
AVR: Session 3
Timers, Interrupts and Counters

Timers and Counters

● As the name suggest, keeps track of time elapsed since

start of microcontroller.

● All Microcontrollers have a clock inside them.

(Frequency: 1MHz!!!)

● Counters tick with the clock. (8 bit or 16 bit)

● Prescaling: Simply a way to make the counter skip a

certain number of clock ticks

Related Registers
Timer

● TCCR0 / TCCR1(Timer/Counter Control Register)

● FOC (Force Output Compare)
● WGM (Waveform Generation Mode)
● COM (Compare Match Output)
● CS (Clock Select)

● TCNT1 (holds Timer Count)

LED Blink: Timer and Counter Style
● We want LED to blink every 1/5th of second.

● When counter reaches 200,000, instruct the

microcontroller to toggle the output.

● But our counter is 16 bit => we cannot count beyond

65536.

Prescaling to the rescue

Deciding the Prescalar:
● 1,000,000 Ticks per second, Maximum Count till 65535.

● Available Prescalars: 8,64,256 and1024

■ 8 Prescalar: 125000 Counts/Second

■ 64 Prescalar: 15625 Counts/Second

■ 256 Prescalar: 3906 Counts/Second

■ 1024 Prescalar: 976 Counts/Second

Let us use 64 Prescalar => Toggle with every 3205 counts

Pseudo Code
// Include header files

int main(void)

{
/* Designate pin as output and pull it down to LOW */
/* Select the Prescalar */
//Start of MAIN LOOP

if (Timer Count > 3204)
{
/* Set Timer Count to Zero */

 /* Toggle LED */
// End of MAIN LOOP

}

Actual Code
#include <avr/io.h>
int main(void)
{
PORTB |= 1<<PINB0;
DDRB |= 1<<PINB0;
TCCR1B |= (1<<CS10 | 1<<CS11); //Page No. 110

while(true)
{
if(TCNT1 > 3204)
{
TCNT1=0;
PORTB ^= 1<<PINB0;
}

}

Interrupts
● Exactly like it sounds like: When X event occurs, stops

the main code and executes a particular block of code.

● Event can be Counter reaching a number, pin changing

state, Analog to Digital Conversion, Serial

Communication, PWM

● We will use Interrupts to make LED blink example more

efficient.

Timer Interrupts

● We will ask TCNT1 to a number to match.
● This number will be stored in OCR1A/

OCR1B
● When the number is matched we want to put

the counter back to zero - CTC
● Timer/Counter will need to know we are

using the Interrupt feature - TIMSK register

Pseudo Code
// Include header files
int main(void)
{
/* Enable Global Interrupt */
/* Designate pin as output and pull it down to LOW */

/* Select the Prescalar and Enable CTC Mode*/
/* Enable use of OCR1A Register */
//Start of MAIN LOOP
// End of MAIN LOOP

}

//Interrupt Code

{

/*Toggle LED*/

}

Actual Code - Part 1
#include <avr/io.h>
#include <avr/interrupt.h>

int main(void)

{
sei();
DDRB |= 1<<PINB0;
TCCR1B |= 1<<CS10 | 1<<CS11 | 1<<WGM12; // Page No. 110
TIMSK |= 1<<OCIE1A; // Page No. 112
OCR1A = 15624;
while(1)
{
}

}

Actual Code - Part 2
ISR(TIMER1_COMPA_vect) // Page No. 44

{
PORTB ^= 1<<PINB0;

}

PWM - Application of Timers and Interrupts

● Finds an important application

in motor control.

● Types of PWM:

■ Non-inverted

■ Inverted

■ Phase Correct PWM

Waveform Generation: Types

● Non Inverted
● Inverted
● Phase Correct

PWM to control a servo

● Servo needs a PWM with 20ms period and
high time from 0.9-2.1ms.

● We will use the inverting mode here.
● No Prescaling => 20,000 counts as period

(Set ICR1 as 20,000)
● Set OCR1A = ICR1 - (pulse width)

Pseudo Code
// Include header files
int main(void)
{
/* Enable Global Interrupt */
/* Designate pin as output */

/* Select the Prescalar and Enable CTC Mode, Set ICR1 as the top of
Waveform */
/* Enable use of OCR1A Register */
//Start of MAIN LOOP
// End of MAIN LOOP

}

//Interrupt Code

{

/*Toggle LED*/

}

Actual Code
#include <avr/io.h>

#include <util/delay.h>

int main(void)

{
DDRD |= 0xFF;
TCCR1A |= 1<<WGM11 | 1<<COM1A1 | 1<<COM1A0; // Page No.
108
TCCR1B |= 1<<WGM13 | 1<<WGM12 | 1<<CS10; // Page No. 110
ICR1 = 19999;
OCR1A = ICR1 - 2000; //18000

while (1)
{
OCR1A = ICR1 - 800;
_delay_ms(100);
OCR1A = ICR1 - 2200;
_delay_ms(100);

}

}

