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(updated 15 May 2018) 

Introduction 

Inheritance is the mechanism in Object Oriented languages by which one can acquire in one class the 

attributes and capabilities of another class (a descendent or child class inherits from an ancestor or parent 

class).  There are various forms of inheritance, as well as various purposes to which inheritance is applied. 

Single inheritance occurs when a child class inherits a single parent class. 

Multiple inheritance occurs when a child class inherits more than one parent class. 

Repeated inheritance occurs when a child class inherits the same ancestor class more than once, either 

directly or indirectly. 

All Object-Oriented languages support at least single inheritance.  Eiffel supports multiple and repeated 

inheritance.  Included in Eiffel’s inheritance support is the ability to adapt inherited features via 

redefinition, renaming, un-definition, and selection.  This paper explains these mechanisms and their 

typical use. 

Basics of Inheritance 

The Purpose of Inheritance 

Dr. Bertrand Meyer defines in his epic “Object Oriented Software Construction, 2nd Edition”, eleven 

different forms of, or reasons for inheritance.  I list just a few obvious generalizations. 

• To acquire specific attributes or capabilities 

• To specialize certain attributes and capabilities 

• To share common attributes and capabilities 

Inheritance is the means by which we can develop a model of the problems we encounter, and the 

solutions we envision, and ultimately provide high quality solutions.  If our problems are typical, our 

models require fairly rich inheritance relationships.  Eiffel has, from the very beginning, supported 

multiple inheritance, presumably because nothing less would adequately support the models we need to 

do our work. 

Single versus Multiple Inheritance 

Some Object-Oriented languages, notably Smalltalk and Java, support only single inheritance.  Even C++ 

supported only single inheritance until version 2.0 of the language (and only after considerable public 

pressure). 

Many champions of these languages will tell you that single inheritance is good because multiple 

inheritance is bad.  This is an interesting application of logic, for it begins with a false assertion.  How can 

multiple inheritance, conceptually at least, be “bad”? 

Imagine if your design called for modeling human genetic traits.  You would define a person class and 

each person would have two parents, and zero or more siblings, each of which is a person too.  This is 

fine so far, but where do the genetic traits enter the picture?  They enter via familial inheritance; a person 

acquires certain attributes from each parent.  Depending on the relative dominance and resulting 

probability, the child’s attributes reflect these acquisitions. 

The temptation is to create out model based on a literal transcription of the vocabulary.  It seems a 

reasonable approach at first. 
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Figure 1 – Intuitive Model 

A person inherits from its parent, who in turn inherits from its parent (the grandparent of the first person).  

There a few problems with this model.  Most critically, the model attempts to represent instances of 

classes as classes.  From there, it never gets back on track. 

A more reasonable model identifies PERSON as a class, and then has the various subtypes of PERSON be 

new classes, but children of PERSON. 

 

Figure 2 – Somewhat More Realistic Model 

The model depicted in Figure 2 differs quite a bit from the previous one.  Rather than PERSON inheriting 

from PARENT, PARENT is a supplier to PERSON (i.e. PERSON has-a PARENT).  A similar change happens to 

the PERSON-to-CHILD relationship.  Each of classes CHILD, PARENT, and GRANDPARENT inherits from (i.e. is 

a kind of) PERSON.  The personal subclasses exist in this model because they matter to the model, in that 

form.  The model is one the represents familial relationships, and it could be expanded, as needed, to 

depict siblings, cousins, great-grandparents, spouses, domestic partners, ex-spouses, even the guy who 

fixes your car, but each of those entities would be a child of PERSON. 

The model would not necessary need to include each of the relationships, as each is derivable from a few 

basic ones, and a few less obvious ones. 

 

Figure 3 – Person Model - Expanded 

The model in Figure 3 shows that PERSON can have a supplier relationship with other kinds of (subclasses 

of) PERSON.  At the highest level, here are 2 major subclasses of PERSON: RELATIVE and NON_RELATIVE. 

RELATIVE has a supplier relationship with (has-a), you guessed it, RELATIONSHIP.  Subclasses of 

RELATIONSHIP include adverb-like abstract classes BY_GENETICS and BY_LAW. 

LEGAL_RELATIVE is subclass of RELATIVE, whose relationship is BY_LAW. 

BLOOD_RELATIVE is a subclass of RELATIVE, whose relationship is BY_GENETICS. 
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PARENT and CHILD each are subclasses of BLOOD_REALATIVE. 

BY_MARRIAGE and BY_ADOPTION are subclasses of BY_LAW, and SPOUSE is a LEGAL_RELATIVE, whose 

relationship is BY_MARRIAGE. 

Grandparents are parents of parents.  Cousins are children of the children of grandparents and so on, and 

could be implemented using the model depicted in Figure 3. 

But we haven’t quite put to bed the whole lineage thing.  What about representing a family tree?  Never 

mind the gene selection, how about something simple, like national origin? 

Assume a person has two parents, one Norwegian and the other English.  From a modeling standpoint, 

that person is Norwegian and is English. 

 

Figure 4 – Person with Multiple National Origins 

An argument can be made, and often is, that this is not inheritance at all, that the nationality aspects can 

be acquired from a supplier.  That argument can be applied to every inheritance relationship, if the goal is 

to eliminate inheritance as a relationship altogether.  But, is this person not both Norwegian and English?  

If you were to ask that person, then they would surely say that they were.  Why can’t a model reflect what 

that person believes to be true?  Isn’t that the point?  The model can do this, but not without multiple 

inheritance. 

Multiple inheritance is necessary to model this problem accurately.  It also stands to reason that, if 

multiple inheritance is necessary in the model, then it should be supported by the language and any 

associated tools used to implement the model. 

The conventions used in the illustrations are adapted from the BON notation.  The conventions are 

explained in the appendix “Data Model Notation” at the end of this document. 

Simply, single red closed-end arrows denote inheritance relationships, where the source of the arrow 

is the child (the child inherits from the parent).  A client supplier relationship appears as a single 

green open-end arrow, where the client uses the supplier. 

The arrow always originates at the class from which the relationship is perceived, and not from which 

the attribute originates.  This is not a data flow diagram. 

Let’s look at another example, the classic automotive taxonomy.  Your car is, in the example, a blue 1995 

Ford SHO 4-door sports sedan with a 5-speed manual transmission, a 220 HP engine, moon roof, climate 

control and so on.  Your mission is to model the automotive world in such a way that you can classify 

your car, as well as any other vehicle, in a reasonable and efficient manner.  Begin with the description of 

your car.  Which of its characteristics are likely inherited from a parent class?  Thus begins the object-

oriented analysis and modeling exercise. 

If we limit our modeling to single inheritance, then we might derive a simple hierarchy like this one. 

 
Figure 5 – A Simple Car Hierarchy 

On closer analysis, we find such characteristics as “wheeled” or “four-wheeled” and “powered” or 

“gasoline-powered”.  One can argue, and many do, that these characteristics can be modeled as simple 

attributes, without inheritance.  This is undeniably true, as proven by the existence of software that deals 
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with these characteristics, and is wholly non-object-oriented, or even object-disoriented.  Remember 

though, that the goal is to derive a reasonable and efficient model. 

Just as Scott and Amundsen each believed that he could reach the South Pole by his preferred 

method, only Amundsen’s method was reasonable and efficient.  While both approaches seemed to 

work on a smaller scale (“in the lab”), only Amundsen achieved his goal and lived to tell about it. 

Here is a possible class taxonomy resulting from more insightful analysis and multiple inheritance. 

The model is contrived, and incomplete, but it serves as illustration. 

 

Figure 6 – Modeling a 1995 Ford SHO 

So, if it is true that one can model the problem without inheritance, and can do so with single inheritance, 

then why use multiple inheritance?  The same argument could be made for using a screwdriver for wood 

carving.   You can do it, but you can’t do it very well and you certainly cannot produce any respectable 

work product with it.  The tool just does not fit the problem well. 

We use multiple inheritance because it is more reasonable and efficient (in a broad view) and because the 

resulting model, in the form of classes, has components that are less complex, and with less duplication of 

logic.  We achieve greater genericity, and more options for specificity.  We use multiple inheritance 

because we can achieve a far greater degree of reuse and reusability.  Greater reuse results in software 

that is less brittle and requires less effort to maintain, and has fewer errors.  The lifecycle cost of the 

software is lower. We are able to address larger problems.  In other words, by using multiple inheritance, 

we not only reach our apparent objective, but we will also live to tell about it. 

The truth is simply that multiple inheritance is needed in the model if that model is to reflect well the 

reality of the problem.  It is also true that modeling with multiple inheritance is easier than with single 

inheritance because you don’t have to adapt the problem to fit the tool. 

Early users of C++ (I among them) realized that single inheritance was inadequate.  There was a lot of 

pressure from the user community to have C++ support multiple inheritance. 

This is not to say that supporting multiple inheritance in a language system is easy, or that it has always 

been done properly (it is very difficult – that’s why so few languages do it).  The problem is not that 

multiple inheritance is bad, it is that multiple inheritance is difficult for a compiler writer to support. 

Recall that the early versions of C++ were implemented as a preprocessor, cfront, not a compiler – 

multiple inheritance would have been especially tough to support correctly then.  I know, because I 

have written preprocessor-based front-end languages. 
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That is why multiple inheritance is unsupported or poorly supported in most languages that claim to be 

Object Oriented.  It is simply too difficult a job for the compiler writers.  Retrofitting a language with 

multiple inheritance is close to impossible because multiple inheritance affects nearly every aspect of a 

language.  So instead of providing us with the tools that we need, they tell us to use the tools that they 

have, and try to convince the world that their shortcomings are actually desirable features (sound 

familiar?). To me, they are making a virtue of necessity (a more charitable interpretation than usual) or 

simply whistling past the graveyard. 

Eiffel is different.  Eiffel supports, encourages, and embraces multiple inheritance.  Eiffel’s creator knew 

from the outset that simplifying his job (by implementing only single inheritance) would result in a tool 

that did not satisfy the requirements of its users.  He realized that one cannot adequately model 

relationships that include multiple inheritance with a tool that doesn’t support it fully.  This doesn’t sound 

like a difficult conclusion, but it must have been, else the creators of the other languages (some many 

years newer) would have seen it – assuming of course that they were so motivated. 

Repeated Inheritance 

One of the aspects of multiple inheritance often cited as a danger, and sometimes as a reason to avoid 

multiple inheritance altogether, is the phenomenon of repeated inheritance.  To experienced Eiffel 

programmers, this can be amusing, as they tend to exploit repeated inheritance to advantage.  Others less 

experienced in this area might be forgiven their trepidation. 

Repeated inheritance can be explicit (as is seen often in the Eiffel standard libraries) or implicit.  Explicit 

repeated inheritance occurs when the designer decides to inherit the same class more than once in a given 

descendent. 

 

Figure 7 – Explicit / Direct Repeated Inheritance 

Implicit repeated inheritance occurs when the designer inherits classes that in turn inherit a common 

ancestor.  In practice this occurs quite often.  The following diagram illustrates this relationship. 

 

Figure 8 – Implicit / Indirect Repeated Inheritance 

In Figure 8, CHILD_CLASS inherits from CLASS_A and from CLASS_B.  Each of these parents inherits from 

COMMON_ANCESTOR, resulting in implicit repeated inheritance.  This condition is handled correctly and 

completely by Eiffel.  To understand the problems that arise from incomplete or incorrect handling of this 

condition, it is necessary to look at the mechanics of inheritance. 

Originally, C++ was a preprocessor that allowed the definition of classes and objects using C language 

compilers (a worthwhile and not uncommon cause at the time).  Even I have developed a couple of such 

languages, really just object-oriented extensions to existing languages.  The mechanism begins as a 

conceptual cut-and-paste, the same as the #include mechanism of the C preprocessor (cpp).  The 

designated file’s content is pasted into the file (in memory) that includes it.  This is a powerful 
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mechanism and one that has enjoyed widespread acceptance for decades.  It is not, however, adequate to 

support multiple inheritance. 

Imagine now that the class COMMON_ANCESTOR has a routine in it, called (per tradition) “foo()”.  This 

routine is not modified in any way in either CLASS_A or CLASS_B.  According to our implicit repeated 

inheritance, our CHILD_CLASS might have two copies of foo(), unless the compiler does something about 

it. 

 

In the crudest of implementations of C++, this apparent conflict is left to the linker to resolve.  Pretty 

much any resolution in this case would work (assuming reentrant routines of course) because there is no 

difference in the implementations of the two different instances of the foo() routine. 

The Eiffel compiler recognizes that there exists this repeated inheritance condition, then verifies that the 

two versions are indeed identical, and if so, the compiler generates the code for only one instance. 

If the compiler sees that there are different instances, one having been redefined or renamed along the 

way, or simply a different routine with the same name, then the compiler tells the user that there is a 

conflict.  The conflict must be corrected before the system will compile. 
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Not so Basic Inheritance 

In the first part of this document, we covered the basics of inheritance.  In this part, we look at some of 

the less obvious aspects of inheritance, along with some of the potential benefit of using inheritance. 

Compile-Time versus Run-Time 

Much of the confusion felt by programmers first exposed to Object-Orientation centers around the 

concept of binding.  Binding is the process of associating a type with a language element. 

In Eiffel one can define functions, attributes, and local instances that have types.  Each is represented by a 

named handle. 

The handle is the means by which we access a feature.  It is the type of the handle that the compiler 

validates.  Here are a few examples (line numbers are for illustration only). 

 1 my_name: STRING 

 2 

 3 length_of_my_name: INTEGER 

 4  do 

 5    Result := my_name.count 

 6  end 

 7 

 8 do_something 

 9  local 

10    tstr: STRING 

11  do 

12    my_name := “Bozo” 

13    tstr := my_name 

14    tstr := length_of_my_name -- This is wrong 

15  end 

Line 1 contains the declaration of an attribute whose type is STRING and whose handle is my_name.  Line 

3 begins the definition of a function (a routine that returns a typed value) whose type is INTEGER and 

whose handle is length_of_my_name.  The type of the function is the type of the keyword Result.  The 

compiler verifies on line 5 that the assignment of the value of my_name.count to Result is type-

consistent, that is, that the handles on both sides of the assignment statement are type-consistent 

(STRING’s count feature is an INTEGER). 

Line 8 begins the definition of the procedure (a routine that does not return a value) do_something.  

This procedure has a local entity whose handle is tstr and whose type is STRING.  On line 12, the 

compiler must verify that the value on the right side (the STRING constant “Bozo”) is type-consistent with 

the handle on the left side (the attribute my_name).  The same sort of test occurs on lines 13 and 14.  The 

assignments on lines 12 and 13 are correct, but the statement on line 14 is wrong because the type of 

length_of_my_name is not consistent with the type of the local entity tstr. 

All of this verification is done at compile time. 

Now let us look at a more complex example.  Imagine a simple class hierarchy in which there are two 

descendents of STRING. 
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Each of the two descendent classes, CHILD_OF_STRING and GRANDCHILD_OF_STRING has features unique to 

them (that they did not inherit.)  Here are their class definitions. 

 

class CHILD_OF_STRING 

inherit 

  STRING 

create 

  make 

feature 

 child_feature: INTEGER 

end –- class CHILD_OF_STRING 

 

class GRANDCHILD_OF_STRING 

inherit 

  CHILD_OF_STRING 

create 

  make 

feature 

 grandchild_feature: INTEGER 

end –- class GRANDCHILD_OF_STRING 

Now we use these classes in an example routine (again, line numbers are for illustration only). 

 1 my_routine 

 2  local 

 3    t1: STRING 

 4    t2: CHILD_OF_STRING 

 5    t3: GRANDCHILD_OF_STRING 

 6  do 

 7    create t3.make(0) 

 8    t3.append (“some string”) 

 9    t1 := t3 

10    t2 := t3 

11    -- Now we run into trouble 

12    t3 := t2 

13    create t3.make (0) 

14    t3.append (“another string”) 

15  end 

Each local entity in my_routine has a typed handle, “t1”, “t2”, and “t3”.  In the body of the routine, 

these handles appear in a series of statements.  Lines 8, 9 and 10 pass the compiler’s type consistency test 

without a problem.  This is because the object created and referred to by the handle t3 is type consistent 

with (being a proper descendent of) the classes to which the other handles belong.  The type of t3 is 

GRANDCHILD_OF_STRING, and so t3 is at least a CHILD_OF_STRING (line 10) and at least a STRING (lines 8 

and 9). 

Line 12 causes a compiler error. 
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VJAR: Source of assignment is not compatible with target. 

    Error code: VJAR 
 

    Type error: source of assignment is not compatible with target. 

    What to do: make sure that type of source (right-hand side) 

    is compatible with type of target. 

 

    Class: APPLICATION 

    Feature: my_routine 

    Target name: t3 

    Target type: detachable GRANDCHILD_OF_STRING 

    Source type: CHILD_OF_STRING 

… 

How can this be?  On line 10 we did a “t2 equals t3” assignment.  No, we certainly did not.  We did a “t2 

gets t3”, or if you prefer, a “t2 refers to t3”. 

We reset the handle t2 to refer to the entity to which t3 refers.  There is no equality test here.  Unlike 

other languages that seem to encourage bug-by-punctuation, Eiffel does not.  Assignments and equalities 

are clearly different and so are less easily confused. 

The compiler must work within the limits of the compile-time environment.  The right side handle in the 

assignment on line 12 (t2) is of type CHILD_OF_STRING and the left side handle in the assignment (t3) is 

of type GRANDCHILD_OF_STRING.  This is a type-inconsistent assignment (at compile time). 

Even though at run-time we know that the object to which t2 refers would be a GRANDCHILD_OF_STRING, 

this is not consistent with the semantics at compile time, so the compiler must flag the assignment as an 

error because the handles involved are not type-consistent. 

At run-time, we can see that the behavior is such that the assignment would have worked.  The following 

series of diagrams illustrates the behavior of the generated code at run-time. 

After line 8, the handle t3 refers to the GRANDCHILD_OF_STRING object whose value is “some_string”. 

 

After line 9, the handle t1 refers to the same object as did the handle t3. 

 

After line 10, the handle t2 also refers to that same object. 

 

We can make this assignment compile by deferring binding (and the checking it needs) until runtime 

using the attachment test (crammed onto one line to preserve numbering). 

12 if attached {GRANDCHILD_OF_STRING} t2 as tl3 then t3 := tl3 end 

This is correct both at compile-time and run-time.  The Eiffel run-time system performs the type check at 

run-time and will not execute the assignment if there is still a type conflict at that time, just as it will not 

execute any other statement within a conditional block unless the condition is True. 

On lines 13 and 14, we retarget the handle t3 to refer to a new GRANDCHILD_OF_STRING object, having a 

string value of “another string”.  This has no effect on the remaining handles; they still refer to the same 

object as before, as illustrated in the following diagram. 
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Inheritance and Polymorphism 

Polymorphism is often either misunderstood or only partially understood.  The word means literally 

“having many forms”.  In the simplest sense, polymorphism means that a child looks like its parent.  

There is more to it than that of course.  Polymorphism means that one can view an object in different 

contexts as belonging to any class in its proper lineage. 

In our vehicle example from the beginning of this paper, we would view an instance of the class 

FORD_SHO as an object of that class.  We could also view it as a GASOLINE_POWERED, or as a SEDAN, or a 

CAR, or as a VEHICLE, depending on our need at that point. 

 

Figure 9 – Ford SHO Model Revisited 

The following code segment illustrates the different views just described. 
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 some_routine 

  local 

    a_vehicle: VEHICLE 

    a_sedan: SEDAN 

    a_car: CAR 

    an_environment_killer: GASOLINE_POWERED 

  do 

    a_vehicle := my_sho 

    a_sedan := my_sho 

    a_car := my_sho 

    an_environment_killer := my_sho 

    my_fleet.extend (my_sho) 

    a_car := my_fleet.first 

    an_environment_killer := my_fleet.last 

    a_vehicle := a_sedan 

    a_vehicle := a_car 

  end 

 my_sho: FORD_SHO 

 my_fleet: LINKED_LIST [CAR] 

Genericity; Constrained or Otherwise 

Most core Eiffel data structures are quite generic.  They are not at all fussy about the classes of objects 

they can contain.  The programmer can create, for example LINKED_LISTs containing STRINGs, or INTEGERs, 

or some programmer-defined classes.  The type of the items contained is pretty much up to the 

programmer to decide.  So, if the programmer wishes to create a list of strings, then he or she need only 

declare it as such, as in: 

 a_string_list: LINKED_LIST [STRING] 

Similarly, the programmer can decide that a two-way sorted list is better suited to the task at hand. 

a_string_list: SORTED_TWO_WAY_LIST [STRING] 

How does Eiffel help to support this?  Among other things, Eiffel supports genericity, as well as the 

concept of constrained genericity.  The LINKED_LIST class, for example, has the following declaration.  

class LINKED_LIST [G] 

inherit 

 DYNAMIC_LIST [G] 

  redefine 

    go_i_th, put_left, move, wipe_out, isfirst, islast, first, last, 

    finish, merge_left, merge_right, readable, start, before, after, off 

  end 

The first line says that LINKED_LIST is a container whose elements can be of any type.  This is 

unconstrained genericity.  The ‘G’ is merely a placeholder for a type to be chosen at some later point, by 

the programmer (as with a_string_list, above.)  This is called a formal generic parameter.  This 

formal generic parameter appears elsewhere in the class to anchor the as-yet-undetermined type. 

Remember that this type determination, or lack of it, is in space, not in time.  This is a 

programmer’s realm, not that of the run-time system. 

LINKED_LIST has a feature called item that represents the current item (a linked list is a cursor-based 

structure; thus, item refers the object at the cursor, it represented by the feature active.) 
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item: G 

  -- Current item 

  do 

    Result := active.item 

  end 

Now let’s look at the SORTED_TWO_WAY_LIST.  Here is its class declaration. 

class SORTED_TWO_WAY_LIST [G -> COMPARABLE] 

inherit 

  TWO_WAY_LIST [G] 

    undefine 

      has, search 

    redefine 

      prune_all, extend, new_chain 

  end 

  SORTED_LIST [G] 

    undefine 

      move, remove, before, go_i_th, isfirst, start, finish, 

      readable, islast, first, prune, after, last, off, prune_all 

  end 

The first line of SORTED_TWO_WAY_LIST differs from the one in LINKED_LIST.  This is because the 

SORTED_TWO_WAY_LIST class uses constrained genericity to require of its contained objects that they are 

type-consistent with (belong to a proper descendent of) the class COMPARABLE. 

It is by the features of COMPARABLE that the sorted list maintains its sort order.  The list doesn’t know 

about the implementation of the objects it contains, but it does know that they must be proper descendants 

of COMPARABLE. Each element of a SORTED_TWO_WAY_LIST, then must have the feature infix “<” (less 

than). 

The data structure asks each of its elements whether they are less than another to determine sort order.  In 

this way, constrained genericity allows the data structure to remain as independent of its contained objects 

as possible, maximizing both flexibility and reusability.  This is polymorphism at work. 

The following code segment declares two sorted lists, one containing STRINGs and one containing 

INTEGERs.  Because STRING and INTEGER are proper descendants of COMPARABLE, these declarations are 

correct. 

 my_alphabetical_list: SORTED_TWO_WAY_LIST [STRING] 

 my_number_list: SORTED_TWO_WAY_LIST [INTEGER] 

If we were to define a class that does not inherit COMPARABLE, then we could not legally declare a sorted 

list of these objects. 

class COMP_TEST 

 

feature 

 value: INTEGER 

 

end 

 

my_test_list: SORTED_TWO_WAY_LIST [COMP_TEST] 

This would not compile because the constrained genericity defined in SORTED_TWO_WAY_LIST is violated 

by the declaration. 
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VTCG: Actual generic parameter does not conform to constraint 

    Error code: VTCG 
 

    Error: actual generic parameter does not conform to constraint. 

    What to do: make sure that actual parameter is a type conforming to the 

     constraint (the type appearing after `->' for the corresponding formal). 

 

    Class: APPLICATION 

    Feature: make 
 

    For type: SORTED_TWO_WAY_LIST [COMP_TEST] 

    Formal #1: COMP_TEST 

    Type to which it should conform: COMPARABLE 

… 

We can change our class though to make it comply and therefor compile.  The process is really rather 

simple, as illustrated in the new and improved class text that follows. 

class COMP_TEST 

inherit 

  COMPARABLE 

feature 

 value: INTEGER 

 

 infix “<” (other: like Current): BOOLEAN 

  -- Is Current object less than other? 

  do 

    Result := value < other.value 

  end 

end 

The following code segment illustrates the use of SORTED_TWO_WAY_LIST and LINKED_LIST. Note well that 

each list feature used has the same apparent interface for each of the list classes. 
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 ll: LINKED_LIST [INTEGER] 

 sl: TWO_WAY_SORTED_LIST [INTEGER] 

 

 my_routine 

  local 

    ival: INTEGER 

  do 

    create ll.make 

    create sl.make 

    from ival := 4 

    until ival = 0 

    loop 

      ll.extend (ival) 

      sl.extend (ival) 

      ival := ival – 1 

    end 

  end 

 

 my_print_routine 

  do 

    from 

      ll.start 

      sl.start 

    until ll.exhausted or sl.exhausted 

    loop 

      print (“Linked list item: “ + ll.item + “,  “) 

      print (“Sorted list item: “ + sl.item + “%N”) 

      ll.forth 

      sl.forth 

    end 

  end 

The output of my_print_routine would be as follows. 

Linked list item: 4,  Sorted list item: 1 

Linked list item: 3,  Sorted list item: 2 

Linked list item: 2,  Sorted list item: 3 

Linked list item: 1,  Sorted list item: 4 

Note well that, although the apparent interfaces are the same, the behaviors are quite different.  

LINKED_LIST extends itself in order of insertion, whereas the SORTED_TWO_WAY_LIST extends itself in 

sorted (numerical in this case) order, as shown in the output. 
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Eiffel’s Facilities for Feature Adaptation 

Eiffel lets the programmer redefine, undefine, rename, select, and change the export status of inherited 

features. These adaptations exist to support class specialization of course, but also to resolve conflicts 

amongst repeatedly inherited features. 

The following diagram illustrates the phenomenon of repeated inheritance, and a conflict that arises when 

one version of a repeatedly inherited feature has been specialized in an ancestor. 

 

The redefined feature is the venerable foo().  CLASS_A redefines foo(), presumably to specialize it in 

some way.  CHILD_CLASS then has two conflicting implementations of foo(), the one it inherits from 

CLASS_B (the original one from COMMON_ANCESTOR) and the one it inherits from CLASS_A.  This conflict 

has to be resolved for compilation to succeed. 

In some cases, the programmer wants to keep multiple instances of repeatedly inherited features.  In this 

case, the inherited features must be renamed so that the compiler knows that you want them to be 

different (see Rename in the next section). 

The next diagram shows the conflict resolved by renaming one of the inherited versions of foo() to 

a_foo(), leaving CHILD_CLASS with two routines, a_foo() and the old foo(). 
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If the programmer had renamed the original version of foo() to something like no_foo(), then there 

would in fact be no_foo() like an old foo().  I just can’t help myself, sorry. 

In cases where only one version is wanted, the programmer might redefine or undefine one of the 

inherited versions, leaving the other as the only version, as illustrated in the following diagram. 

 

If the programmer wants an implementation of foo() that differs from both possible inherited 

implementations, then the choice is to redefine both of them, as illustrated in the following diagram. 
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The Inherit Clause 

The inherit clause of a class declares the direct parents of that class as well as the inherited features that 

the class will adapt (as seen in previous examples).  The inherit clause follows the class name and 

precedes any features of the class, and the creation clause if any.  The syntax of the inherit clause follows. 

inherit 

  <PARENT CLASS NAME> 

   [[rename <rename pairs>] 

   [export <export clause>] 

   [undefine <undefine list> 

   [redefine <redefine list> 

   [select <select list> 

  end] 

  [<ANOTHER_PARENT CLASS NAME> 

   [[rename <rename pairs>] 

   [export <export clause>] 

   [undefine <undefine list> 

   [redefine <redefine list> 

   [select <select list> 

  end]] 

Each of these subordinate clauses is covered in turn, below. 

Rename 

Rename says that from this point in the class hierarchy, the name of the given inherited feature will now 

be different.  This means that for each instance of a class (for each object of this type) or of a proper 

descendent class the name of that feature is the new name. 

The syntax of the rename clause is: 
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rename 

   <old_name> as <new_name>[, 

   <another_old_name> as <another_new_name>] 

where <old_name> is the name of a feature as it appears in the parent class and <new_name> is the name 

by which that feature is to be known hence.  Each rename pair must include the ‘as’ keyword.  If there are 

multiple rename pairs, then the pairs must be separated by commas.  They need not be on different lines, 

but this often provides the best readability. 

In this example, the class A has a feature called a_name.  Class B inherits class A, and with it the feature 

a_name.  Class B wants to call that feature b_name for some strange reason unknown to us, but no doubt 

a legitimate one.  It does this by renaming the feature in the inherit clause. 

class A 

feature 

 a_name: STRING 

end –- class A 

This is class B’s inherit clause. 

class B 

inherit 

  A 

    rename 

      a_name as b_name 

  end 

 end –- class B 

Now imagine a third class, C, that inherits class B.  By what name is this feature known in class C?  It is 

known by b_name because that is the name it inherited from its parent, class B. 

class C 

inherit 

  B 

feature 

end –- class C 

This is a contrived example and doesn’t serve that well to enlighten, but it is at least simple. 

Here is a perhaps better example, from an illustrative point of view at least.  This is the external 

specification of make, one of the creation routines of the STRING class. 

By convention, most of our creation routines are called make.  This is not a rule of the language, but 

is a useful convention. 

make (n: INTEGER) 

  -- Allocate space for at least `n' characters. 

  require 

    non_negative_size: n >= 0 

  ensure 

    empty_string: count = 0 

    area_allocated: capacity >= n 

  end 

The class COMPANY_NAME renames STRING’s make routine and defines a make of its own. 
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class COMPANY_NAME 

inherit 

  STRING 

    rename 

      make as str_make 

  end 

 

create 

  make 

feature 

 make 

  do 

    str_make (32) 

  end 

 

end –- class COMPANY_NAME 

This is a very common occurrence, and happens when the designer wants to have a “make” at this level of 

the hierarchy (with a different signature), but wants to retain the capabilities provided by the original.  

The make routine of STRING requires a starting size (strings are dynamically resizable in Eiffel, but it is 

sometimes more efficient to create them with a reasonable starting size.) 

The COMPANY_NAME class has a predefined starting size (32) and so renames STRING’s make to 

str_make, then calls str_make from its own creation routine (coincidentally also called make).  Any 

client that wishes to create an object of type COMPANY_NAME then must do so by calling the make routine 

of COMPANY_NAME.  Anyone calling make in an object of that type will be calling the new routine (the one 

with no arguments.)  Note the creation clause in COMPANY_NAME.  It lists only make as a creation routine.  

The inherited routine, now called str_make, is not a legitimate creation routine of COMPANY_NAME. 

A good convention (not seen in these examples) is to put all creation routines in a feature block whose 

export status is NONE (see Export).  Because the creation routines are listed as such, they are 

accessible to a creation operation.  By defining their export status as NONE, they become inaccessible 

except by that particular object.  Even other objects of the same class have no access to them.  Upon 

renaming and removing from the creation clause, they can be no longer called from outside of that 

object. 

Clearly the original make, from STRING still exists.  It has not disappeared; it is only hiding behind an 

alias.  This is the essence of renaming. 

In case it wasn’t obvious, any changes one makes in a child class have no effect on its ancestors, only 

on the adapted features in that child class and its proper descendants.  You might give your parents 

gray hair, but you can’t give them blue eyes! 

Another common and useful application of renaming is to change the name of an inherited feature to 

reflect better the context of the child class.  An example is often given where a STACK class is the child of 

a more generic data structure.  This is a poor example of making data structures interchangeable and of 

making their interfaces standardized.  It is also NOT the way that the STACK class is implemented in the 

Eiffel standard libraries.  What it does well though, is illustrate an application of renaming.  Let’s begin 

by assuming that we are going to implement our DUMB_STACK class as a linked data structure, and so we 

want to inherit the TWO_WAY_LIST class. 
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class DUMB_STACK [G] 

inherit 

  TWO_WAY_LIST [G] 

    rename 

      put_front as push, 

      first as top, 

      remove as tw_list_remove 

  end 

feature 

 pop 

  -- Remove the top-most item 

  do 

    start 

    tw_list_remove 

  end 

end –- class DUMB_STACK 

Our class renames put_front as push, and first as top, presumably to make the feature names 

reflect more accurately the capabilities implemented by the features – make it look more stack-like.  The 

remove feature is also renamed, to hide it from clients that might wish to remove an item without 

adhering to the stack policy (this can also be accomplished via the export clause).  If a client tries to call 

the remove function, the compiler will reject the call because there is no such feature as remove in class 

DUMB_STACK. 

Note well that any clients of TWO_WAY_LIST still have access to the remove routine by the original name.  

If there is a handle of this type, and it refers to an instance of DUMB_STACK, then remove is quite 

accessible.  Because of this, it is probably a better idea to redefine the remove routine (see Redefine, 

below). 

Polymorphism makes this apparently simple concept a little less simple (but more powerful of course).  

Still it is not such a difficult concept.  Here is an example where polymorphism might give the novice a 

little trouble.  Our class hierarchy is deliberately simple. 

Imagine that for some reason you have two automobile classes, one representing cars in the U.S. and one 

representing cars in Great Britain. 

 

Figure 10 – British and US Vehicles 

We all know that the British drive on the wrong side of the road (I kid the British).  It is said that the U.S. 

and England are two countries separated by a common language.  It appears true, because in addition to 

the minor detail of side-of-road preference, there are differences in terminology.  For example, where 

Americans might call the sheet metal covering the engine compartment a hood, our friends from across 

the pond might call it a bonnet.  To be as useful as possible, our simple class hierarchy should present the 

features of British vehicles, in their native language. 

To avoid seeming too conciliatory, our revised hierarchy (Figure 11) will take on a decidedly American 

bias.  Remember this is for clarity of illustration, not world peace.  The previous hierarchy is more 

rational of course, but this one serves the purpose of illustration. 
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Figure 11 – British Vehicle as Subclass of Vehicle 

The BRITISH_VEHICLE class’s inheritance clause would then look like this. 

class BRITISH_VEHICLE 

inherit 

  VEHICLE 

    rename 

      gas_tank as petrol_tank, 

      trunk as boot, 

      hood as bonnet, 

      windshield as windscreen, 

      engine as motor 

  end 

It should be easy to see that the capabilities and attributes represented by the renamed features still exist.  

They are simply known by different names.  A client wishing to lift the hood of a BRITISH_VEHICLE would 

be unable to do so, because no such feature exists by that name, but try to lift the bonnet, and you’re in 

business. 

Now imagine a dealership that sells both American and British vehicles, and the sales manager doesn’t 

care at all about the national origin of the cars he sells, only that they sell.  To him, they are simply 

VEHICLEs, his inventory.  How then does the sales manager refer to these features?  His objects (from his 

point of view) are VEHICLEs, but clearly they must be either American (VEHICLE) or British 

(BRITISH_VEHICLE). 

The answer lies in polymorphism.  It turns out that the object knows (of course).  For the compiler to 

know, the type of the handle to that object must be consistent with the features being called.  The 

following code fragment illustrates a few different cases (I have included line numbers here.  They are not 

part of the language or the logic, merely for reference). 

 1 foo 

 2  local 

 3    tv: VEHICLE 

 4    tbv: BRITISH_VEHICLE 

 5    inventory: LINKED_LIST [VEHICLE] 

 6  do 

 7    create inventory.make 

 8    create tv.make 

 9    inventory.extend (tv) 

10    create tbv.make 

11    inventory.extend (tbv) 

12 

13    print (inventory.first.hood) 

14    print (inventory.last.bonnet) 

15    tv := tbv 

16    print (tv.hood) 

17  end 
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Note that the local object inventory is a list of VEHICLEs.  Simple polymorphism allows inventory to 

contain objects belonging to the class VEHICLE or its descendants, including BRITISH_VEHICLE. 

On line 8, we create a new object of type VEHICLE, adding it to inventory on line 9.  On line 10 we 

create a new BRITISH_VEHICLE object and add it to inventory on line 11.  So far, so good. 

On line 13, we try to print out the value of the hood attribute of VEHICLE (we had put tv, an object of type 

VEHICLE into the first position of the inventory list).  This compiles successfully. 

When we try to compile line 14, though, we get an error. 

Why is this?  After all, we added an object of type BRITISH_VEHICLE to the list in the last position, so the 

object at inventory.last should be a BRITISH_VEHICLE.  It is, but the compiler doesn’t know it, and 

can’t legitimately know it, and shouldn’t know it even if it could.  The code says that inventory is a list 

of VEHICLEs and so the compiler enforces the type rules.  How then do we get a BRITISH_VEHICLE object 

out of a list of VEHICLEs? 

For the compiler to allow a reference to a feature of a class, it must have a handle to an object of that or a 

compatible class (type-compatible).  Because a LINKED_LIST of VEHICLEs, from the compiler’s point of 

view, is a collection of handles to VEHICLEs, regardless of their potential run-time types, the compiler 

treats that particular reference as one to VEHICLE. 

This is where run-time support for polymorphism comes in.  The run-time system isn’t limited to seeing 

only handles.  It can see objects.  Line 14 of our example should be rewritten as the following lines. 

14a    if attached {BRITISH_VEHICLE} inventory.last as bv then 

14b      print (bv.bonnet) 

14c    end 

Line 14a uses an attachment test.  The attachment test checks the run-time type of, in this example 

inventory.last to verify that (1) it is attached (not Void) and (2) that it is attached to an object of the 

given type, in this case BRITISH_VEHICLE.  The attachment test, in this example creates a temporary, 

known-to-be-attached handle (bv) whose scope is the attachment test.  It is the temporary handle that is 

used at run-time to refer to the instance of BRITISH_VEHICLE.  The condition in this case will be True 

because the last element of the list is in fact an object consistent with BRITISH_VEHICLE. 

In practice, the logic might be a little denser and the results less certain, and so it might be reasonable to 

have logic for the False case as well. 

14a    if attached {BRITISH_VEHICLE} inventory.last as bv then 

14b      print (bv.bonnet) 

14c    elseif attached {VEHICLE} inventory.last as uv then 

14d      print(uv.hood) 

14e    else 

14f      print (“We’re totally screwed”) 

14g    end 

There is still a little voice nagging at you, saying “Yeah, but what about …?”  Let’s go back to our 

original code, the one with line 14 that wouldn’t compile.  Line 14 was: 

14    print (inventory.last.bonnet) 

We got a compilation error because the compiler’s static view of things said that inventory.last was 

a VEHICLE and that class had no feature called bonnet.  What if we instead had this line? 

14    print (inventory.last.hood) 

That would compile fine, but wouldn’t we get some other kind of error?  The object clearly was going to 

be BRITISH_VEHICLE, and objects of that class don’t have a feature called hood. 
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This is not a problem.  Again this is where the beauty of polymorphism comes in.  The compiler generates 

code that invokes the feature called hood for an object of class VEHICLE.  The renaming in Eiffel does the 

rest.  Recall that the renamed feature doesn’t go away, it merely hides behind an alias.  The generated 

code really doesn’t care about this.  It’s all offsets and addresses by the time it gets to be running code.  

So the reference resolves quite correctly in the run-time environment because the object in question is the 

right object. 

Remember (repeat after me) class is king at compile-time, and object is king at run-time. 

Now what about lines 15 and 16?  This is simple polymorphism at work. 

15    tv := tbv 

16    print (tv.hood) 

Recall that tv is a handle to an element of class VEHICLE, and tbv is handle to an element of class 

BRITISH_VEHICLE.  Line 15 works nicely because the right-side value in the assignment (tbv) is at least the 

same type as the handle on the left side (tv).  As a result of the assignment, tv now refers to a 

BRITISH_VEHICLE object.  This should cause a name conflict on line 16 then, right?  No, it does not.  On 

line 16, the hood feature of VEHICLE is accessed by way of a handle whose compile-time type is VEHICLE.  

The fact that the run-time object is a BRITISH_VEHICLE is not interesting at compile time.  At run-time, the 

object’s bonnet feature is called, but we know by now that bonnet is the same feature as hood, only 

called by a different name from handles of a child class. 

Export 

Eiffel allows the designer to change the export status of an inherited feature in two ways.  First, any 

features that are redefined must associate the redefined implementation with a feature keyword.  The 

feature keyword then defines the export status 

The second method is to list the feature and its new export status in the export section of the inherit 

clause.  Changing the export status does not otherwise affect the implementation of the given feature. 

The syntax of the export clause is: 

export 

   {<a_class>} <a_feature>, 

     <another_feature> 

   {<another_class>} <yet_another_feature> 

where <a_class> is the name of a client class (or the special labels ANY or NONE), and <a_feature> is the 

name of a feature as it appears in the current class (the new name if renamed, else the name from the 

parent).  If there are multiple features listed, then they must be separated by commas.  They need not be 

on different lines.  Our example involves three classes, EX1, its descendent EX2, and a hypothetical client 

class EX3. 

class EX1 

feature {ANY} 

 my_attr: INTEGER 

 my_other_attr: INTEGER 

feature {NONE} 

 my_private_attr: INTEGER 

end -- class EX1 

The feature keyword in an Eiffel class defines the export status for all features between it and the next 

feature keyword (or the end of the class).  When no class list follows the feature keyword, the export 

status is ANY.  In class EX1, the features my_attr and my_other_attr have an export status of ANY, and 
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the feature my_private_attr has an export status of NONE (no other objects, regardless of class, can see 

that feature.) 

In class EX2, we change the export status so that my_private_attr is now visible to objects only of the 

class EX3 (and its descendants).  We change also the export status of my_attr. 

This might not be obvious because we also renamed my_attr to my_parent_attr.  

Because my_parent_attr is the name by which the feature is to be known hence, 

that is the name by which we alter its export status (and coincidentally why 

rename is the first section in the export clause).  my_parent_attr is now not 

visible to other objects.  The feature my_other_attr (not listed in the export clause) retains its original 

export status. 

class EX2 

inherit 

 EX1 

  rename 

    my_attr as my_parent_attr 

  export 

   {NONE} my_parent_attr 

   {EX3} my_private_attr 

  end 

end -- class EX2 

Violation of export status is a compile-time error. 

Sometimes the programmer wants a more extreme export limitation.  One case where this might occur is 

when the object identified by a once function should not be modified.  We use a once function returning a 

STRING as illustration. 

 my_string_once: STRING 

  once 

    create Result.make_from_string (“This is a permanent value”) 

  end 

 evil_gina 

  -- Truncate our once-d string to confuse everybody else 

  do 

    my_string_once.clear_all 

  end 

You can see from the example that simply once-ing an object does not prevent access to its features.  We 

can change the export status of some key features though. 

class STINGY_STRING 

inherit 

  STRING 

   export {NONE} ALL 

  end 

end 
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my_string_once: STINGY_STRING 

  once 

    create Result.make_from_string (“This is a permanent value”) 

  end 

 evil_gina 

  -- Cannot truncate our once-d string 

  do 

    my_string_once.clear_all 

  end 

Now evil_gina has no right to access the clear_all routine, because its export status has been shut 

off.  Regrettably this is not enough to protect it from the true miscreant.  Polymorphism lets the 

programmer set on self-destruction commit the original crime with relative ease, by simply making his 

handle, tstr of type STRING instead of anchoring it to the type of the once function. 

evil_gina 

  -- Truncate our once-d string by sneaking up on it using STRING 

  local 

    tstr: STRING 

  do 

    tstr:= my_string_once 

    tstr.clear_all 

  end 

Of course, a user-defined class that never exports (or only via a child that redefines its export status) such 

routines would not be susceptible in this manner.  In our STINGY_STRING case, we must redefine the 

dangerous routines if we want to be truly safe so that, regardless of the type of the handle, the object at 

runtime will execute the safe (probably neutered) routine. 

Undefine 

The undefine mechanism provides a means by which to make an already implemented feature 

unimplemented again, as if it were deferred in the parent (see Deferred Features).  When you undefine an 

inherited feature, you are removing its implementation, but retaining its signature and its assertions. 

The syntax of the undefine clause is: 

undefine 

   <a_feature>[, 

   <another_feature>] 

Where <a_feature> is the name of a feature as it appears in the parent class.  When multiple features are 

undefined, they must be separated by commas.  They need not be on different lines. 

Our first undefine example is a collection of three classes.  Class UD1 has a routine to_string.  Classes 

UD2 and UD3 each inherit class UD1.  Class UD4 inherits both UD2 and UD3, setting up a repeated inheritance 

condition.  The compiler detects this and generates the correct code (only one copy of the to_string 

routine exists for UD4).  The result of calling to_string for an object of type UD4 is the string “I am 

UD1”. 
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class UD1 

feature 

 make 

  do 

  end 

 to_string: STRING 

  do 

    Result := “I am UD1” 

  end 

end –- class UD1 

 

class UD2 

inherit 

  UD1 

feature 

 some_attr: INTEGER 

end –- class UD2 

 

class UD3 

inherit 

  UD1 

feature 

 some_other_attr: INTEGER 

end –- class UD3 

 

class UD4 

inherit 

  UD2 

  UD3 

create 

 make 

feature 

end –- class UD4 

 

Now we change UD3 to redefine the implementation of to_string and set up a conflict between the 

inherited versions of to_string. 

class UD3 

inherit 

  UD1 

    redefine 

      to_string 

  end 

feature 

 to_string: STRING 

  do 

    Result := “I am no longer UD1” 

  end 

 some_other_attr: INTEGER 

end –- class UD3 

This now generates the following error message. 
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Error code: VMFN 

Error: two or more features have same name. 

What to do: if they must indeed be different features, choose different 

  names or use renaming; if not, arrange for a join (between deferred 

  features), an effecting (of deferred by effective), or a redefinition.  

 

Class: UD4 

Feature: to_string: STRING inherited from: UD3 Version from: UD3 

Feature: to_string: STRING inherited from: UD2 Version from: UD1 
 

------------------------------------------------------------------------------- 

Degree: 4 Processed: 2 To go: 0 Total: 2 

We have at least three options for removing this conflict, rename, redefine and undefine.  This time we 

will use the undefine mechanism.  We can undefine one of the inherited versions (the one from UD2), 

removing its implementation and making it behave as if it were deferred in the parent.  Now the version 

we inherit from UD3 becomes the only implemented version.  This means that we not only remove the 

multiply defined condition, but we also resolve the “deferred” condition we caused by un-defining the 

feature from UD3. 

class UD4 

inherit 

  UD2 

    undefine 

      to_string 

  end 

  UD3 

create 

 make 

feature 

end –- class UD4 

Now the to_string routine from UD4 is the one inherited from UD3.  The version from UD2 no longer 

exists within UD4’s scope.  The result of calling to_string for an object of type UD4 is now the string “I 

am no longer UD1”. 

Redefine 

When you redefine an inherited feature, you change its implementation, its signature, its assertions, or all 

three.  Any changes must conform to the covariant typing rules of the language. 

The syntax of the redefine clause is: 

redefine 

   <a_feature>[, 

   <another_feature>] 

Where <a_feature> is the name of a feature as it appears in the parent class.  When multiple features are 

redefined, they must be separated by commas.  They need not be on different lines. 

Eiffel lets you redefine a routine to an attribute, but not vice versa.  Attributes can be redefined, but only 

to more specific types (covariance).  You can redefine external routines, but you cannot redefine an 

external routine to become an Eiffel routine, and vice versa. 

Our first redefinition example is a simple hierarchy of three classes.  The topmost class defines a routine 

called to_string that yields a string representation of the object.  The child and grandchild of this class 

redefine that routine as well as the creation routine, make. 

First the grandparent class. 
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class RC1 

 

create 

  make 

 

feature 

 make 

  do 

    attr1 := 5 

  ensure 

    initialized: attr1 /= 0 

  end 

 

 to_string: STRING 

  do 

    create Result.make (0) 

    Result.append_integer (attr1) 

    Result.append (“%N”) 

  ensure 

    valid_result: Result /= Void and then not Result.is_empty 

  end 

 attr1: INTEGER 

end –- class RC1 

 

class RC2 

inherit 

  RC1 

    redefine 

      make, to_string 

  end 

 

create 

  make 

feature 

 make 

  do 

    Precursor 

    attr2 := 10 

  ensure then 

    initialized: attr2 /= 0 

  end 

 

 to_string: STRING 

  do 

    Result := Precursor 

    Result.append_integer (attr2) 

    Result.append (“%N”) 

  end 

 

 attr2: INTEGER 

end –- class RC2 
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class RC3 inherit 

  RC2 

    redefine 

      make, to_string 

  end 

create 

  make 

feature 

 make 

  do 

    attr1 := 5280 

    attr2 := 1999 

    attr3 := 42 

  end 

 

 to_string: EASY_STRING 

  require else 

    never_mind: True 

  do 

    create Result.make (80) 

    Result.append (“Jimmy cracked corn and I don’t care%N”) 

  end 

 

 attr3: INTEGER 

end –- class RC2 

The make routine (procedure) has different implementations at each of the three levels of our hierarchy.  

Each descendent redefines the implementation to include initialization of the attributes known at that level 

of the hierarchy.  The RC2 implementation extends the postcondition introduced by RC1 to ensure that the 

attribute (attr2) introduced in RC2 is included in the initialization.  RC2 uses the Precursor keyword to 

invoke the implementation inherited from RC1, so that RC2’s make routine simply expands, rather than 

replaces the inherited implementation. 

RC3 is a bit of a pain and decides to rebel against the constraints of its parents (RC3 must be a teenager.)  

Rather than rely on the implementations of make as inherited from its ancestors, RC3 has decided to re-

implement from scratch.  This is allowed, but shows poor judgement of course.  What the author of RC3 

might or might not realize is that the postcondition defined by its ancestors are still in force (covariance at 

work), and so an assertion exists that ensures that at least attr1 and attr2 are initialized when make 

finishes. 

The to_string routine (function) also has different implementations at each of the three levels of the 

hierarchy.  Again, RC2 redefines its version as a expansion of the inherited version, by using the 

Precursor.  Once again, RC3 tries to carve its own path.  Its version of to_string not only replaces the 

inherited implementation entirely, but also changes the result type to EASY_STRING (a descendent of 

STRING) and redefines the precondition by OR-ing in the predicate True – effectively neutralizing any 

inherited preconditions.  The postconditions inherited from its ancestors however remain unchanged.  The 

type change is correct because EASY_STRING is a STRING.  The changed precondition is correct because it 

is relaxed relative to its parent. 

Extractable Documentation 

Eiffel supports the notion of extractable documentation (this is not strictly part of the topic of this paper, 

but it is somewhat related, and can be helpful.)  Eiffel classes then can be projected in several different 

forms, including one called short.  The short form of a class shows the interfaces of all exported features 

of a class.  Another projection is the flat form.  The flat form of a class shows all of the inherited features 

as well as those originating in that specific class.  These two forms can combine in the flat/short form to 
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show the interfaces of all of the exported features, whether inherited or originating in that class.  Below 

are the flat/short forms of our three example classes, RC1, RC2 and RC3. 

 

class interface RC1 

create 

 make 

  ensure 

    initialized: attr1 /= 0 

feature 

 attr1: INTEGER 

 make 

  ensure 

    initialized: attr1 /= 0 

 to_string: STRING 

  ensure 

    valid_result: Result /= Void and then not Result.is_empty 

invariant 

  -- from GENERAL 

  reflexive_equality: standard_is_equal(Current) 

  reflexive_conformance: conforms_to(Current) 

end –- class RC1 

 

class interface RC2 

create 

 make 

  ensure -- from RC1 

    initialized: attr1 /= 0 

  ensure then 

    initialized: attr2 /= 0 

 

feature 

 attr1: INTEGER {from RC1) 

 

 make 

  ensure -- from RC1 

    initialized: attr1 /= 0 

  ensure then 

    initialized: attr2 /= 0 

 

 attr2: INTEGER 

 

 to_string: STRING 

  ensure -- from RC1 

    valid_result: Result /= Void and then not Result.is_empty 

 

invariant 

  -- from GENERAL 

  reflexive_equality: standard_is_equal (Current) 

  reflexive_conformance: conforms_to (Current) 

end –- class RC2 
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class interface RC3 

create 

make 

  ensure -- from RC1 

    initialized: attr1 /= 0 

  ensure then 

    initialized: attr2 /= 0 

feature 

 attr1: INTEGER 

    {from RC1} 

 attr2: INTEGER 

    {from RC2} 

 attr3: INTEGER 

 make 

  ensure -- from RC1 

    initialized: attr1 /= 0 

  ensure then-- from RC2 

    initialized: attr2 /= 0 

 to_string: EASY_STRING 

  require -- RC1 

    precursor: True 

  require else 

    never_mind: True 

  ensure -- from RC1 

    valid_result: Result /= Void and then not Result.is_empty 

invariant 

  -- from GENERAL 

  reflexive_equality: standard_is_equal (Current) 

  reflexive_conformance: conforms_to (Current) 

end –- class RC2 

The flat/short forms give us insight into the inheritance mechanism, showing the source of the elements 

that make up the interfaces to features.  It presents a kind of map of the origins of features and associated 

assertions. 

Precursor 

Thank Dr. Meyer for introducing the Precursor keyword a while back.  It makes this topic significantly 

easier.  As seen in the previous examples, the Precursor keyword substitutes for the inherited 

implementation of a redefined feature.  The preceding examples were admittedly rather simplistic.  They 

did not show the use of Precursor for redefined routines with arguments, or for cases of multiple 

inheritance.  Examples of these follow. 

In this example, class PC1 defines a routine called make that (in addition to the being the creation routine 

for the class) initializes the name attribute to the given argument.  A child class, PC2, redefines the make 

routine by first relaxing the precondition to allow any value, even a Void, and then checking the value in 

its implementation.  Finally, the redefined routine calls the inherited version with the new argument, using 

the Precursor keyword. 
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class PC1 

create 

 make 

feature 

 make (v: like name) 

  require 

   arg_is_valid: v /= Void and then not v.is_empty 

  do 

    name := v 

  end 

 name: STRING 

 end -- class PC1 

 

class PC2 

inherit 

  PC1 

    redefine 

      make 

  end 

creation 

 make 

feature 

 make (v: like name) 

  require else 

    v = Void or else v.is_empty 

  local 

    tstr: like name 

  do 

    if v = Void or else v.is_empty then 

      tstr := "Dummy" 

    else 

      tstr := v 

    end 

    Precursor (tstr) 

  end 

end -- class PC2 

In this next example, the Precursor keyword is used in a multiple inheritance context.  Class PM1 defines 

a routine called to_string.  Class PM2 also defines a routine called to_string (an entirely different 

routine, just the same name).  Finally, class PM3 inherits both of these classes, and redefines both versions 

of to_string, using a qualified Precursor. 

Note that PM3 also renames the make routines it inherits from PM2 and PM1, then calls them by their new 

names in its own make routine.  It could just as easily have used redefine and Precursor. 

class PM1 

create 

 make 

feature 

 make do end 

 to_string: STRING 

  do 

    Result := "I am PM1" 

  end 

end -- class PM1 
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class PM2 

create 

 make 

feature 

 make do end 

 to_string: STRING 

  do 

    Result := "I am PM2" 

  end 

end -- class PM2 

 

class PM3 

inherit 

 PM1 

  rename make as pm1_make 

  redefine to_string 

  end 

 PM2 

  rename make as pm2_make 

  redefine to_string 

  end 

create 

 make 

feature 

 make 

  do 

    pm1_make 

    pm2_make 

  end 

 to_string: STRING 

  do 

    Result := {PM1}Precursor 

    Result.append ("%Nand%N") 

    Result.append ({PM2}Precursor) 

  end 

end -- class PM2 

Covariance 

Covariance has been mentioned a few times already.  Maybe an explanation of it would help. 

Inheritance is arguably the most powerful characteristic of Object Orientation.  Eiffel’s typing and 

assertion support is covariant with respect to inheritance.  Covariance is not so strange a concept as it 

sounds.  Simply put, it means that a child class must do as well or better than its parent.  More 

specifically, the features inherited by a child class must each do as well as or better than the 

corresponding features in the parent class. 

When a programmer redefines a feature in a descendent, the programmer must make certain that the 

signature is consistent (type, position and count) with the parent. 

The classes of elements that make up the signature of a redefined routine must be either the same 

as those in the parent, or proper descendants of those in the parent. 

The result type of a redefined function then must adhere to this rule.  Similarly, any arguments to a 

redefined routine must adhere to this rule. 

The programmer must also make certain that the assertions that define the contract for that routine (or 

class invariant) are consistent as well, according to covariance.  Specifically, 
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A descendent routine’s preconditions must be the same as or weaker than the parent’s 

A descendent routine’s postconditions must be the same as or stronger than the parent’s 

In other words, the child must at least live up to the contract defined by the parent, but can “do a better 

job” by making it easier on the client (weaker preconditions) or more beneficial to the client (stronger 

postconditions). 

Select 

The select clause allows the programmer to select from a parent one of a set of repeatedly inherited 

features that have been renamed and therefor conflict.  They are still the same features, but they now go 

by different names.  The syntax of the select clause is: 

select 

   <a_feature>[, 

   <another_feature>] 

Where <a_feature> is the name of a feature either as it appears in the parent class (if not renamed), or if 

renamed in this class, the new name.  When multiple features are selected, they must be separated by 

commas.  They need not be on different lines. 

For our example we revisit the undefine example, with classes UD1, UD2, UD3, and UD4.  Recall that we had 

several options for resolving the conflict, and that we chose undefine.  Now we will use rename and 

select.  To regenerate the problem, we roll back our implementation of UD4 to look like this. 

class UD4 

inherit 

  UD2 

  UD3 

create 

 make 

feature 

end –- class UD4 

We again get the error message shown in the undefine example above.  Now to creep up on the proper use 

of select, we change UD4 to rename the to_string feature from UD2. 

class UD4 inherit 

  UD2 

   rename to_string as ud2_to_string 

  end 

  UD3 

create 

 make 

end –- class UD4 

This results in the following error from the compiler. 

Error code: VMRC(2) 
    Error: conflict between versions of a repeatedly inherited feature. 

    What to do: list one of the versions in exactly one Select clause.  

 

    Class: UD4 

    In parent UD2: ud2_to_string: STRING 

    In parent UD3: to_string: STRING 
 

------------------------------------------------------------------------------- 

Degree: 4 Processed: 1 To go: 0 Total: 1 
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Being the cooperative folks that we are, we do as the message suggests and list exactly one of the versions 

in a select clause (we opt for the one from UD3, as before), and now the compiler is happy once more.  

You can think of Select as choosing the name by which you want the feature to be known (from the 

names available). 

class UD4 inherit 

  UD2 

   rename to_string as ud2_to_string 

  end 

  UD3 

   select 

     to_string 

  end 

create 

 make 

end –- class UD4 

Deferred Features 

Creating classes that could someday be inherited by others is an interesting exercise (to say the least).  

Sometimes it is necessary and beneficial to identify a capability or attribute, at least in a general sense, in 

a parent, but leave the specifics to a child.  Eiffel helps in this area by providing explicit support for this 

deferral. 

Any class can have one or more features whose existence is assured, but whose implementation is 

deferred (class hierarchy wise).  Such a class is called a deferred class.  Deferring is not a function of 

time, but of space.  This concept is sometimes difficult for programmers new to Eiffel and Object 

Orientation.  The programmer can defer implementation decisions to a space lower in the class hierarchy 

(a.k.a. a descendent).  These are decisions about structure, and algorithm and sometimes about 

specification of type. 

Here is a simple example of two classes, one a deferred class (the parent), and the other a simple class that 

inherits the deferred class and implements for that deferred class the deferred feature. 

 

deferred class D_PARENT 

feature 

my_message: STRING 

  deferred 

  end 

end –- class D_PARENT 

Here is the child class. 

class D_CHILD 

inherit 

  D_PARENT 

 

feature 

my_message: STRING 

  do 

    Result := “Hello World%N” 

  end 

end –- class D_CHILD 

The child class does not declare that it is going to implement the deferred feature (see The Inherit Clause, 

for inheritance syntax), but the child’s implementation must obey the consistency rules. 
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A deferred class is incomplete, and cannot be created.  Therefor there is no such thing as a deferred 

object.  Attempts to create an object of a deferred class fail at compile time. 

The ANY Class 

The Eiffel language reference manual states: 

“Any class other than GENERAL and ANY which does not include an explicitly written Inheritance 

clause is considered to have an implicit clause of the form 

    inherit ANY” 

This seems innocuous enough, but can confuse the novice when confronted with error messages during 

compilation.  These are usually just the result of inadvertent repeated inheritance.  An example is in order.  

Imagine a simple class (you’ve seen it before in many forms). 

 

class ANY_TEST 

 create 

  make 

feature 

 make 

  do 

    print (“Hello World%N”) 

  end 

end –- class ANY_TEST 

This compiles and runs and all is right with the world.  Now lets inherit a couple of otherwise harmless 

looking classes that have only constants (for simplicity).  Here are the bodies of those classes. 

class MY_CONSTANTS 

feature 

 K_some_dumb_constant: INTEGER = 1 

end –- class MY_CONSTANTS 

 

class MY_OTHER_CONSTANTS 

feature 

 K_some_other_dumb_constant: INTEGER = 2 

end –- class MY_OTHER_ONSTANTS 

Our test class now looks like this. 

class ANY_TEST 

inherit 

  MY_CONSTANTS 

  MY_OTHER_CONSTANTS 

create 

  make 

feature 

 make 

  do 

    print (“Hello World%N”) 

  end 

end –- class ANY_TEST 

So far so good.  But what if one of the inherited classes redefined a feature from ANY?  Now you have 

trouble.   



 Page 37  

class MY_CONSTANTS 

inherit 

  ANY 

    redefine 

      copy 

  end 

feature 

 copy (v: like Current) 

  do 

  end 

 K_some_dumb_constant: INTEGER = 1 

end –- class MY_CONSTANTS 

This creates a conflict because now MY_CONSTANTS has changed the implementation of copy and so the 

two identical versions we inherited before are now two different ones and so cannot be merged invisibly 

by the compiler.  The programmer must step in and resolve the conflict. 

Now when you try to compile, you get an error message from an inheritance you never thought you had. 

Error code: VMFN 
    Error: two or more features have same name. 

    What to do: if they must indeed be different features, choose different 

    names or use renaming; if not, arrange for a join (between deferred 

    features), an effecting (of deferred by effective), or a redefinition.  

 

    Class: ANY_TEST 

    Feature: copy (other: (like Current) MY_OTHER_CONSTANTS)  

      inherited from: MY_OTHER_CONSTANTS  

      Version from: GENERAL 

    Feature: copy (other: (like Current) MY_CONSTANTS)  

      inherited from: MY_CONSTANTS  

      Version from: MY_CONSTANTS 
------------------------------------------------------------------------------- 

Degree: 4 Processed: 2 To go: 0 Total: 2 

This results from the rule stated at the beginning of this section, that any class lacking an inheritance 

clause is assumed to have an implicit one that inherits ANY.  In this case, the class MY_OTHER_CONSTANTS 

implicitly inherits ANY, and so its version of copy conflicts with the one redefined in MY_CONSTANTS. 

What is the best way to handle this?  You could simply rename all of the features that are conflicting from 

the constants class (you won’t be using them anyway).  You could otherwise undefine each of them in 

your constants class, by inheriting ANY and declaring the constants class to be deferred.  The rename 

approach is the more common. 

Resolving Inheritance Conflicts 

Rename versus Redefine versus Undefine 

If you exploit multiple inheritance, then you will encounter inheritance conflicts.  There are choices to be 

made about the means by which to resolve these conflicts.  The trick is to figure out which choice is the 

correct one.  The answer is found in another question.  Which capability or attribute do you want?  If only 

one, then make certain you get that one.  If you want more than one, that is, you want to use (or modify) 

the capabilities provided by more than one ancestor’s version, then you have to rename at least one of 

them (then you have two features and no more conflict.) 

It is important to understand the difference between renaming, un-defining and redefining. 

Rename merely changes the name of the feature, it does not remove it or reimplement it 

Redefine changes the implementation of a feature. 
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Undefine eliminates the implementation of a feature 

Single inheritance does not avoid these conflicts, but repeated inheritance gives us more opportunity for 

conflict resolution (because of a greater chance of having conflicts). 

As a rule, the correct choice of resolution often follows the logic in this table. 

 

Feature Name Feature Body Resolution 

Same Same Compiler handles repeated inheritance automatically 

Same Different Rename one to retain two distinct features   OR 

Undefine one of them to yield a single feature 

Different Same Rename one to make them the same name   OR 

Select one by name in a select clause 

Different Different (redefined) Select one by name in a select clause 

Different Different (unique) Do Nothing – Not a repeated inheritance 

Which Feature am I Calling? 

A common question is “When I redefine a feature, how do I know which feature I will get at run-time?”  

The answer again, is that the object knows.  Remember that the compiler generates code based on the 

static class definitions and the handles (instances at compile time) associated with them.  At run-time, you 

are dealing with objects.  Each object is created at a level of its class hierarchy and so the features of that 

object come from that level, regardless of the type of the handle used to access it.  For illustration, let’s 

revisit the BRITISH_VEHICLE example, expanding our silly classes to include some redefinition as well, 

align_in_roadway. 

 

class VEHICLE 

feature 

 gas_tank: CAR_PART 

 trunk: CAR_PART 

 hood: CAR_PART 

 windshield: CAR_PART 

 engine: CAR_PART 

 

 align_in_roadway 

  do 

   print (“On the right side of the road%N”) 

  end 

end –- class VEHICLE 
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class BRITISH_VEHICLE 

inherit 

  VEHICLE 

    rename 

      gas_tank as petrol_tank, 

      trunk as boot, 

      hood as bonnet, 

      windshield as windscreen, 

      engine as motor 

    redefine 

      align_in_roadway 

  end 

feature 

 align_in_roadway 

  do 

   print (“On the left side of the road, actually%N”) 

  end 

end –- class BRITISH_VEHICLE 

The code in the client, to exercise the redefinition, and to prove the point, would be as in the following 

fragment. 

 1 foo 

 2  local 

 3    tv: VEHICLE 

 4    tbv: BRITISH_VEHICLE 

 5    inventory: LINKED_LIST [VEHICLE] 

 6  do 

 7    create inventory.make 

 8    create tv.make 

 9    inventory.extend (tv) 

10    create tbv.make 

11    inventory.extend (tbv) 

12 

13    show_alignment (inventory.first) 

14    show_alignment (inventory.last) 

15  end 

16 show_alignment (v: VEHICLE) 

17  -- I do not know whether this is a simple VEHICLE or not, 

18  -- but then I don’t care – the object knows 

19  do 

20    v.align_in_roadway 

21  end 

The output of this code fragment would be: 

On the right side of the road 

On the left side of the road, actually 

Why is this so?  Let’s look at the mechanics.  The compiler sees that, on line 8, you want to create an 

object of type VEHICLE, and so it generates the appropriate code to do so.  On line 10, you ask to create an 

object of type BRITISH_VEHICLE and the compiler obliges by generating the code necessary to accomplish 

that request. 

At run-time, the generated code creates a LINKED_LIST whose elements are expected to be at least of type 

VEHICLE, if not of a specialized descendent.  The compiler has already validated the typing rules.  Line 8, 
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when executed creates a VEHICLE object, whereas line 10 creates a BRITISH_VEHICLE object.  Each is added 

to the list already created. 

Now when the code for lines 13 and 14 are executed, the show_alignment routine is called first with a 

VEHICLE object (the first item in the inventory list) then with a BRITISH_VEHICLE object (the second and 

last item in the list).  The show_alignment routine hasn’t a clue about the type of the object being 

passed.  Remember that the compiler already made certain that it would be at least a VEHICLE.  When line 

20 if finally executed, it is done so with the object passed to the routine.  The first time, the object is a 

VEHICLE, and the next time it is a BRITISH_VEHICLE.  Each time, it is the object’s already bound 

align_in_roadway routine that is called.  No further type checking or magic is required. 

Why doesn’t the call in show_alignment result in the string “On the right side of the road” both times? 

-- Because the object is not a simple VEHICLE both times.  The second time it is a BRITISH_VEHICLE.  The 

routine doesn’t know this; the object does. 

Run-Time Typing 

In the previous examples, we have seen a lot of static binding.  That is part of Eiffel’s strong typing.  

Performing whatever bindings are possible at compile time makes development quite a bit saner.  Still 

there is sometimes the need to determine the type of an object at run-time.  We saw a glimpse of this in 

our example of the BRITISH_VEHICLE when covering the rename clause.  If you recall, the code fragment 

looked like this. 

14a    if attached {BRITISH_VEHICLE} inventory.last as bv then 

14b      print (bv.bonnet) 

14c    elseif attached {VEHICLE} inventory.last as uv then 

14d      print(uv.hood) 

14e    else 

14f      print (“We’re totally screwed”) 

14g    end 

Line 14a contains an attachment test.  The type of inventory.last is VEHICLE, and maybe VEHICLE or 

BRITISH_VEHICLE.  The attachment test, checking for inventory.last being of type BRITISH_VEHICLE, 

adds a temporary handle ‘bv’ whose scope is limited to the attachment test.  If indeed, the object at 

inventory.last is of type BRITISH_VEHICLE, then the temporary handle ‘bv’ will be non-Void, 

guaranteed. 

At compile time, you can have pretty much any combination of types in the attachment test.  It is after all 

a test only tried at run-time.  For example, the following code would compile just fine, though it would be 

useless. 

 foo 

  local 

    bogus: SOME_UTTERLY_UNRELATED_CLASS 

  do 

    create bogus.make 

    if attached {BRITISH_VEHICLE} bogus as bv then 

      print (“How did this happen?  It never would”) 

    end 

  end 

There is another option that can be used to verify attachment at run-time when you absolutely, positively 

know that the test will succeed.  That option uses the exception mechanism in place of basic control flow.  

Our now-famous 14a example could be rewritten as something like this. 
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14a    check attached {BRITISH_VEHICLE} inventory.last as bv then 

14b      print (bv.bonnet) 

14c    end 

It appears that the reverse assignment attempt will fail at run-time (base solely on our knowledge, as 

programmers, of the current class taxonomy.)  Can you be certain?  The reverse assignment operator is 

not intended to introduce chaotic and misguided coding practices.  It is however, a very nice mechanism 

for eliminating from our code any need for tags, flags or other primitive mechanisms for determining the 

types or our objects.  Prudent use of the reverse assignment operator can help reduce the size and 

complexity of our code. 

Conclusion 

Newcomers to Eiffel are sometimes “frightened and confused” when they encounter inheritance conflicts, 

or even non-conflicting inheritance adaptations.  The mechanisms are very powerful, but they are, as is 

the rest of Eiffel, consistent and rational.  Once one understands the relationships between compile-time 

rules and run-time realities, these mechanisms become quite clear. 

Eiffel provides a rich and expressive inheritance mechanism, while keeping the syntax clean, regular and 

fairly simple.  With a little practice, even a newcomer to Eiffel should become comfortable with these 

mechanisms, and the power they bring to problem solving. 
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APPENDIX - DATA MODEL NOTATION 

The graphical depictions of data models in this document use the xBON (Extended Business Object 

Notation) conventions. 

xBON is an extension of BON (Business Object Notation) and is an effective notational convention for 

depicting the relationships amongst classes in a system (the data model). 

In a data model, there are 2 major types of relationships:  inheritance and client-supplier.  The client-

supplier relationship in turn has variants that include one-to-one, n-to-m, and containment. 

Inheritance relationships are depicted using a single red closed-end arrow, pointing from the descendent 

to the ancestor (child to parent). 

 

Figure 12 – Inheritance Relationship 

A child C inherits from a parent P.  The implies that class C is-a kind of class P (in the case of class P 

being noun-like, e.g. LIST), of that class C is class P (in the case of class P being adjective-like, e.g. 

COMPARABLE). 

Classes can be either effective or deferred.  A class is effective when its features are fully implemented, 

either within the class or in an ancestor.  A class is deferred when one or more of its features is identified 

(i.e. has a signature) but is unimplemented, deferring the implementation to a descendent. 

In the data model diagrams, deferred classes have gray backgrounds and effective classes have light green 

backgrounds.  While the color isn’t essential, it can help identify, quickly, the deferred classes in a model.  

To avoid using color alone, deferred classes are marked with an asterisk (‘*’) above the name. 

Note well that, even though many popular language systems do not support multiple inheritance, 

the world does, and so does the data model notation. 

The basic client-supplier relationship is depicted by a single green open-end arrow, pointing from the 

client to the supplier.  A client class C uses or has a supplier class S.  The BON notation has been 

extended to include annotation for client-supplier relationships other than one-to-one.  Absent annotation, 

the implication is that there is a singular relationship, though perhaps not an exclusive one.  When there is 

an annotation (e.g. 1:N), the implication is that the client class has relationships with possibly more than 

one supplier of class S. 

            

Figure 13 – Client-Supplier Relationship 

Containment relationships denote a class C that contains a plurality of items, each of class I.  Common 

examples of this relationship would be ARRAY [INTEGER] (an indexable collection of integer items) or 

HASH_TABLE [RECORD, STRING] (a hash table of records, for which a string key is used for access). 

 

Figure 14 – Containment Relationship 
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There is a concept, not support in all languages, but appropriate to a data model, where there is an 

instance of a class that is shared amongst several other classes.  A common example would be an 

underlying file system, or other operating system resource.  Such a resource exists only once in a given 

scope of execution, be that a thread, a process, or an entire system. 

The model notation presents this relationship with a single blue open-ended arrow and, optionally, with a 

‘1’ overlaid on the arrow, denoting that it exists only once per execution scope. 

 

Figure 15 – Once-per-Scope Relationship 

At times, it is helpful to annotate the model with labels on the client-supplier vectors, the label being the 

name of the feature (function or attribute) that acts as the supplier in that relationship. 

Once case where annotation can be especially helpful is when there is an indirect supplier relationship, 

i.e. a supplier accessed by way of another supplier.  The indirect relationship can be important enough to 

call out in the data model.  There is a slightly specialized notation for this, where the model shows a 

dashed supplier line, annotated with “via “<the direct supplier feature name> 

 

Figure 16 – Indirect Supplier Relationship 

In this case, there isn’t a direct relationship, meaning that there is no feature in INDIRECT_CLIENT of 

type SUPPLIER, but there is a feature directly available to INDIRECT_CLIENT of type DIRECT_CLIENT, 

and DIRECT_CLIENT has a direct relationship with SUPPLIER. 


