
COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 1 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

Re-What?

Roger F. Osmond

A Wicked Basic Guide to Inheritance in Eiffel

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 2 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Eiffel supports class-based inheritance

- A class can inherit features (attributes and routines)

from another class

• Eiffel offers mechanisms to adapt and

select inherited features

- Rename, redefine, undefine, select, export

• Eiffel supports multiple inheritance and repeated inheritance

The Wicked Basics

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 3 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Multiple inheritance enables a class to inherit

from more than one parent

- If you’re new to Object-Oriented design,

this should make perfect sense

Multiple Inheritance

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 4 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Multiple inheritance enables a class to inherit

from more than one parent

- If you’re new to Object-Oriented design,

this should make perfect sense

- If you’ve used other Object-Oriented languages,

this might scare you, a little

- Don’t worry. It will be OK.

Multiple Inheritance

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 5 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Repeated inheritance occurs when a class

inherits another class more than once,

directly

Repeated Inheritance

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 6 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Repeated inheritance occurs when a class

inherits another class more than once,

directly

or indirectly

Repeated Inheritance

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 7 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

class CLASS_A
inherit
CLASS_B
rename <old_name> as <new_name>
export <export_scope> <features>
undefine <features>
redefine <features>
select <features>
end
...

• The Inherit Clause

(No need to consult a lawyer)

- Begin with the ‘inherit’ keyword

- Identify parent class

- Include appropriate keywords to

identify nature of adaptations, if any

- Complete adaptation clauses

- Terminate, per parent, with ‘end’

keyword

- Repeat for each additional parent

Wicked Basic Syntax

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 8 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• For name conflict resolution, augmenting implementation, or cosmetics

• Inherited feature has new name in child and its descendants

• Inherited feature implementation is unchanged

Adapting Inherited Features - Rename

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 9 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• For name conflict resolution, augmenting implementation, or cosmetics

• Inherited feature has new name in child and its descendants

• Inherited feature implementation is unchanged

Adapting Inherited Features - Rename

Descendent is free to re-use the original name

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 10 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Change export status of inherited features

- Inherited feature’s name and implementation are unchanged

Adapting Inherited Features - Export

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 11 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Change export status of inherited features

- Inherited feature’s name and implementation are unchanged

• Restrict export status

Adapting Inherited Features - Export

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 12 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Change export status of inherited features

- Inherited feature’s name and implementation are unchanged

• Restrict export status

• Expand export status

Adapting Inherited Features - Export

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 13 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Removes implementation of inherited feature in undefining class

- Conceptually, turning feature into a deferred routine

- Only routines (functions and procedures) can be undefined

• Undefining class can defer implementation to a descendent

Adapting Inherited Features - Undefine

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 14 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Undefine is used most often to resolve conflicts between inherited features

- When names are the same, but implementations are different, and you want only one

-Will not compile until conflict is resolved

Adapting Inherited Features – Undefine (cont’d)

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 15 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Undefine is used most often to resolve conflicts between inherited features

- When names are the same, but implementations are different, and you want only one

-Will not compile until conflict is resolved

- Undefine the one you don’t want

Adapting Inherited Features – Undefine (cont’d)

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 16 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Redefine can change the implementation of an inherited feature

Adapting Inherited Features - Redefine

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 17 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Redefine can change the implementation of an inherited feature

• Or, change its signature (per covariance), Or both

Adapting Inherited Features - Redefine

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 18 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Redefine can change the implementation of an inherited feature

• Or, change its signature (per covariance), Or both

Adapting Inherited Features - Redefine

Precursor enables use of the original (unchanged) implementation

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 19 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Select is used to select the name by which an inherited feature is called

- Rarely needed, but indispensable when it is

• Needed when the same feature from a repeatedly inherited ancestor has

been renamed along the way, but not redefined

Adapting Inherited Features - Select

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 20 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Select is used to select the name by which an inherited feature is called

- Rarely needed, but indispensable when it is

• Needed when the same feature from a repeated inherited ancestor has been
renamed, but not redefined

• Select the name you want to use in that class, its descendants and clients

Adapting Inherited Features - Select

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 21 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

• Eiffel has comprehensive support for class-based inheritance

- Single Inheritance, Multiple Inheritance and Repeated Inheritance

• Mechanisms for adaptation and conflict resolution

- Rename, export, undefine, redefine, select

Wrapping Up

For more information, documentation, examples

and other resources, please visit www.eiffel.org

COPYRIGHT © 2018 Roger F. Osmond ALL RIGHTS RESERVED 22 PROPRIETARY and CONFIDENTIAL

Presented to: <Recipient>Presented to: <Recipient>

Roger F. Osmond
rfo@amalasoft.com

Thank You

