
EIFFEL SOFTWARE

Ei�el Loops & Iteration

16 MAY 2018

SUMMARY

GENERALLY ITERABLE THINGS

ACROSS LOOP - BASICS

ACROSS LOOP - INDEXING

ACROSS LOOP - REVERSING

ACROSS LOOP - SKIPPING

SUMMARY
There are two basic looping mechanisms available in Eiffel:

● The across loop

● The from loop

We will look at various forms of the across loop first and then the from loop

afterwards.

GENERALLY ITERABLE THINGS
In Eiffel, many classes (and their objects) are ITERABLE [G] . Using the “Class

tool” in EiffelStudio, a look at the Descendants of class ITERABLE [G] is

revealing. We can get a sense of just how many things can be iterated over.

NOTE: The [G] in ITERABLE [G] is referred to as a Generic. It represents the

type of the objects in the container in the ITERABLE container.

Tables, arrays, cursors, lists, chains, and strings are among the many things

we can iterate over. If you want to know if you can iterate over one of your

objects, use the Class Tool to see if it inherits from ITERABLE [G] .

ACROSS LOOP - BASICS
We want to iterate an INTEGER value from 1 to 10 and print the value to the

console with each iteration. Refer to lines 15, 16, and 17 (the across loop)

of the code below:

Let’s break this down so we can sufficiently understand what the Eiffel

compiler “sees” (i.e. learn to “Think like our compiler”).

The across loop needs “something” to go “across” — that is — iterate over. The

Eiffel compiler sees the across keyword and then looks for a “something” that

is ITERABLE . In the example above, the Compiler sees the notation

as a type of INTEGER_INTERVAL , which is a type of ITERABLE [G] object (thanks

to Multiple Inheritance).

In this case, the cursor object will have ten INTEGER items with values 1 to

10. A reference to the object is held in the loop variable named “ic”.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/iterable_chart.html

The loop keyword marks the start of the loop cycle and the end keyword marks

the end. Within the loop, we can reference the current item being iterated by

referencing the object.item (e.g. ic.item will be 1,2,3 ... 10 as the loop

advances).

The across loop code (above) will produce the following console results:

NOTE: With an across loop, there is no need to write code to manually advance

from item to item. The Eiffel compiler creates code to advance automatically

at the end of the loop.

Given the output above, we want to lastly understand the call to “print”.

The print feature takes a STRING object and outputs its contents to the 1

console. The code “ic.item” references the current item being iterated in the

loop (e.g. INTEGER s 1 to 10). The additional dot-call to “out” transforms (or

casts) the INTEGER as a STRING and the concatenates a newline

character to the end of the STRING .

ACROSS LOOP - INDEXING
Because Eiffel is iterating over an ITERABLE object, we have access to a

number of interesting features of this class as we iterate. One such feature

is the “cursor_index” feature. In practice, it looks something like this (line

#52):

1 See the chart for class ANY , specifically the “print” feature.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/any_chart.html

In this example, we are iterating the CHARACTER s in the STRING . We want to

print not only each CHARACTER , but what position that character holds as an

INTEGER in the STRING . The console output will appear like this:

Notice—as the loop iterates each CHARACTER , it is keeping track of an INTEGER

index value. We reference this index value with a call to .

NOTE: The cursor_index feature may not be available on every item container.

In the example above, we were able to access the feature because a STRING is a

Client of INDEXABLE_ITERATION_CURSOR through STRING_8_ITERATION_CURSOR .

ACROSS LOOP - REVERSING
Many ITERABLE objects can be reversed (i.e. iterate them in reverse order).

For example: We want to iterate from 10 to 1 instead of 1 to 10. A quick

modification to our previous example will show how to do this:

In this code, we still have the 1 |..| 10 construct. To reverse it, we do the

following:

● Enclose the construct in parenthesis. This tells the editor that we are

now dealing with the “1 |..| 10” item as a class reference and we can

now perform dot-calls with auto-complete.

● Make a call to “.new_cursor” which creates a brand new cursor that we

can reverse.

● Make a call to “.reversed” to reverse the order of the items in the

resulting “new_cursor”.

That’s it! Our code now traverses the items 1 to 10 in new cursor where the

items are 10 to 1 instead.

The resulting console output looks as one expects:

ACROSS LOOP - SKIPPING
The across loop is simple and elegant. We can iterate forward and in reverse.

We can also skip over objects. For example: We might want to print out every

3rd item. To do this, we simple add a “+ value” to our ITERABLE thing, like

this:

The resulting console output is:

Notice—in each across loop (above), we declare the ITERABLE thing (e.g. 1 |..|

10) and then reference a call to “.new_cursor”. The notation of “+ 2” is then

applied to the result of new_cursor, causing that ITERABLE thing to start on

an item, skip 2, and land on the next item (e.g. 1 .. 4 .. 7 .. 10).

Not only can we “increment” (e.g. “+ n”), we may also “decrement” (e.g. “-

n”). In the case of READABLE_INDEXABLE_ITERATION_CURSOR objects, we can use

the “+” and “-” notation as an “ alias ” for calls to “incremented” and

“decremented”.

