
- 1 -

Simple Interface for Reconfigurable
Computing (SIRC):
PCXilinx V5/V6 Communication
Ken Eguro – 8/11, version 1.1

1. Introduction
The goal of the Simple Interface for Reconfigurable Computing (SIRC) project is to provide a fast and easy to use
communication/control mechanism between C++ code running on a host PC and a hardware-based accelerator
implemented on a FPGA. Our motivation is that the simple software and hardware interfaces of this API will lower
the barrier to entry for reconfigurable hardware accelerators and attract new application developers. This system
provides a complete and customizable interface solution that only requires users to have a basic knowledge of C++
and Verilog – only enough to develop their application-specific software and hardware computation. No in-depth
knowledge of drivers, operating systems or communication protocols is necessary. Furthermore, the need for
debugging is limited to users’ computational cores.

This version of the system provides communication via a 1 Gb Ethernet link between a Windows machine and a
Xilinx Virtex 5/Virtex 6 FPGA. In our testing, it achieves 50% of the maximum theoretical bandwidth with transfers
of 8KB or larger and 95% with transfers of 128KB or larger.

Future releases will add the capability to use different communication methods (such as PCI Express, which is
currently in the final stages of debugging), different operating systems and different FPGAs. Any updates will
maintain the same software and hardware user interfaces. This will allow applications to easily migrate to new
reconfigurable platforms with no changes to user code.

For the latest update, please visit the SIRC discussion forum at:

http://community.research.microsoft.com/forums/153.aspx

2. Setup & Installation

System Requirements
1) A network card capable of operating at 1 Gb. This can either be:

a. a dedicated card that can be connected directly to the FPGA via a crossover cable. This is the
preferred method and will provide the best performance.

b. a card that shares a connection with normal PC network traffic and is connected to the FPGA and
the upstream network link through a gigabit-capable switch.

2) A host PC with that meets the necessary requirements for either:

a. Virtual PC 2007 (XP, Vista, or Windows 7 machines)

b. Windows Virtual PC (Windows 7 machines)

http://community.research.microsoft.com/forums/153.aspx

- 2 -

Note that Virtual PC itself is not actually used. This project only uses the Virtual Machine
Network Services driver, but this is not available as a stand-alone download. Also, as discussed
later in this document, Virtual PC 2007 is strongly suggested, even on Windows 7 machines

3) For direct use with the default settings, a Digilent XUPV5, a Xilinx ML505/506/507 board, a BEE3 (either
LX110T, LX155T or SX95T), or an ML605 board.

4) Xilinx ISE and a JTAG programming cable to create/compile user hardware-side applications and program
the FPGA board (tested with ISE versions 10.1 to 13.2).

5) Visual Studio to create/compile user software-side applications (tested with VS2005 to VS2010).

6) Modelsim (if the user would like to simulate SIRC and their application in software before moving to
hardware). We have tested with version 10.0a.

Host PC Installation Notes
Virtual PC 2007 SP1 is freely available for download from:

http://www.microsoft.com/downloads/details.aspx?familyid=28C97D22-6EB8-4A09-A7F7-
F6C7A1F000B5&displaylang=en

Although SIRC supports the Virtual PC network driver included with Windows 7 XP Mode/Virtual PC, this driver is
slower than the one included with Virtual PC 2007 (due to the fact the newer version offers less buffering). We
encourage users to remove that version, if installed:

1) Go to “ControlPanel -> Programs -> Uninstall a Progam” and uninstall "Windows XP Mode"
2) After that is complete, in the same window click on “View Installed Updates”.
3) Under Microsoft Windows, uninstall “Windows Virtual PC (KB95855)

After installation on the host PC, verify that the Virtual Machine Network Services driver was installed properly and
enabled only for the network card connected to the FPGA. This can be done by opening “Control Panel->Network
Connections” and right-clicking to select “Properties” on each network connection on the host PC. While this
window is open, if the FPGA is connected to a dedicated network card, it is also best to unselect all other services
for this connection. Lastly, although unlikely if the correct connections (and network switches) are used, it may
also be necessary to configure the network card connected to the FPGA to explicitly operate at a speed of 1 Gbps.
The method of setting this value differs among card manufacturers and drivers, but it is typically accessed from the
“Properties->Configure->Advanced” window of the network connection.

At this point, the user can verify the proper setup and connectivity between the host PC and FPGA if they have a

Digilent XUPV5/ML505/ML506/ML507/BEE3/ML605. We have included pre-compiled binaries for both the

software and hardware portions of a simple example application in the “precompiledExampleBinaries” directory.

These pre-compiled binaries can be used to follow the testing outlined in the “Programming & Execution of

Example Program” section.

3. Software Interface
This goal of the following two sections is to provide a high-level view of the software and hardware-side APIs. This
will enable users to understand the simple example application provided in “SW_Example” and “HWSrc”
directories and build their own applications.

This API is intended to be used for batched execution on the FPGA in a supervisor/worker style mode. The
expectation is that the user’s program will:

http://www.microsoft.com/downloads/details.aspx?familyid=28C97D22-6EB8-4A09-A7F7-F6C7A1F000B5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=28C97D22-6EB8-4A09-A7F7-F6C7A1F000B5&displaylang=en

- 3 -

1) send one or more pieces of data from the host PC to an input buffer connected to their circuit on the
FPGA

2) signal the FPGA to start execution on that data

3) wait until the computation is done

4) retrieve the results from an output buffer also connected to the FPGA-based logic

All operations are initiated by the PC in a single threaded manner. Only one operation is performed at a time e.g.
overlapped read and writes operations are not supported. Overlapped I/O can be supported by double buffering
with multiple software and hardware APIs. Built-in support for such an interface will be introduced in future
releases.

Although the API has the capability to configure the FPGA once both the software API on the PC and the hardware
API controller on the FPGA are in communication with each other, it is expected that the hardware controller will
be automatically bootstrapped onto the FPGA initially. As described in the “Programming FPGA & Execution of
Example” section, this is typically performed either with iMPACT through a JTAG programmer or (preferably) via
power-on initialization from flash memory.

As will be described in more detail in the “Hardware Interface” section, the user’s circuit on the FPGA will
communicate with the host PC through the hardware-side communication API. This hardware API has five primary
features: an input memory, an output memory, a 255 x 32-bit parameter register file, a userRun signal, and a
userSideReset signal . The userRun signal tells the user’s circuit to begin execution. This signal is also used to
indicate when the user’s circuit has completed execution. The userSideReset signal tells the user’s circuit that it
should reset. These five parts of the hardware-side API are controlled in software via member functions of the
ETH_FPGA class. The twelve functions within the ETH_FPGA class define the software-side API:

ETH_FPGA(uint8_t *FPGA_ID,
uint32_t driverVersion,
wchar_t *nicName)

Constructor for the API class. FPGA_ID is an array of 6 bytes that contain the
MAC address of the target FPGA. driverVersion is the version number of the
underlying network driver to use (in the current implementation between 1
and 3). If this value is 0, the system will attempt to connect with the all of the
drivers from newest to oldest, stopping when one is found. nicName is a
specific network adapter to use (e.g. “Microsoft Loopback Adapter”). If this
value is NULL, the system will attempt to connect with the first network
adapter that has the given network driver version active. That said, if this
option is used, only one network adapter on the machine should have the
Virtual PC driver active. This is because the enumeration of the network
adapters is not necessarily static and can change for a variety of reasons.
This function only initializes the software side of the system. The FPGA is not
programmed, but it is reset. For this reset to function properly, the hardware
API controller should already be bootstrapped onto the FPGA and ready to
run. For more information, regarding setting up the FPGA to automatically
load the hardware API, see the “Programming FPGA & Execution of Example”
section.
If no errors are present after the function returns (check with the getLastError
function), this means that the system is capable of communicating with the
FPGA and ready for further commands.

~ ETH_FPGA() Destructor for the API class. Similar to the constructor, this only tears down
the software side of the system. Any user or configuration data left on the
FPGA is not deleted.

int8_t getLastError() If any of the commands below return false, the cause of the error can be
checked with this function. A return of exactly zero indicates no error and any
value less than zero indicates an error (see eth_FPGA.h for a list of errors).

- 4 -

Although the constructor does not return a boolean value, the user should call
this function after the creation of an ETH_FPGA object to make sure that the
communication channel initialized successfully.

BOOL sendWrite(
 uint32_t startAddress,
 uint32_t length,
 uint8_t *buffer)

Send a block of data from the PC (pointed to by buffer and of length length) to
an input buffer on the FPGA. The write will begin at a particular local byte
address in the FPGA’s input buffer (startAddress). Returns true if the write
succeeds, else return false. Please note that “buffer” is a byte array. Thus,
the endian-ness of any multi-byte data types used on the host machine need
to be considered when copying values to the buffer. This may change if the
user moves from a little endian machine to a big endian machine or vice
versa.

BOOL sendRead(
 uint32_t startAddress,
 uint32_t length,
 uint8_t *buffer)

Retrieve a block of data (starting at the local address startAddress and of
length length) from the output buffer on the FPGA. Place the data into a
buffer on the PC (buffer). Returns true if the retrieval succeeds, else return
false. Similar to sendWrite, the endian-ness of multi-byte data types on the
host machine need to be considered when copying values out of the buffer.

BOOL sendParamRegisterWrite(
 uint8_t regNumber,
 uint32_t value)

Write a 32-bit unsigned integer (value) into one of the registers (address #
regNumber between 0 and 254) within the parameter register file of the
FPGA. Returns true if the write succeeds, else return false. Since the datatype
of value is known, the system compensates for any change in endian-ness on
the host machine.

BOOL sendParamRegisterRead(
 uint8_t regNumber,
 uint32_t *value)

Read the value of one of the registers (address # regNumber between 0 and
254) within the parameter register file of the FPGA. Put the read value into
value. Returns true if the read succeeds, else return false. Similar to
sendParamRegisterWrite, this function compensates for changes in endian-
ness on the host machine.

BOOL sendRun() Start execution on the FPGA by setting the signal userRunValue true. Returns
true if the start command is accepted, else return false.

BOOL waitDone(
 uint8_t maxWaitTime)

Wait up to maxWaitTime seconds for execution on the FPGA to complete.
Returns true if execution completes, else return false. Completion is indicated
by the user circuit resetting the userRunValue via the userRunClear line.
Further details regarding the hardware API are provided in the next section.

BOOL sendReset() Abort execution of the user circuit and return control of the I/O buffers and
parameter registers to the API controller by asserting the userSideReset line.
While this also resets userRunValue, it does not change anything else on the
FPGA (for example, the contents of I/O buffers and parameter registers are
unchanged aside from any values that the user circuit might have modified
while the userRunValue was true). Returns true if the reset command
completes, else returns false.

BOOL sendWriteAndRun(
 uint32_t startAddress,
 uint32_t inLength,
 uint8_t *inData,
 uint8_t maxWaitTime,
 uint8_t *outData,
 uint32_t maxOutLength,
 uint32_t *outputLength)

Essentially a combination of the sendWrite, sendRun, waitDone and sendRead
commands. Potentially harder to use than separate commands, but also likely
much faster.
Send a block of data from the PC (pointed to by inData of length inLength) to
the input buffer of the FPGA (starting at startAddress). When the data has
been sent to the FPGA, start execution and wait up to maxWaitTime seconds
for execution to complete. When it is done, read up to maxOutLength bytes
of results back from the output buffer, beginning at address 0. Put the results
retrieved from the FPGA’s output buffer into outData. The hardware-side API
monitors writes made to the output buffer by the user’s circuit during the
execution phase of this command. The highest address written to the output
buffer during a given execution cycle is used to determine how many bytes
should be read back from the device. The number of bytes read back will be

- 5 -

placed in outputLength. Returns true if the entire process succeeds, else
returns false.
If the function fails with a FAILCAPACITY error, the only problem was that the
outData buffer was too small to copy all of the generated results from the
FPGA back to the host. If this occurs, the outputLength variable will not
contain the number of bytes returned, but rather the total number of bytes
the execution phase wanted to return (the number of bytes actually returned
will be maxOutLength). The user can then simply read the “overflow” bytes
from addresses {maxOutLength, outputLength-1} manually with a
subsequent sendRead command.
If the function fails with a FAILREADACK error, the device failed to fully
respond during the readback phase of the command, despite retry attempts.
The outputLength variable will not contain the number of bytes returned, but
rather the number of bytes the execution phase wanted to return. The state
of outData is unknown, but at least some output data has been partially
written. In theory the user could elect to read the entire buffer from {0,
outputLength-1} again with a separate sendRead command (despite the fact
retries were already made and there is probably some other issue in the
system). This option may be attractive if calling sendWriteAndRun is not easy.
For example, if inData and outData point to overlapping addresses in the
same array, it may be simpler to try and re-read outData rather than
recreating inData so that execution can be attempted again.

BOOL sendConfiguration(
 char *path)

Configure the FPGA using iMPACT and a programming cable from the
bitstream file at path. Return true if reconfiguration succeeded, else return
false. Before using this option, please make certain to properly define the
following constants in eth_FPGA.h:
 IMPACT
 PATHTOIMPACT
 PATHTOIMPACTTEMPLATEBATCHFILE
 PATHTOIMPACTPROGRAMMINGBATCHFILE
 PATHTOIMPACTPROGRAMMINGOUTPUTFILE
 IMPACTSUCCESSPHRASE

Also, ensure that the batch command template file
(PATHTOIMPACTTEMPLATEBATCHFILE) is appropriate for your setup. The
included template file has been tested with the Platform Cable USB II device
and the XUPV5/ML505/ML507 boards. See the “Programming FPGA &
Execution of Example” section for more information.

Future versions of this function will provide direct configuration over the
Ethernet connection. This will eliminate the need for the host PC to have
iMPACT and a programming cable installed. Furthermore, this will make
reconfiguration much faster.

As will be discussed in more detail in the “Hardware Interface” section, the connections of the Verilog hardware
API contain a little-endian bus structure. For example, a 4-byte bus would be indicated with connection [31:0]. In
this case, the most significant byte would be held in connection [31:24] and the most significant bit of that byte be
held in connection [31]. To maintain code portability with all host PCs, the software-side API will try to conserve
the bit and byte ordering used on the host PC and adjust if possible. For example, when sendParamRegisterWrite
is called on a big-endian byte-ordered PC, the software API will convert the big-endian integer parameter to little-
endian byte ordering before transmission to the FPGA. Similarly, sendParamRegisterRead will convert the little-

- 6 -

endian integer response to a big-endian byte-ordered integer upon receipt. However, no such endian conversion
is performed for the sendWrite and sendRead functions, as the buffer parameter is a pure byte-wise array.

4. Hardware Interface
As seen in Figure 1, the user’s circuit on the FPGA primarily interacts with the host PC through three memories: an

input buffer, an output buffer, and a set of parameter registers. In the current implementation, these memories
are implemented with onboard BlockRAM and the size of the input and output buffers are customizable. The
customization process is described in more detail in the “Compiling Hardware” section.

Since the system operates in a supervisor/worker style mode, a user interface signal, userRunValue also signifies
which device has read/write access to the User device interface. The following specifies the behavior:

 Logic 0 – the host has R/W control of all API logic state. All user logic writes will be ignored and all reads
will return zero values.

 Logic 1 – the user logic has R/W control of Input/Output BlockRAM and Parameter Register file. No host
changes are possible. The user logic relinquishes control by clearing the userRunValue (user logic asserts
userRunClear). Control can be returned to the host (in the event of a problem with the user logic) by
calling the sendReset function.

Ethernet
Controller

Logic

Input
Buffer

inputMemoryReadReq
inputMemoryReadAck
inputMemoryReadAdd
inputMemoryReadDataValid
inputMemoryReadData

userInterfaceClk

userLogicReset
userRunValue
userRunClear

register32CmdReq
register32CmdAck
register32WriteData
register32Address
register32WriteEn
register32ReadDataValid
register32ReadData

outputMemoryWriteReq
outputMemoryWriteAck
outputMemoryWriteAdd
outputMemoryWriteData
outputMemoryWriteByteMask

Output
Buffer

Parameter
Register

File

connections to
physical

communication
interface, etc.

user logicAPI controller

top-level system module

(optional)

Clock
Generation

- 7 -

 FIGURE 1: USER HARDWARE INTERFACE

Notes:

1) Input Buffer is used by the sendWrite function e.g. data is moving from the PC to the FPGA
2) Output Buffer is used by the sendRead function e.g. data is moving from the FPGA to the PC.

Although the API controller itself requires a small handful of very specific clocks to communicate correctly with the
board-level devices, the clock frequency of the interface between the API controller and the user’s logic
(userInterfaceClk) can operate at any frequency - arbitrarily low or high, subject to the compilation tools still being
able to place and route within the proper timing constraints. The system has been successfully tested with
userInterfaceClock set from 7 to 333 MHz, depending upon the target FPGA, desired size of I/O buffers and
complexity of user logic. The default setting in the example code is 167 MHz.

The following table provides more specific details for the interface signals that the user’s logic module should take
as inputs and should provide as outputs.

userInterfaceClk input Clock to which all interface signals are aligned. Will
function at any frequency (subject to ISE being able to
meet timing constraints). User circuit can also use other
clock signals if desired, but signals to hardware API must
be aligned to this clock.

userLogicReset input User circuit should reset when this signal is asserted.
Then this signal goes true, the hardware API will reset
userRunValue automatically, reclaiming control over the
I/O buffers and register file.

userRunValue input User circuit should begin execution when this signal is
asserted. The hardware API gives control over the I/O
buffers and parameter registers to the user circuit while
this signal is asserted.

userRunClear output Asserting this signal will reset userRunValue. This
indicates that the user circuit has completed
computation and wants to give control over the I/O
buffers and parameter registers back to the hardware
API.

register32CmdReq output Asserting this line indicates that the user circuit would
like to perform a read or write to the register file
(depends upon register32WriteEn). The command is
accepted by API controller when both register32CmdReq
and register32CmdAck are true for 1 clock cycle.

register32CmdAck input This line is asserted when the API controller has accepted
the read or write request.

register32WriteData output[31:0] Data to write to the parameter register file.

register32Address output[7:0] Address line to parameter register file.

register32WriteEn output Write enable to parameter register file.

register32ReadDataValid input This line is asserted when the register file has returned
with data from a read request. The data will only be
valid while this line is true.

register32ReadData input[31:0] Data read back from parameter register file. Will only be
valid while register32ReadDataValid is true.

inputMemoryReadReq output Asserting this line indicates that the user circuit would
like to perform a read from the input memory buffer.
The read command is accepted by API controller when

- 8 -

both inputMemoryReadReq and inputMemoryReadAck
are true for 1 clock cycle.

inputMemoryReadAck input This line is asserted when the API controller has accepted
a read request.

inputMemoryReadAdd output[N:0] Address of read request. Parameterized, more detail in
the “Compiling Hardware” section

inputMemoryReadDataValid input This line is asserted when the input memory buffer has
returned with data from a read request. The data will
only be valid while this line is true.

inputMemoryReadData input[M:0] Data read back from the input memory buffer. Will only
be valid while inputMemoryReadDataValid is true.
Parameterized, more detail in the “Compiling Hardware”
section

outputMemoryWriteReq output Asserting this line indicates that the user circuit would
like to perform a write to the output memory buffer.
The write command has only accepted by API controller
when both outputMemoryWriteReq and
outputMemoryWriteAck have been true for 1 clock cycle.

outputMemoryWriteAck input This line is asserted when the API controller has accepted
a write request.

outputMemoryWriteAdd output[N’:0] Address of write request. Parameterized, more detail in
the “Compiling Hardware” section

outputMemoryWriteData output[M’:0] Data of write request. Parameterized, more detail in the
“Compiling Hardware” section

outputMemoryWriteByteMask output[log2(M’/8):0] Byte-wise write enable of write request. Parameterized,
more detail in the “Compiling Hardware” section

Figure 2 describes the request/acknowledge logic of the user interface in more detail. In the top diagram of Figure

2, the user circuit would like to submit a read request (asserting inputMemoryReadReq). The user circuit must

make the read address (inputMemoryReadAdd) valid the same cycle that the request line is asserted. If the

acknowledge line (inputMemoryReadAck) is low, the request has not been accepted by the controller logic until

both the request and acknowledge signals have been asserted for 1 clock cycle. Before this occurs, the user logic

may lower the request line to cancel the request before it is accepted. After the read request is accepted, the

controller will return with the read data (inputMemoryReadDataValid is asserted and the data is presented on

inputMemoryReadData). As seen in the middle diagram of Figure 2, the acknowledge line may already be asserted

before the user logic submits a request. In this case, the read request will be accepted the same cycle that

inputMemoryReadReq is asserted. Extending this concept, as seen in the bottom diagram of Figure 2 multiple

reads may be submitted in consecutive cycles if conditions allow – again, a request is accepted any cycle that both

inputMemoryReadReq and inputMemoryReadAck are asserted.

The parameter registers and output memory follows a similar request/acknowledge scheme. In the case of a

write, the address, data (and, in the case of the output memory byte mask) signals must begin to be valid the same

cycle that the request line is asserted.

- 9 -

FIGURE 2: TIMING DIAGRAM FOR INPUT & OUTPUT MEMORY REQUEST/ACKNOWLEDGE SIGNALS

5. Compiling Hardware
The existing codebase should work with any “transceiver” Virtex 5 or Virtex 6 (LXT, SXT, TXT, FXT but not the
baseline LX series). Compatibility through ISE 13.2 has been verified, and we do not expect any issues with newer
versions of the tools. All sample screenshots depict ISE 13.2 and CORE Generator version 13.2. The user interface
for new versions of the tool may change slightly, but all of the same options should be available.

If you are using ISE 13.2 or newer and targeting the ML50X/BEE3/ML605, you may use one of the example project
folders (HW_Example_13_2_X) and skip to section III below (generating the needed CoreGen pieces). If using the
ML50X/XUP or BEE3 example projects, please double-check that the device settings and the included .ucf match
those needed for your board.

If you are not using ISE 13.2 or newer (or otherwise have trouble using the provided example projects), use the
following directions to create a new project.

I) Create a new project in Xilinx Project Navigator
a. Begin a new project from “File->New Project”. Enter a name and location for the project,

making sure to select “HDL” as the top-level source.

- 10 -

b. Select the appropriate device, package and speed for your platform. ISE 13.2 has specific
options for the ML505/506/507/605 boards, but just for completeness below are the
parameters for the boards we directly support. If you port this system to any other
platforms, please let me know.

Platform Device Package Speed

ML505
ML506
ML507
XUPV5

XC5VLX50T
XC5VSX50T
XC5VFX70T

XC5VLX110T

FF1136 -1

BEE3
XC5VLX110T
XC5VLX155T
XC5VSX95T

FF1136 -2

ML605 XC6VLX240T FF1156 -1

c. Ensure that “Verilog” is at least part of the parameter selected for the remaining project
options and, if simulating is something that you would like to do (see Section 7 for more
details), select the proper simulator. Finally, click “Next”.

- 11 -

d. We will be adding existing sources later, so click “Next” until prompted to “Finish”.

II) Add all of the appropriate source files to your project.

a. Right-click in the “Design->Hierarchy” window and select “Add Source…” and browse to the
SIRC_INSTALL_PATH\HWSrc directory (if installed to the default location, it will be in

C:\Program Files\Microsoft Research\Simple Interface for Reconfigurable Computing (SIRC)\HWSrc\

or

C:\Program Files (x86)\Microsoft Research\Simple Interface for Reconfigurable Computing (SIRC)\HWSrc

- 12 -

b. Add all of the .v files in the appropriate platform directory and one .ucf file for your platform

(e.g. XUPV5system.ucf if targeting the Virtex 5 XUP board, ML505system.ucf if targeting the
ML505, etc.).

c. Double-check in the “Design->Hierarchy” window to ensure that the system module is the
top-level module. This is indicated by a green icon to the left of the system module. If this
module is not the top-level module, make it the top-level module by right-clicking the
system module and selecting “Set as Top Module”.

- 13 -

This project also relies on a few free cores generated by CORE Generator. We cannot re-distribute Xilinx's IP, so
the user must generate those cores themselves. Below are instructions that describe how to generate the proper
cores. Although some of the older versions of the CORE Generator modules are no longer available with newer
versions of the tool, this does not seem to be an issue. Most of the differences in the CORE Generator versions are
indicated below.

III) EMAC Wrapper

a. Start CORE Generator from “Start→Programs→XILINX_DIRECTORY→ISE Design Tools-> 32/64-bit
Tools →CORE Generator” (the exact menu path will differ slightly from machine to machine and
version to version). CORE Generator can be started from within Project Navigator, but we have
had problems with code generated when CORE Generator is started in this way.

b. Create a new project within the ISE project directory created in step 1. A handy place to create
this project is in YOUR_PROJECT_PATH\ipcore_dir

i. Select the proper part for your board (for example, the ML505 boards use a Virtex5
xc5vlx50t-ff1136-1 part and the ML605 board uses a Virtex 6 xc6vlx240t-ff1156-1 part)

- 14 -

ii. Switch to the "Generation" Tab and change "Design Entry" to Verilog.

iii. The default options should be acceptable for other options.

c. If using a Virtex-5, select "Communications & Networking→Ethernet→Virtex5 Embedded Tri-
mode Ethernet MAC Wrapper", version 1.8.

If using a Virtex-6, select "Communications & Networking→Ethernet→Virtex-6 Embedded Tri-
mode Ethernet MAC Wrapper", version 1.5

If only later versions of the core are shown (these were available as of CORE Generator
13.2.61xd), select "Show→All Versions" in the main window. Newer versions of the core may
work, but Xilinx changes the interfaces that they use from time to time. Xilinx has been
migrating away from the Local Link interface in lieu of the AXI interface (in versions 2.0+ of the
wrappers). Future updates of SIRC will support wrappers that use the AXI interface.

- 15 -

d. Double-click to select and customize

i. Name – The existing codebase is expecting the module to be named “emac_single”.

ii. IF USING A VIRTEX-5: Select only one EMAC. I have tested with EMAC0, but EMAC1
should work as well. This is not an option if using a Virtex-6 board.

iii. As of CORE Generator 13.2.61xd, the rest of the settings should remain at their default
values. The critical values to double-check are Physical Interface: GMII and Speed: 1000
Mbps

- 16 -

e. Select “Finish” or “Generate” and CORE Generator will create the core’s logic. A new
“emac_single” directory will be created within the Core Gen project directory.

f. Add the following 7 files from the newly generated core to the ISE project. This can done by
right-clicking in the “Sources” window and selecting “Add Source…”

i. emac_single\example_design\client\fifo\eth_fifo_8.v

ii. emac_single \example_design\client\fifo\rx_client_fifo_8.v

iii. emac_single \example_design\client\fifo\tx_client_fifo_8.v

iv. emac_single \example_design\physical\gmii_if.v

- 17 -

v. emac_single \example_design\emac_single.v

vi. emac_single \example_design\emac_block.v

vii. emac_single \example_design\emac_locallink.v

g. Double-check that the system/E2M/emac_ll module (and the modules used inside of this
module) have been recognized by ISE. When browsing the design in the “Sources” window,
there should no longer be a question mark inside the system/E2M/emac_ll module document
icon (nor a question mark inside the icons of system/E2M/emac_ll/emac_block,, etc.).

IV) Input/Output buffers and Parameter Register File

h. Using the same CORE Generator project as the EMAC wrapper, generate the logic for the
parameter register file. Under the “View by Function” tab, select “Memory & Storage
Elements→RAMs & ROMs→Block Memory Generator”, version 6.2

- 18 -

i. Double-click to select and customize

i. Generate core with the settings:

1. Name: “blk_mem_gen_paramReg” and select the “Native” interface type

2. Memory Type: True Dual Port RAM

3. Port A and B Options

a. Memory Size Write Width: 32

b. Memory Size Write Depth: 255

c. Memory Size Read Width: 32

d. Operating Mode: Write First

e. Enable: Always Enabled

- 19 -

4. No registering for either port (double-check that none of the “Optional Output
Registers” boxes are selected)

5. Disable simulation warnings by checking both the “Disable Collision Warnings”
and “Disable Out of Range Warnings” boxes.

- 20 -

j. Select “Finish” or “Generate” and CORE Generator will create the core’s logic. A new
“blk_mem_gen_paramReg.xco” file will be generated within the Core Gen project directory.

k. With the same method as used for the Ethernet source files, add the “blk_mem_gen_
paramReg.xco” file to the ISE project and double-check that the
system/E2M/ethernetController/blk_mem_gen_paramReg module has been recognized by ISE.
Notice that the icon will not turn into a small document with a “V”, but rather into a small CORE
Generator lightbulb.

l. Repeat the process to generate another block memory with the setting:

i. Name: “blk_mem_gen_inputMem”, Interface Type: Native and Memory Type: Simple
Dual Port RAM (Notice, this is not a True Dual Port RAM as with the parameter register
file)

- 21 -

ii. Port A Options

1. Memory Size Write Width: 8

2. Memory Size Write Depth: As per the user’s requirements (discussed in section
v below, but if you use the default settings in the “system.v” file you should use
131,072).

3. Enable: Always Enabled

iii. Port B Options

1. Memory Size Read Width: As per the user’s requirements (discussed in section
vi below, but if you use the default settings in the “system.v” file you should
use 8)

2. Enable: Always Enabled

iv. Output Registers

1. No registers on Port A

2. Register Port B Output of Memory Core: As per the user’s requirements
(discussed in section vii below, but if you use the default settings in the
“system.v” file you should check the “Register Port B Output of Memory Core”
option).

- 22 -

v. Simulation Model Options

1. Disable simulation warnings by checking both the “Disable Collision Warnings”
and “Disable Out of Range Warnings” boxes

vi. Regarding user customization, the default parameters at the top of the “system.v” file
define a 2^17 = 131,072 = 128KB memory (INMEM_USER_ADDRESS_WIDTH = 17) with
a user-side interface of 1 byte wide (INMEM_USER_BYTE_WIDTH = 1). The depth for
both ports and the port B read width (as powers of 2 number of bytes) can be changed
to fit the user’s needs. For example, if we wanted to create a larger 512KB buffer with a
user side interface of 32-bits wide, we would update the .xco in CORE Generator by:

1. Leaving the port A write width at 8

2. Changing the port A write depth to 524,288 (step ii.2 above)

3. Changing the port B read width to 32 (step iii.3 above, which automatically
updates the port B read depth to 131,072)

4. Changing two parameters in the “system.v” file - INMEM_USER_BYTE_WIDTH =
4 and INMEM_USER_ADDRESS_WIDTH = 17

- 23 -

Any time that the user wishes to change the size or arrangement of the input memory,
the appropriate parameters in the “system.v” file should be updated and CORE
Generator should be re-run on the blk_mem_gen_inputMem module with the
appropriate arguments.

One note, if the user-side interface is larger than 1 byte wide, the
inputMemoryReadData line will be organized as little endian. For example, if the
interface is 32-bits wide,

inputMemoryReadData[31:0] = {byte3, byte2, byte1, byte0}

vii. As for registering the port B output, this may be necessary to meet the desired timing if
the input memory itself is large or if fanout of the input memory to the user’s circuit is
large. Register this output increases the read latency of the memory 1 or 2 clock cycles
(although any changes in the latency should not require changes to the user’s circuit due
to the request/acknowledgement handshaking on the interface). The user may elect to
select “Register Port B Output of Memory Primitives”, “Register Port B Output of
Memory Core” or both. If the core is generated with port B registering on, set the
INMEM_USER_REGISTER parameter in the “system.v” file to 1 or 2. CORE Generator
indicates the “Latency added by output register(s):” on page 4 of the customization
process. The value reported should be used for the INMEM_USER_REGISTER
parameter. The default setting at the top of the “system.v” file is 1 (i.e. check the
“Register Port B Output of Memory Core” option).

m. Select “Finish” or “Generate” and CORE Generator will create the core’s logic. As before, a new
“blk_mem_gen_inputMem.xco” file will be generated. Add the .xco file to the ISE project and
double-check that the blk_mem_gen_inputMem module has been recognized by ISE.

n. Generate one last block memory with the settings:

i. Name: “blk_mem_gen_outputMem”, Interface Type: Native and Memory Type: Simple
Dual Port RAM

ii. Port A Options

1. Memory Size Write Width: As per the user’s requirements (discussed below in
section vi, but if you use the default settings in the “system.v” file you should
use 8)

2. Memory Size Write Depth: As per the user’s requirements (discussed below in
section vi, but if you use the default settings in the “system.v” file you should
use 8192).

3. Enable: Always Enabled

iii. Port B Options

1. Memory Size Read Width: 8

2. Enable: Always Enabled

iv. Output Registers

1. No registering on either port A or port B

- 24 -

v. Simulation Model Options

1. Disable simulation warnings by checking both the “Disable Collision Warnings”
and “Disable Out of Range Warnings” boxes

vi. Regarding user customization, the default parameters at the top of the “system.v” file
define a 2^13 = 8192 = 8KB memory (OUTMEM_USER_ADDRESS_WIDTH) with a user-
side interface of 1 byte wide (OUTMEM_USER_BYTE_WIDTH). The depth for both ports
and the port A write width (as powers of 2) can be changed to fit the user’s needs. The
OUTMEM_USER_ADDRESS_WIDTH and OUTMEM_USER_BYTE_WIDTH parameters can
be modified in a similar manner as the input memory values. As with the input
memory, any time that the user wishes to change the size or arrangement of the input
memory the appropriate parameters in the “system.v” file should be updated and CORE
Generator should be re-run.

o. Select “Finish” or “Generate” and CORE Generator will create the core’s logic. Again, a new
“blk_mem_gen_outputMem.xco” file will be generated. Add the .xco file to the ISE project and
double-check that the blk_mem_gen_outputMem module has been recognized by ISE.

At this point, the user should be ready to compile the example circuit. This can be done by selecting the “system”
module in the “Sources” window and double-clicking “Generate Programming File” in the “Processes” window.

When the compilation is complete, it will create a new “system.bit” file in the root project directory. The
functionality of this new bitfile will be tested in the following “Programming FPGA & Execution of Example”
section.

One note regarding MAC addresses. The user should customize is the MAC address of the FPGA (MAC_ADDRESS in
system.v) so as to avoid duplicate MAC addresses on the same subnet. Furthermore, the user should also avoid
broadcast or multi-cast MAC addresses (unless that is what the user truly desires). Please note that broadcast or
multi-cast MAC addresses may cause odd behavior in the software elements of SIRC. If this parameter is updated,
the Ethernet Wrapper does not need to be regenerated through CORE Generator. However, the circuit does need
to be recompiled in ISE.

6. Programming FPGA & Execution of Example

- 25 -

Programming FPGA
Once the user has a valid bitstream, either generated from scratch using the instructions in Section 5 or from the
“precompiledExampleBinaries” directory (double-checking to ensure that they select the correct bitstream file),
they can use it to program their FPGA. There are three preferred ways to program the FPGA:

1) Using iMPACT through the GUI (in “Start→Programs→ XILINX_DIRECTORY→Accessories→iMPACT)
2) Using iMPACT through the SIRC sendConfiguration command
3) Programming at power-on from on-board flash memory

Methods #1 and #3 are important because it is generally assumed that the FPGA will already be connected to the
host PC and programmed with a circuit that has the SIRC hardware API before the constructor for the SIRC
software API is called. For example, the ETH_SIRC constructor calls the sendReset function just before it returns.
This validates that the software can communicate with the hardware API within the constructor. If a circuit with
the SIRC hardware API is not already programmed onto the FPGA, the constructor will return with a “fatal” error
code (in this particular case, FAILINITIALCONTACT = -7). The user may elect to ignore this error code and call a
subsequent sendConfiguration command, but we discourage this type of use.

The simplest way to insure that the FPGA is always capable of being used with the SIRC API is to bootstrap at
power-on from on-board flash memory. While the exact technique to do this can differ slightly from development
board to development board and from flash technology to flash technology, performing this on the ML505/ML507
or Digilent XUPV5 boards is quite straightforward. Documentation regarding how to do this is can be found in the
“ML505/ML507 Getting Started Tutorial” available for download at the Xilinx website.

The sendConfiguration command requires a few compile-time constants to be defined before it can be used. As
shown in eth_SIRC.h, six constants are needed:

IMPACT Declares intention to use the sendConfiguration command with
iMPACT

PATHTOIMPACT Path to iMPACT executable

PATHTOIMPACTTEMPLATEBATCHFILE Path to a template iMPACT batch file. An example template file
(impactMatchTemplate.cmd) is provided in the “precompiled-
ExampleBinaries” directory. The only difference from the standard
batch commands described in the iMPACT documentation
(provided with the iMPACT GUI program “Help→Help
Topics→Software Help→ iMPACT Help→ Command Line and Batch
Mode→Batch Mode”) is the inclusion of the
“BITSTREAMFILENAME” keyword. This keyword replaces the
bitstream filename that would normally be used with the assignFile
command.

PATHTOIMPACTPROGRAMMINGBATCHFILE Path to which software API can write a temporary file. This will be
the command batch file passed to iMPACT during execution of the
sendConfiguration function. If iMPACT cannot successfully
program the device, try to run this file from the command line with
“iMPACT-batch filename.cmd”

PATHTOIMPACTPROGRAMMINGOUTPUTFILE Path to which software API can redirect iMPACT output during
programming. This file will be parsed by the software API to
determine success or failure of programming attempt. This file can
also be examined by the user if iMPACT is unable to successfully
program the FPGA.

IMPACTSUCCESSPHRASE When iMPACT successfully programs the FPGA, what is the reply?
If unsure, the user can examine the file that is produced at

- 26 -

PATHTOIMPACTPROGRAMMINGOUTPUTFILE.

Executing Example
The user can either compile the example software or use the pre-compiled executable in the
“precompiledExampleBinaries” directory. The software binary should be run from a command line. For the
default settings of the hardware example (also compiled into the provided FPGA bitstreams), no arguments are
required. Any errors that are encountered will be reported back to the user and can be looked up in the
eth_SIRC.h file. View the example software source code for more details.

The XUPV5/ML505/ML506/ML507 boards have a few configuration jumpers that need to be set to ensure correct
operation. First, the default UCF file indicates some 2.5V I/O. J20 (on the top right of the board near the power
switch) should have have both jumpers between pins 2 & 3 (to the right side) to select 2.5V I/O on two of the
FPGA's pin banks (as set in the provided "system.ucf" file) Second, the current implementation uses a GMII
interface to the PHY. J22 & J23 (bottom left near the DVI output) should have both jumpers between pins 1 & 2 (to
the left side). Third, if you are trying to configure the FPGA with a Platform Cable JTAG programmer, you don't
have to worry about the DIP switch settings of SW3 (upper left near the keyboard port). However, if you are trying
to bring the configuration from the Compact Flash or other on-board Flash memory, pay attention to the settings
of SW3. The "ML505/ML506/ML507 Evaluation Platform" document from the Xilinx website can help you figure
out what is appropriate for your situation. Look at item #31 - "Configuration Address and Mode DIP Switches".
Personally, I like to bootstrap the board from configuration #0 on the CF. This requires a setting of "00010101"
reading from DIP 1 to DIP 8 left to right. See the "System ACE CompactFlash Solution" document from the Xilinx
website for more information.

The BEE3 does not need any configuration jumpers to be set.

There are three jumpers that need to be set on the ML605. J66 and J67 should set such that the jumper is over
pins 1 &2. J68 should be open. This is the default setting for these jumpers from the factory.

7. Simulating & Debugging with SIRC Modelsim PLI
The hardware side of SIRC (along with the user application) can also be run completely in simulation with
Modelsim. The software client does not require any changes and minimal changes are made to the Verilog. This
makes the simulation as faithful as possible to the real hardware client. Simulation of SIRC has been tested with
Modelsim SE and PE, version 10.0. Even the student version work, albeit slowly, since it does not optimize the
execution of the simulation.

Loopback Setup
For performance reasons it might be a good idea to connect both the user software and the Modelsim simulation

to a loopback network port. You can do this if you are:

1) simulating the SIRC hardware & your application on the same machine as the host software and your

software (this isn’t necessarily the case, but likely unless you really want to use two completely separate

machines – one for the software side and one for the hardware side of things)

2) not already using a dedicated network connection between the FPGA and the PC

While this is not strictly necessary, this will considerably to reduce the Ethernet traffic that must be processed by

Modelsim. Please note that due to a restriction in the Virtual PC driver code, the first time that the software client

is run on a given machine and with a given Virtual PC driver, it must connect to a real network adapter (e.g. a

wireless or wired NIC and not the loopback). Subsequent connections on the machine can attach to any network

adapter, but it must connect to a physical NIC at least once. Thus, for example, it might be a good idea to first test

- 27 -

with the example precompiled bitstreams on a real board before electing to do simulation. At the very least, you

must run the example software client at least once trying to use a physical NIC (even if you don’t have a board to

test with, the software client will attempt to connect – this is sufficient and you only have to do it once per

machine).

To add a loopback network port:

I) Right-click on “Computer” (on the desktop or in the Start Menu) to get the “Manage” command.

II) Then go to “Device Manager” and right-click on your machine. Select the “Add Legacy Hardware”

option.

III) Select the “Install the hardware that I manually select..” option.

IV) Select the “Network adapters” category.

V) Select “Microsoft -> Microsoft Loopback Adapter”

VI) The loopback adapter will now appear in “Control Panel -> Network and Internet -> Network and

Sharing Center => Change Adapter Settings”. As described in Section 2, uncheck all other services on

the loopback adapter besides the Virtual PC network driver. At the same time, for simplicity sake it

may be best to temporarily uncheck the Virtual PC network service from all other network adapters.

Modelsim Setup
SIRC uses Xilinx IP such as the BlockRAM. Thus, to simulate we must export the library models into Modelsim. If

you have not already done this, you can export the library in the following way:

I) Start the Xilinx Simulation Library Compilation Wizard from

“$XILINXINSTALLROOT\XXX\ISE\bin\ntXXX\compxlibgui.exe”, replacing the various terms as

appropriate. On my 64-bit Windows 7 machine with 64-bit Modelsim installed, I run the executable

here: “C:\Xilinx\13.2\ISE_DS\ISE\bin\nt64\compxlibgui.exe”

II) The wizard will most likely find Modelsim installed on your machine and autofill the correct options

and path. If not, fill these in appropriately.

- 28 -

III) Export either the Verilog models or both the Verilog and VHDL models.

IV) Export the models for the appropriate devices (Virtex 5 and/or Virtex 6)

V) Select the libraries that need to be exported. For safety sake, I export all available libraries

- 29 -

VI) Note the path of where the wizard will be placing the exported libraries. On my 64-bit Windows 7

machine with Modelsim SE installed, this is “C:\Xilinx\13.2\ISE_DS\ISE\verilog\mti_se\10.0a\nt64”.

You may need this path if Modelsim does not automatically import the libraries.

Compiling PLI Ethernet DLL
The Modelsim simulation also sends and receives information using the Virtual PC network driver. This is
accomplished using a DLL that bridges that gap. We provide code to accomplish this, but it uses library functions
that are provided by Mentor. Thus, similar to the situation with Xilinx code, we cannot redistribute this library
code. Thus, you must re-compile it yourself.

- 30 -

I) Copy four files from your Modelsim directory into either the SIRC_INSTALL_PATH\PLI_Plugins\src32
or SIRC_INSTALL_PATH\PLI_Plugins\src64 folder (depending upon if you have a 32 or 64-bit version of
Modelsim installed).

a. vpi_user.h, vpi_compatibility.h, veriuser.h (on my machine with a 64-bit version of Modelsim SE
10.0 installed, these files were in C:\modeltech64_10.0a\include)

b. mtipli.lib (on the same machine, this was in C:\modeltech64_10.0a\win64)

II) Open the vpi2ether project in SIRC_INSTALL_PATH\PLI_Plugins\ether by double-clicking on the
“vpi2ether.sln” file. Select the proper output target for your machine & version of Modelsim and
build the solution with the “Build->Build Solution” command. Unless you want to debug the DLL
itself, select a Release build.

III) Copy the resulting “vpi2ether.dll” file from the proper output directory (e.g. SIRC_INSTALL_PATH\
PLI_Plugins\ether\Release or SIRC_INSTALL_PATH\PLI_Plugins\ether\x64\Release) to the root
directory of your ISE project. For example, if you are building from the example in the
HW_Example_13_2_ML605 directory, put the .dll directly in that folder.

ISE Project Setup
The only real change to the hardware code that is necessary to simulate SRIC occurs in the top-level module
(system.v). Our C++ PLI software replaces the physical PHY and MAC. However, a few minor changes are
needed to set the system up for simulation.

I) Either when adding the files to the project initially or from the “Files” tab, change the association of:
a. the MAC library files (eth_fifo_8.v, rx_client_fifo_8.v, tx_client_fifo_8.v, gmii_if.v, emac_single.v,

emac_block.v, emac_locallink.v)
b. and two SIRC files (system.v and ethernet2BlockMem.v)

to “Implementation”.

- 31 -

II) As also seen in the picture above, add the “systemPLI.v” file (found in HWSrc\PLI directory) to the
project with a “Simulation” association. The association of all other files should remain “All”.

III) Select “Edit -> Preferences” and make sure that ISE knows the appropriate path to the Modelsim
executable

IV) Switch the Design view to “Simulation”, select the “system” module, and right-click on “Simulate
Behavior Model”. Select “Process Properties”.

- 32 -

V) Change the “Property Display Level” to “Advanced” and make the following changes

a. Other VSIM Command Line Options: “-pli vpi2ether.dll”

b. Simulation Run Time: 0ns

VI) Select OK and go back to the main ISE window.

Execution of the Simulation

I) After selecting the top-level “system” module in the “Design->Simulation” window in ISE, double-click
“Simulate Behavior Model” in the “Design -> Processes” window. This will launch Modelsim. It
should compile the necessary files and start the simulation (but not actually begin executing).

II) If you built a Debug version of the PLI DLL above (as opposed to a Release version), the system will
raise an exception when the simulator loads the DLL and you will have the chance to attach a
debugger. Just select the “Debug” option and select an appropriate Visual Studio project.

- 33 -

III) You can now add signals that are of interest to the waveform viewer. When this is complete, begin
the simulation with the command “run –all” in the “Transcript” console.

IV) You can now start the software example provided, just as you might when targeting a physical board.
However, due to the much slower performance of the software simulation (e.g. rather than
400+Mbps bandwidth to the real hardware, simulation gives ~ 400Kbps), it is probably necessary to
adjust the software example to perform smaller/fewer tests and with a greater timeout. I suggest
running the example with the following arguments initially:

eth_sirc_lib_SW_Example.exe -waitTimeOut 30000 -bandwidthIter 20

