) of the study area. More than 70% of areas with a forest cover of >50% lie within an 
elevation of 50–90 m and with slopes between 0 and 2◦. 

Appendix 2 
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Land cover maps for 2000, 2006, 2012 and 2018. The quantification of land cover change between 2000 and 2018 exhibits no significant changes 
per land cover type. 2% of forest cover in 2000 was replaced by agricultural land in 2018, whereas 5% of agricultural land in 2000 was replaced by 
forest cover in 2018. For scale, locations and land cover types, see Fig. 1. 

Appendix 3 

Coverage and temperature changes for the hot day composite in the study area for three models. Respective LST for shares with agricultural land 
replaced by forest cover by 1, 5 and 10%. 
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Study 
area 

Forests 100% 
share 

Agricultural land 100% 
share 

Forests and agricultural 
land 

All land cover types without forest and 
agricultural land 

Share of study area in % 100 6.6 13.9 20.5 79.5 
Mean of hot-day LST in ◦C 26.4 24.3 27.8 26.7 26.1  

1% model: forest for agricultural 
land 

26.3 ◦C 7.6% 12.9% 26.5 ◦C 26.1 ◦C 

5% model: forest for agricultural 
land 

26.0 ◦C 11.6% 8.9% 25.8 ◦C 26.1 ◦C 

10% model: forest for agricultural 
land 

25.5 ◦C 16.6% 3.9% 25.0 ◦C 26.1 ◦C  
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