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Abstract
The one-cell amphibian embryo is modeled as a rigid spherical shell containing equal volumes
of two immiscible fluids with different densities and viscosities and a surface tension between
them. The fluids represent denser yolk in the bottom hemisphere and clearer cytoplasm and
the germinal vesicle in the top hemisphere. The unstable equilibrium configuration of the
inverted system (the heavier fluid on top) depends on the value of the contact angle. The
theoretically calculated normal modes of perturbation and the instability of each mode are in
agreement with the results from ComFlo computational fluid dynamic simulations of the same
system. The two dominant types of modes of perturbation give rise to axisymmetric and
asymmetric sloshing of the cytoplasm of the inverted embryos, respectively. This work
quantifies our hypothesis that the axisymmetric mode corresponds to failure of development,
and the asymmetric sloshing mode corresponds to development proceeding normally, but with
reversed pigmentation, for inverted embryos.

Nomenclature

a radius of the sphere or the spherical embryo
ρ1 density of the heavier liquid
ρ2 density of the lighter liquid
ρ density contrast between the two liquids
σ interfacial tension between the two liquids
x, y, z Cartesian coordinates
r, θ , z polar coordinates
pσ , pg pressures due to surface tension and gravity
θ0 contact angle
C speed of wave on a membrane or interface of

liquids
U displacement of the surface from equilibrium
X, Y, T r, θ , and time-dependent portions of function u
Jm, Ym Bessel functions of the first and second kind
i

√−1

qmn the nth zero of J ′
m

fmn the functional form of the mode characterized
by (m, n)

ωmn frequency of oscillation of the mode fmn

Bmn the normalization factor of fmn

ε initial amplitude of small perturbations

S(m, n, ε) surface area of the interface disturbed by fmn

with amplitude ε

�U
g
mn, �Uσ

mn changes in the gravitational potential energy
and surface energy of the perturbed system

smn, umn dimensionless values related to the surface and
gravitational potential energies of the modes of
perturbation defined in the text

α growth rate of modes of perturbation

τ period of oscillation of the modes in the upright
system
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γ growth rate of the hanging part of a chain on a
table

L total length of the chain
meff,meff 11 the effective mass involved in oscillation and

that for mode 11

Introduction

Amphibian eggs are bottom heavy, with more of the dense
yolk platelets in the bottom hemisphere than the top. When
tipped, they rapidly right themselves (Gordon et al 2006). This
is easy to observe in those eggs that are dark on top and lightly
pigmented at the bottom, such as the fertilized axolotl egg
(Ambystoma mexicanum), which we can think of as a one-
cell amphibian embryo (Bordzilovskaya et al 1989). When
such a one-cell amphibian embryo is inverted prior to the first
cell division, it either develops with pigmentation of dorsal
and ventral skin reversed, or it does not develop at all past
gastrulation (Chung and Malacinski 1982, 1983, Malacinski
and Neff 1989, Neff and Malacinski 1982, Neff et al 1986,
1984, 1990, Wakahara et al 1984, 1985). In microgravity,
where up and down do not matter, ‘although early embryonic
stages showed some abnormalities, the embryos were able
to . . . produce nearly normal larvae’ (Black et al 1996). There
is abundant experimental evidence that links the alignment of
cortical microtubules (those just below the cell membrane)
with the spontaneous cortical rotation that happens before
the first cell division (Elinson and Rowning 1988, Gerhart
et al 1989). This cortical rotation is known to correlate
precisely with the later developing dorsal–ventral axis and
left/right bilateral symmetry of the embryo (Chang et al 1999,
Elinson and Holowacz 1995, Gerhart et al 1989). Some
experiments also show that forced cortical rotation, that is,
rotating the cortex using an external apparatus, works as well
in dorsal–ventral axis determination (Ancel and Vintemberger
1948, Denegre and Danilchik 1993, Kirschner et al 1980,
Phillips et al 1996). This remarkable observation suggests
that something purely physical and macroscopic is involved in
this stage of development. Therefore we hypothesized that the
way the denser yolk flows down to the bottom of the inverted
embryo is the critical factor for inverted one-cell embryos:
axisymmetric flow terminates development, while asymmetric
sloshing permits normal development (Flint et al 1989). In the
present study we attempt to understand the probability of each
type of flow using a simplified two-liquid model. In this model
we consider a sphere filled with two immiscible liquids with
equal volume and different densities, modeling the heavier
yolk and less dense cytoplasm inside the egg, with the heavier
liquid on top to represent inversion of the one-cell amphibian
embryo.

We divide the problem into two separate steps. First
we calculate the unstable equilibrium configuration of the
system when the heavier liquid is on top, and try to find the
equation describing the non-planar interfacial surface between
the two liquids. This, amongst other things, depends on the
relative densities and the interfacial tension between the two
liquids, the radius of the sphere and the contact angle of the
interfacial surface with the surface of the sphere where they

(a) (b)

Figure 1. Schematic diagram of the unstable equilibrium of a
sphere filled equally with two immiscible liquids with the heavy one
on top, (a) when the contact angle is less than 90◦ and (b) when it is
more than 90◦. The dotted line shows the flat surface when the
contact angle = 90◦.

touch. The contact angle, in turn, depends on the type of
materials comprising the liquids and that of the sphere (Kane
and Sternheim 1983) (figure 1).

Next, we introduce some small deviation from the
equilibrium configuration and study the growth rate of each
normal mode of perturbation. This is a Rayleigh-type analysis
after Lord Rayleigh’s instability analysis of a long cylindrical
liquid (Gordon et al 1972, 1975, Rayleigh 1879a, 1879b, 1892,
1964). This will show the likelihood of any type of flow of the
heavier liquid down toward a stable configuration in which it
finally settles at the bottom.

The outcome of the analytical (mathematical) model
is compared with results obtained with the simulation tool
ComFlo (Gerrits and Veldman 2003, Kleefsman et al 2005,
Luppes et al 2005, 2006, Veldman et al 2007). Based
on the Navier–Stokes equations for free-surface flows, this
computational fluid dynamics (CFD) program can simulate
the sloshing of two immiscible fluids with different densities
and viscosities by means of finite-volume discretization
techniques, including specially designed free-surface tracking
algorithms.

Unstable equilibrium configuration

Suppose we have a sphere filled with two immiscible liquids
with different densities and equal volumes so that each one
fills half of the volume of the sphere. In the equilibrium state,
the heavy liquid (the one with higher density) is at the bottom
half of the sphere and the lighter one on top. The interfacial
surface between them in general is not a flat surface and its
shape depends on the contact angle between the interfacial
surface and the inner wall of the sphere and also depends on
the surface tension and gravity. Its meniscus shape is similar
to that of water in a partially filled glass of water or a test tube.
It has a curvature and its shape is axisymmetric when the
container’s cross-section is circular. In Cartesian coordinates
the equation of the surface can be described as z(x, y). In
cylindrical coordinates, however, it takes a simpler form of
z(r), independent of θ because of its azimuthal symmetry.
When the heavy liquid is on top, there is also an equilibrium
state which is, however, unstable, but the general form of the
interface is almost the same.
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In general, we have two fluids with different densities ρ1

and ρ2 (with ρ1 > ρ2). The important parameter influencing
the behavior of the system is the density contrast ρ = ρ1 −ρ2.
It is fairly straightforward, by balancing the pressures due to
surface tension of the curved surface with that due to gravity,
to write down the differential equation governing the shape of
the interfacial surface and solve for its azimuthally symmetric
equation, z(r) (Rowlinson and Widom 1982). The solution in
the cases when the contact angle is sufficiently close to 90◦ is

z(r) = AJ0(iβ r), (1)

where the real constant A is defined by

A = − cot θ0

iβJ1(iβ a)
, (2)

arising from the boundary condition that the contact angle at
r = a (where a is the radius of the sphere or the embryo) should
be θ0. The function Jm(x) is the mth-order Bessel function of
the first kind (Greenberg 1998). σ is the surface tension, i is
the imaginary unit number and β = √

ρg/σ . As an example,
β = 370 m−1 for water at 20 ◦C, with σ = 7.3 × 10−2 N m−1,
ρ = 103 kg m−3 and g = 9.8 kg m s−2. This is the reason
why the capillary effects become significant for systems with
dimensions of a few millimeters or smaller, i.e., at the capillary
length (de Gennes et al 2004). Equation (1) gives the unstable
equilibrium configuration of the surface of the fluid when it
is occupying the upper half of the sphere. In the following
we attempt to find the normal modes of perturbation and
the functional form of growth of the normal modes of this
surface. While the above surface seems to be complicated for
the upcoming analysis, we note that for the case of θ0 = π/2
we have A = 0 and the surface will be a flat plane. Therefore,
for simplicity we take the contact angle to be at this value for
the rest of the calculations, i.e., we assume a flat plane as the
separation surface at equilibrium.

Normal modes of vibrations of the fluid surface

The instability of different modes of perturbation can be
estimated by the increase in the surface area of the fluid and
also by the imbalance it creates in the forces that tend to move
the system away from the unstable equilibrium.

The modes of perturbation are the vibration modes of
the surface coming from the solution to the wave equation
for the circular, planar interface between the two fluids. We
model the circular interface with a vibrating membrane with
displacement u(r, θ, t) and Neumann boundary conditions,
since for our case the contact angle is taken as 90◦. Therefore
the radial derivative of the displacement should vanish at the
boundary (r = a). This is not a precise model, but it will be
proved that it is a good enough approximation for our purposes
here. The wave equation for a membrane is given by

c2∇2u = ∂2u

∂t2
(3)

where the constant c is the propagation velocity of waves
on the membrane. Since the equation is linear, the solution

can be found straightforwardly by separation of variables and
applying the boundary conditions (Greenberg 1998):

u(r, θ, t) = Jm

(ωr

c

)
e±imθ eiωt (4)

where ω is the frequency of vibration of the mode, m is a non-
negative integer and Jm(s) denotes the Bessel function of the
first kind and of order m, and is defined by (Greenberg 1998)

Jm(s) =
∞∑

k=0

(−1)k

k!(k + m)!

( s

2

)2k+m

. (5)

The zeros of these functions can be found in many handbooks
(Abramowitz and Stegun 1965). For the surface of the fluid,
the values of s in Jm(s) should be chosen in such a way that fluid
volume be conserved. These values correspond to the zeros
of the derivatives of the Bessel functions since

∫
sJm(s) ds

vanishes at zeros of J ′
m(s) for the case m = 0. For the other

cases (m �= 0) the volume under each mode also vanishes due
to periodicity of Ym(θ). Therefore, we consider the truncating
point of each Bessel function Jm(s) at the zeros of J ′

m(s). This
allows us to have the conservation of fluid volume for our
system in all cases, as well as satisfying the condition for the
contact angle of 90◦, with which we started these calculations.
We denote the nth zero of J ′

m(s) by qmn. The numerical
values of qmn for the first few Bessel functions are given in
table 1.

The boundary condition (conservation of fluid volume, or
contact angle of 90◦) requires qmn = ωa/c, which discretizes
the frequencies as

ωmn = qmnc

a
. (6)

These are the frequencies of the corresponding modes of
vibration

umn(r, θ, t) = cos(ωmnt + ϕt ) cos(mθ + ϕθ)Jm

(ωmnr

c

)
(7)

where ϕt and ϕθ denote the corresponding phases, which
depend on the initial conditions. The general solution for
the vibrating interface between the fluids, i.e. equation (3), is
a linear combination of all of these terms. For determination
of the most unstable mode in our case, however, we only
need to concentrate on the following modes of vibration of the
membrane and estimate their relative instability:

fmn(r, θ) = Bmn cos(mθ)Jm

(qmnr

a

)
(8)

where Bmn is the normalization factor. These are the main
modes of vibration that occur at the interface. Figure 2 shows
a few of these modes for an inverted embryo. In order to
normalize the functions we demand the dot product of each
mode with itself to be unity.

This gives

Bmn = 1

a
√

πλmn

(9)

where we define

λmn = 1 + δ0m

q2
mn

∫ qmn

0
J 2

m(x)x dx. (10)

Here δ0m denotes the Kronecker delta which is zero for m �= 0
and is unity for m = 0. The numerical values of Bmn are given
in table 1 for the first few modes.
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     21   22   33   34

     11   12   13   14

     01   02   03   04

Figure 2. Visualization of different modes of excitation of the interfacial surface when the heavy fluid is on the top half of the sphere. The
numbers underneath each mode shows the m and n parameters for each mode. This figure shows only the heavy fluid on top and is colorful
only for visual convenience.

Table 1. This table shows on the columns respectively, mode numbers, the qmn values for each mode, normalization factors in units of 1/a,
values of smn, the surface energy, umn, and the gravitational potential energy associated with perturbation with each mode (see the text).

Mode qmn Bmn (1/a) smn �Uσ
mn (nJ) umn �UG

mn (nJ)

01 3.8317 1.400 81 1.190 82 68.1 0.081 108 −62.0
02 7.0156 1.879 91 2.216 54 127 0.045 035 −34.4
03 10.1735 2.259 42 3.226 73 184 0.031 176 −23.8
04 13.3237 2.583 77 4.232 17 242 0.023 840 −18.2
11 1.8412 1.205 00 0.173 40 9.91 0.059 674 −45.6
12 5.3314 2.346 84 0.980 47 56.1 0.028 897 −22.1
13 8.5363 2.939 69 1.535 74 87.8 0.018 417 −14.1
14 11.7060 3.432 48 2.060 15 118 0.013 508 −10.3
21 3.0542 2.170 02 0.320 16 18.3 0.033 798 −25.8
22 6.7061 2.666 17 1.309 91 74.9 0.022 3895 −17.1
23 9.9695 3.197 10 1.917 74 110 0.015 571 −11.9
24 13.1704 3.654 66 2.469 33 141 0.011 916 −9.11
31 4.2012 2.623 73 0.453 90 26.0 0.023 120 −17.7
32 8.0152 2.955 16 1.606 99 91.9 0.018 225 −13.9
33 11.3460 3.436 63 2.268 95 130 0.013 476 −10.3
34 14.5858 3.864 70 2.850 85 163 0.010 656 −8.15

Estimating the instability of different perturbations

We now consider the instability of a perturbation of the surface
of the denser fluid on top from the equilibrium (which is now
a flat surface since the contact angle is set at 90◦) by one
of the above modes in (8) with an amplitude proportional
to a small number ε, that is for Bmn = ε. The instability
of each mode depends on the changes it causes in the total
potential energy once the flat interfacial surface is perturbed
by that mode with amplitude ε. The total potential energy is
composed of two different parts. One is the surface energy
due to the surface tension, and the other is the change in the
gravitational potential energy of the system. Since the surface
tension tends to reduce the area, each mode creates a positive
surface energy because the modes increase the surface area
once they occur. The increase in surface energy depends on
the mode’s shape and amplitude. On the other hand, each
mode creates some displacement of material away from the
equilibrium. This causes a negative gravitational potential

energy for the inverted system. The sum of these two potential
energies determines the instability. If the sum of the potential
energies is negative, it means that the mode grows and vice
versa. This sum of potential energies in fact shows whether
we go uphill or downhill on the energy landscape when we
perturb the interfacial surface from the initially flat state to the
shape of the normal mode under consideration.

The surface area can be calculated from

S(m, n, ε) =
∫ 2π

0

∫ a

0

√
1 +

(
∂fmn

∂r

)2

+
1

r2

(
∂fmn

∂θ

)2

r dr dθ.

(11)

Since the amplitude is very small, this can be estimated by
expansion of the square root, which gives for the surface area
of each mode

S(m, n, ε) = πa2 + πsmnε
2 + O(ε4) (12)
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Figure 3. A completely flexible chain of total mass M and length L
partly hanging from the edge of a table as a mechanical problem
similar to unstable fluid.

where we define

smn = 1 + δ0m

2

∫ qmn

0
J 2

m+1(x)x dx +
m2

2

∫ qmn

0

1

x
J 2

m(x) dx.

(13)

The numerical values of smn for the first few modes are given
in table 1. These values show the percentage of increase in the
surface area if we have the interface disturbed by each one of
the modes with amplitude ε = 0.1a. The change in surface
energy created by each mode is given by

�Uσ
mn = σ�S(m, n, ε) = πε2σsmn. (14)

As a numerical example with amplitude ε = 0.05a for a sphere
of radius a = 1 cm when the two fluids are considered to be
water and air this gives �Uσ

mn = smn × 5.73 × 10−8 J. On
the other hand, when the interface of the fluid is perturbed
by a function fmn(r, θ) from the flat surface (equilibrium
configuration), the total gravitational potential energy for each
one of the modes is

�Ug
mn = −πρgε2a2umn (15)

where we define the dimensionless number

umn = 1 + δ0m

2q2
mn

∫ qmn

0
J 2

m(x)x dx. (16)

The value of the energy is �U
g
mn = −7.64 × 10−7umn J. The

numerical values of umn and �Umn for this example are given
in table 1.

Calculation of growth rates of the modes

From an equivalent mechanical problem one can find the
functional form of the increase in the amplitude and also the
growth rate of each mode of perturbation. In this type of
problem, the force acting on the system is proportional to the
deviation from equilibrium. Therefore, an equivalent problem
can be the following. What is the length of the hanging part
as a function of time, of a completely flexible chain of mass M
and total length L on a frictionless table with one end hanging
down from the edge with length y0 starting from rest (see
figure 3)? From the Newtonian mechanics for this system it
is fairly straightforward to derive y = y0 cosh(γ t), where γ

is the growth rate of the hanging part defined by γ = √
g/L.

This problem shows that the growth rate depends only on the

gravitational acceleration and the total length of the chain. The
important point is that it does not depend on the initial value
y0. On the other hand, the growth rate can be written in terms
of the initial potential energy as

γ =
√

Mgy0

MLy0
=

√
2U0

MLy0
. (17)

To show this for the fluid problem, numerical simulations with
ComFlo have been started from one of the modes as the initial
surface and repeated for different amplitudes of the initial
mode. The results showed that the growth of the amplitude
of any normal mode had a hyperbolic cosine form and was
independent of the initial amplitude (see figure 4). Therefore,
the growth rate of an unstable mode in the inverted one-cell
embryo, from analogy with (17) for the equivalent mechanical
problem, can be written in terms of the total potential energy
of the system in a way that has a dimension of s−1:

α =
√

−�U
g
mn + �Uσ

mn

ρε2a3
=

√
π

(
− σ

ρa3
smn +

g

a
umn

)
. (18)

If the sum of the two energies is negative
∣∣�U

g
mn

∣∣ >
∣∣�Uσ

mn

∣∣,
then the mode should grow, and vice versa. For example,
for the parameter values we have chosen here, from table 1
we conclude that only modes 01, 11, 21 will grow in this
case, and the other modes if created will vanish because they
create a positive total change in the potential energy of the
system. It might be expected that the modes with the lowest
total potential energy grow fastest and vice versa, but this is
not quite true because the total mass involved in the dynamics
of each mode is different. Making an analytical estimation of
this effective mass for each mode is not easy to do. Therefore,
we try to estimate it by means of some in silico experiments
with ComFlo.

Experiments with ComFlo

The outcome of the analytical (mathematical) model is
compared with results obtained with the simulation tool
ComFlo (Gerrits and Veldman 2003, Kleefsman et al 2005,
Luppes et al 2005, 2006, Veldman et al 2007). Based
on the Navier–Stokes equations for free-surface flows, this
computational fluid dynamics (CFD) program can simulate
the sloshing of two immiscible fluids with different densities
and viscosities by means of finite-volume discretization
techniques, including specially designed free-surface tracking
algorithms.

In ComFlo, both liquids are simulated and tracked in
time by solving the unsteady Navier–Stokes equations in
conservative form for both fluids. In this so-called two-phase
approach, incompressibility is assumed for both liquids, which
is appropriate as they are indeed liquids, flowing at very low
speed. As the flow inside the eggs under consideration is
at very low speed, in combination with high viscosity and
small scale (small eggs), the flow can be regarded as laminar
and hence no turbulence modeling is required. The program
uses an explicit time-stepping procedure to track the fluids in
time. The maximum numerical time step is determined by
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Figure 4. This figure shows ComFlo simulations (symbols) and hyperbolic cosine fit (solid lines) for, from top to bottom respectively, the
coefficient of mode 01 in expansion of the interface in terms of the modes, and the heights of the highest and lowest points of the interface.
These show that the growth of disturbances in the inverted system precisely follow a cosine hyperbolic form as predicted.

means of the well-known CFL number, which implies that the
time step is limited by means of the combination of velocity
magnitude and gridsize. The typical initial time step in the
simulations described below is about 10 µs. However, since
ComFlo is programmed to adjust the time step to an optimum
value, during the simulation it normally goes to about 0.2 ms.
Before we use ComFlo for testing the theory described above,
we compute the dot product of each pair of the modes using
the actual mesh size used in the ComFlo software. Since the
software works with a Cartesian mesh this is calculated as

〈fmn(x, y), fm′n′(x, y)〉
=

∑
i

∑
j

fmn(xi, yj )fm′n′(xi, yj )�xi�yj . (19)

This helps to quantify the magnitude of the numerical error
we have for calculation of each dot product, and to check
whether or not these modes are orthonormal, i.e. equation
(19) should evaluate to zero for (m, n) �= (m′, n′), and unity
for (m, n) = (m′, n′). The numerical error in the dot products
from zero for 125 000 (50×50×50) mesh points and ε = 0.05a

was around 0.5% of each one of the functions squared,
indicating that the simulations on that mesh are sufficiently
accurate. By increasing the number of meshpoints and hence
decreasing the mesh size, grid independence can be confirmed,
as two solutions on two grids only differ marginally.

In order to check the results of the theory and to see
whether the modes we found are in fact the normal modes
of the system, we use the criterion that if a linear system is
excited with one of its normal modes it will vibrate with the
same mode while the other normal modes remain unexcited.
To check this, ComFlo simulations were started, each time

with one of the modes as an initial interface between the two
fluids with the heavier fluid at the bottom. Then, after several
steps, the coefficients of expansion of the new interface were
calculated and monitored versus time. It was expected that the
new interface only had a nonzero coefficient for the starting
mode within the errors due to a finite mesh size. This starting
coefficient would then undergo a damped oscillation around
and toward zero. Some results of this kind are given in figure 5,
which shows the plots of the coefficients of expansion versus
time for some of the modes. This clearly shows that the modes
we found in (8) are orthogonal and, in fact, to a very good
approximation are the normal modes of our system. This is,
theoretically, based on the completeness of the set of functions
in (8) and the fact that we can write any integrable function over
the domain r � a as a linear combination of these functions
(Greenberg 1998).

Using ComFlo simulations we also found the growth rate
of each mode according to the formula

α = 1

t
cosh−1

(
y

y0

)
(20)

where y0 and y are the initial and final amplitudes of each
mode when it increases for the time period t.

As mentioned above, the theoretical calculation of the
effective mass involved in vibration of each mode is not easy
to do. Instead, we can have an estimate for the ratio of
mass involved in each oscillation by comparing the results
of some analytical calculations with ComFlo experiments. If
the total initial potential energy of the system is considered
as the vibrational energy of the effective mass involved (m),
as we can see from relations (17) or (18), the growth rate (α)
and the period of oscillation (τ ) are proportional to m−1/2 and
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Figure 5. A few examples of oscillation of the modes. For each simulation, the system is started with the interfacial surface to be one of the
modes with the heavy fluid at the bottom. Then at a later time the interfacial surface is expanded in terms of all the modes and the coefficient
of each mode is calculated. Each plot shows these coefficients versus time, indicating that to a fairly good approximation, only the initial
mode is oscillating and the rest of the modes stay calm, showing that the modes are in fact the normal modes of the system. The total time
scale is 0.1 s; the vertical range is [−1, 1] in arbitrary units for all plots showing their relative amplitude of oscillation. The numbers in the
plots show the parameters (m and n) of the mode used as a starting shape in each case.

m1/2, respectively. In the case of a vibration, the growth rate
is imaginary and its magnitude represents the frequency of
the oscillation. When the denser liquid is at the bottom, the
maximum potential energy is positive and from the first part of
relations (18) the negative sign under the square root accounts
for the imaginary number.

Table 2 shows, in the second column, the values of the total
potential energy in nano-Joules for each mode taken from the
sum of the absolute values of the gravitational potential energy
and the surface energy from table 1. The third column shows
the value of the inverse square root of the second column,
normalized to give the right value for mode 11. It is assumed
that if the effective mass for all modes were the same, all
other values would match as well and this would give the
correct period for all modes. The difference between these is
assumed to arise from the different effective mass involved in
oscillation of the various modes. In fact, from relations (17)
and (18) the ratio of the values of the two columns is the same as
the ratio of the effective mass for that mode to that of mode 11
(or meff/meff11). Figure 6 shows the velocity fields in arbitrary

Table 2. The values of �U tot
mn measured in nJ,

√
1/�U tot

mn

proportionally changed to match the in silico experiment for the
mode 11, the experimental values of period of oscillation (τ ) and
estimated relative effective mass (meff ) for the first few modes when
water is at the bottom half.

Mode �U tot
mn (nJ) τ , theory (s) τ , experiment (s) meff/meff,11

01 130.6 0.104 15 0.0913 0.768
02 161.4 0.093 67 0.0611 0.425
03 208.5 0.082 42 0.0406 0.242
04 206.4 0.073 76 0.0320 0.188
11 55.89 0.159 20 0.1592 1.000
12 78.32 0.134 48 0.0723 0.289
13 102.0 0.117 84 0.0498 0.178
14 128.2 0.105 11 0.0366 0.121
21 44.35 0.178 73 0.1126 0.397
22 92.15 0.123 99 0.0612 0.244
23 121.6 0.107 91 0.0433 0.161
24 150.4 0.097 06 0.0326 0.113
31 43.77 0.179 91 0.0911 0.257
32 105.9 0.115 64 0.0528 0.209
33 140.1 0.100 55 0.0379 0.142
34 171.2 0.090 96 0.0287 0.100
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Figure 6. Velocity fields in arbitrary units in the middle vertical slice of the sphere with heavy fluid at the bottom. This figure shows that the
numerical values estimated for the effective mass in table 2 are reasonable. The actual magnitude of the velocity of each volume element is
not important here, but the rate at which their magnitude decays as we go away from the interfacial surface is important and indicates the
amount of mass oscillating in each mode.

units in each volume element in the cross-section of the embryo
for a few different modes taken from ComFlo simulations.
The figure shows that the effective mass ratios we found in
table 2 are reasonable. The important factor to be observed
in these figures is the rate at which the velocity vectors decay
as we go away from the interface of the two fluids, not the
actual magnitude of the velocities. The figures also show
that for mode 11, almost all the fluid mass is oscillating
together but for the other modes only part of the mass is
moving and therefore these modes have a smaller effective
mass that actually undergoes oscillations. This should be taken

into consideration because the initial total potential energy is
used for different amounts of oscillating (effective) mass for
different modes, and this affects the predicted frequency or
period of oscillation or the growth rate in the case of an inverted
system.

Once we have the effective mass ratios we can use them to
calculate the growth rates for each mode when the heavy liquid
is on top. When the embryo is upside down, for each mode of
oscillation and with the same amplitude (ε) the surface energy
for the modes is the same but the gravitational potential energy
will be negative. Therefore, the total potential energy change

8
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Figure 7. Comparison of the in silico experimental growth rates with calculated results. The negative growth rates correspond to the
oscillating modes since the total potential energy for those modes is positive.

from the flat (equilibrium) configuration can be positive or
negative depending on the mode. Those modes with positive
total energy will oscillate around the equilibrium (for a short
while until they decay), and the ones with negative potential
energy grow with a hyperbolic cosine form with a growth rate
estimated analytically as in (18) or experimentally as in (20).
Changing viscosity of the fluids changes the rates of increase
of the unstable modes and also damps the oscillation of stable
modes but does not change the instability behavior of the
modes. This means that changing viscosity of the liquid does
not make an unstable mode stable and vice versa. This is
the reason viscosity of the fluid is not playing a significant
role in our discussions. It also means that this aspect of
embryogenesis is robust with respect to changes in viscosity of
yolk and cytoplasm, i.e., with respect to changes in temperature
and/or nutrition.

Figure 7 compares the results of analytical estimation
of growth rates for each mode with those calculated from
ComFlo simulations for our model embryo. This shows a
fairly good agreement between the two. In this figure, the
growth rates of the stable modes are shown with a negative
sign. In fact, mathematically, when a mode is oscillating
around the equilibrium instead of growing, its growth rate
becomes purely imaginary. Since plotting purely imaginary
numbers along with positive real numbers is not convenient,
we replaced the imaginary unit number (i) with a negative sign
in this figure.

Up to this point we showed that the analytical calculations
(with approximation of the wave equations we used from
the beginning) agree with the computational fluid dynamic
simulations (which take into account the exact Navier–Stokes
equations for its calculations) for the study of Rayleigh
instability of our model. In the following we try to apply
this theory to an actual egg and try to get the probability of the
survival of the eggs after inversion based on the calculations
we carried out above.

Estimation of the probability of normal development
of inverted embryos

Measurements of viscosity of cytoplasm range from as little
as 430 to as much as 27 000 poise (Drury and Dembo
2001, Hochmuth and Needham 1990, Hochmuth et al 1993,
Needham 1991, Tran-Son-Tay et al 1994, Valberg and
Albertini 1985). Surprisingly intra-nuclear viscosity is at the
lower end of this range, at 520 poise (Tseng et al 2004). Thus
the large nucleus or ‘germinal vesicle’ of the one-cell axolotl
embryo may not affect the general flow, except for the presence
of the nuclear membrane. While we have ignored its role in
the calculations here, the obvious buoyancy of the germinal
vesicle relative to the yolk, on which it sits like a sessile
drop, will have to be taken into account in future work. For
example, it could, as a separate compartment, alter the mass
of fluid available to be moved by different modes, though this
would depend on the nuclear membrane bending modulus and
tethering to cytoskeleton.

For surface tension we have available reported values such
as ‘a membrane cortical tension of 0.024 dyne cm−1’ (Tran-
Son-Tay et al 1994) (cf Hochmuth et al (1993)). We have used
the range of 20–80 dynes cm−1 for diatom raphe fluid found in
the microcapillary, microfluidics channel that is part of their
motility mechanism (Gordon and Drum 1970).

For these values of surface tension and the density contrast
of about 40% between the yolk (ρ1 = 1.3 g cm−3) and
cytoplasm (ρ2 = 0.9 g cm−3), the actual growth rates of
different modes in the inverted system were calculated from
ComFlo simulations. The density contrast is based on a
guesstimate from our measurement of a mean density of
ρ = 1.1 g cm−3. The simulations were done starting from an
amplitude of about 2% of the embryo radius of 1 mm for each
mode and for the first 10 ms of the growth of the perturbation.
Then the growth rates were calculated using equation (20).

9
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Figure 8. Estimated relative probability of growth of the modes, in arbitrary units, based on the ComFlo simulations with the surface
tension and relative densities of the yolk and cytoplasm found in the literature.

The probability of each mode occurring at the beginning of
an inversion is also estimated as proportional to (mn)−2 for
different modes except for the case of m = 0 for which a
factor of 1/π is used. The results are plotted in figure 8,
which shows the relative probability of growth of each mode
of perturbation when an embryo is inverted, in arbitrary units
for the 16 most important modes versus the corresponding
mode numbers.

From the shape of the modes (figure 2) one can see that
all the modes with m = 1 result in asymmetric sloshing of
the yolk down the axis of the spherical embryo, while the
growth of other modes (m = 0) turns into axisymmetric flow
of the yolk. The former cause the cortical microtubules to
align in one direction and therefore their effects are similar to
that of a normal cortical rotation. The axisymmetric flow, on
the other hand, prevents unidirectional pattern formation for
microtubules and stops the normal development of the embryo
as if the cortical rotation had not occurred. Therefore, in order
to calculate the probability of survival of an embryo after an
inversion we should calculate the total relative probability of
the m = 1 cases to the total relative probability of the m = 0
cases. From the actual numbers used for the plot in figure 8
we can see that the rate of survival should be about 62% of the
total.

Conclusion

Since the pioneering work of Wilhelm His (1888), there has
been surprisingly little progress on the physics of embryos,
especially above the molecular biology level (Beloussov and
Gordon 2006, Chen and Brodland 2008, Forgacs and Newman
2005, Gordon 1983, 1994, Gordon and Jacobson 1978). The
one-cell vertebrate embryo meets the physicist’s general need
for simplification, ‘given a spherical cow . . . ’ (Harte 1988),
for, indeed, a cow or a human or an axolotl is a sphere at this
stage (Gordon 1999). Here we have shown that our empirical
results using spherical flasks with two immiscible fluids (Flint
et al 1989), which suggested that sloshing of the yolk in
the one-cell amphibian embryo can account for its success
or failure to develop when inverted, can indeed be justified

and made quantitative through analytical and computational
fluid dynamics approaches. The next steps will be to predict
the effects of these fluid motions on cortical microtubules that
are believed to be responsible for cortical rotation and try to
observe the yolk motion and alignment of the microtubules.
Then we should be prepared to comment on the relationship of
these motions to the so-called maternal determinants, deposits
of RNA present in the embryo and believed to have effects on
subsequent embryo development (Sindelka et al 2008). The
same tools may allow us to understand why nearly normal
development of amphibian embryos occurs in microgravity
(Black et al 1996). We have seen that gravity is a subtle tool
for probing embryos. Its effects extend to the molecular level
(Portet et al 2003) and appear to affect subcellular organization
of structures such as microtubules. Of course, the critical
experiment to test the predictions made in this paper is to
watch the three-dimensional flow pattern inside an inverted
one-cell embryo, say by microMRI (Gruwel et al 2007a,
2007b) or microCT (Gordon and Del Bigio 2002), and see
if it correlates one to one with whether or not the embryo
subsequently develops. We hope that what we have done here
is to begin a research program to understand the physics of
the embryo and its interaction with its molecular and genetic
components, toward building our understanding in the same
order in which an embryo builds itself, starting from an initial
state that is indeed relatively simple to comprehend.

Acknowledgments

The authors would like to thank the Canadian Space Agency,
the Manitoba Institute for Child Health and the University of
Manitoba Research Grant Program for supporting this project.
The authors would also like to thank Beatriz E Lerner for
assistance with preliminary embryo density measurements,
and Susan Crawford-Young for bringing our groups together.

References

Abramowitz M and Stegun I A 1965 Handbook of Mathematical
Functions (New York: Dover)

10



Phys. Biol. 5 (2008) 015006 C Nouri et al

Ancel P and Vintemberger P 1948 Recherches sur le déterminisme
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