EIFFEL SOFTWARE

Eiffel Loops & Iteration

16 MAY 2018

SUMMARY

GENERALLY TTERABLE THINGS

ACROSS LOOP - BASICS

ACROSS LOOP - TINDEXING
ACROSS LOOP - REVERSING
ACROSS LOOP — SKIPPING

SUMMARY

There are two basic looping mechanisms available in Eiffel:

e The across loop

e The from loop

We will look at various forms of the across loop first and then the from loop

afterwards.

GENERALLY ITERABLE THINGS

In Eiffel, many classes (and their objects) are ITERABLE [G]. Using the “Class
tool” 1in EiffelStudio, a look at the Descendants of class ITERABLE [G] is

revealing. We can get a sense of just how many things can be iterated over.

PR VAl o 00 B EE
Descendants of class ITERABLE

& (lass

E & ITERZBLE [3]
E @ ARGUMENTS
@ LPPLICATION
@ ARGUMENTS 32
E]@iINDEXABLE_ITERATION_CURSOR [G]
E]@iTYPED_INDEXABLE_ITERATION_CURSOR [G, H —> READABLE INDEXABLE [G]]
E]@iGENERAL_SPECIALLITERATION_CURSOR [5G, H —> READABLE INDEXABLE [G]]
@ ARRAYED LIST ITERATICN CURSOR [G]
@ ARRAY ITERATICN CURSCR [G]
@ SPECTAL ITERATION CURSOR [G]
@ STRING 32 ITERATICN CURSCR
@ STRING_B_ITERATICN CURSCOR
E @ READABLE INDEXABLE ITERATICN CURSOR [G]
@ HASH TABLE ITERATION CURSOR [&, E -> detachable HASHABLE]
El @ LINEED LIST ITERATICN CURSCR [G]
@ TWO_WAY LIST ITERATICN CURSOR [G]
E]@iREADABLE_INDEXABLE [3]
Fl @ HASH_TABLE [G, K —> detachable HASHRELE]
@ CLASS NAME TRANSLATICNS
@ MISMATCH INFORMATION
@ SED OBJECTS TAELE
@ STRING TAELE [G]
= & INDEXABLE [G, H -> INTEGER_32]
F @ ARRRAY [3]
@ RRRAYZ2 [3]
= & CHAIN [3]
= & CIRCULAR [G]
E @ DYNAMIC CIRCULAR [G]
@ ARRAYED CIRCULAR [G]
El @ LINKED CIRCULAR [5]
@ TWO WAY CIRCULRR [5]
= % DYMEMIC CHAIN [G]
@ DYNAMIC CIRCULAR [G]...
E @ DYNAMIC LIST [G]
El @ AREAYED LIST [G]
@ ARRAYED SET [G]
£l @ ARRAYED STACE [G]
@ BOUNDED STACE [G]
@ FIXED LIST [G]
= & INTERACTIVE LIST [G]
@ ACTICN SEQUENCE [EVENT DATA -> detachable TUPLE create default creat...
@ LCTIVE LIST [3]
@ Class = Feature [=] Outputs [ErrorList AutoTest Results

NOTE: The [G] 1in ITERABLE [G] 1is referred to as a Generic. It represents the
type of the objects in the container in the ITERABLE container.

Tables, arrays, cursors, lists, chains, and strings are among the many things
we can ‘iterate over. If you want to know if you can iterate over one of your

objects, use the Class Tool to see if it 1dinherits from ITERABLE [G].

ACROSS LOOP - BASICS

We want to iterate an INTEGER value from 1 to 10 and print the value to the
console with each iteration. Refer to lines 15, 16, and 17 (the across loop)

of the code below:

A "loop varnable”

A thing that is ITERABLE [G] J References the ITERABLE
object (to the lef)

[Start of the loop]
12 make

13 imple across loop a.mple/./
14

15 across|l |..| l0iasiic i;l::::::p

1& print (ic.item.out + "%N")

17 end
18
15 end

End of the loop]

Let’s break this down so we can sufficiently understand what the Eiffel

compiler “sees” (i.e. learn to “Think like our compiler”).

The across loop needs “something” to go “across” — that is — iterate over. The
Eiffel compiler sees the across keyword and then looks for a “something” that
is ITERABLE. In the example above, the Compiler sees the notation 1 [|..]| 1D
as a type of INTEGER_INTERVAL, which is a type of ITERABLE [G] object (thanks
to Multiple Inheritance).

A ncestors of class INTEGER_INTERVAL
& (Class
= INTEGEER _TNTERVAT
= & INDEXABLE [G, H -> INTEGER 32]
= @ READABLE INDEXAELE [G]

& ITERABLE [G]

In this case, the cursor object will have ten INTEGER qitems with values 1 to

10. A reference to the object is held in the loop variable named “ic”.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/iterable_chart.html

The loop keyword marks the start of the loop cycle and the end keyword marks
the end. Within the loop, we can reference the current item being iterated by
referencing the object.item (e.g. dic.item will be 1,2,3 ... 10 as the loop

advances).

The across loop code (above) will produce the following console results:

™

[N =9

e

=]

urn to finish the execution...

NOTE: With an across loop, there 1is no need to write code to manually advance
from item to item. The Eiffel compiler creates code to advance automatically

at the end of the loop.
Given the output above, we want to lastly understand the call to “print”.

print (ic.item.out + "%N")

The print feature' takes a STRING object and outputs its contents to the
console. The code “ic.item” references the current item being iterated in the
loop (e.g. INTEGERs 1 to 10). The additional dot-call to “out” transforms (or

casts) the INTEGER as a STRING and the + "%M" concatenates a newline

character to the end of the STRING.

ACROSS LOOP - INDEXING

Because Eiffel 1is iterating over an ITERABLE object, we have access to a
number of interesting features of this class as we iterate. One such feature
is the “cursor_index” feature. In practice, it looks something 1like this (line

#52):

! See the chart for class ANY, specifically the “print” feature.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/any_chart.html

A "loop variable”

A thing that is ITERABLE [G]] References the ITERABLE
object (to the left)

[Start of the loop]

51 across | "This is my string"

52 print (ic.cursor index.out + ": ")
=3 print (ic.item.out + "3N")

a4 end

\F End of the loop]

In this example, we are iterating the CHARACTERs 1in the STRING. We want to

print not only each CHARACTER, but what position that character holds as an
INTEGER in the STRING. The console output will appear like this:

5

S e 3

=]

Press Return to finish the execution...g

Notice—as the loop iterates each CHARACTER, it 1is keeping track of an INTEGER

index value. We reference this index value with a call to ic.cursor_index .

NOTE: The cursor_index feature may not be available on every item container.
In the example above, we were able to access the feature because a STRING is a

Client of INDEXABLE_ITERATION_CURSOR through STRING_8_ITERATION_CURSOR.

ACROSS LOOP - REVERSING

Many ITERABLE objects can be reversed (i.e. iterate them in reverse order).
For example: We want to iterate from 10 to 1 instead of 1 to 10. A quick

modification to our previous example will show how to do this:

A "loop variable"

References the ITERABLE

A thing that is ITERABLE [G]] [Reverses the new cursor
object (to the left)

[Create anew ITERABLE cursor}

[Start of the loop]

_______________ N)

47 across (L |..| 10).new cursorireversediasiiciloop
48 Print (ic.item.out + "&w"y) 777
49 ‘end |
? End of the loop]
In this code, we still have the 1 |..| 10 construct. To reverse 1it, we do the
following:

e Enclose the construct in parenthesis. This tells the editor that we are
now dealing with the “1 |..| 10” ditem as a class reference and we can
now perform dot-calls with auto-complete.

e Make a call to “.new_cursor” which creates a brand new cursor that we
can reverse.

e Make a call to “.reversed” to reverse the order of the items in the

resulting “new_cursor?”.

That’s 1it! Our code now traverses the items 1 to 10 in new cursor where the

items are 10 to 1 instead.

The resulting console output looks as one expects:

T = [

=Y

= pg L

execution...g

ACROSS LOOP - SKIPPING

The across loop 1is simple and elegant. We can iterate forward and 1in reverse.
We can also skip over objects. For example: We might want to print out every

3rd item. To do this, we simple add a “+ value” to our ITERABLE thing, like

this:
A "loop vanable”
A thing that is ITERABLE [G] ‘ | Skips 2 items after each current References the ITERABLE
object (to the left)
| Create a new ITERAELE cursor
[Start of the loop]
47
48
45
30
51 ACrO End of the loop I_:-._;:T_-,-:-ur. .reversed + 2 as i1c loop
52 I + "EN")
53 end
54
35 across ("This is my string").new _cursor + 2 as ic leoop
56 print (ic.cursor index.out +)
57 prin‘_ (ic.item.out + %)
28 end

The resulting console output 1is:

[y gy 8

=]

A
1
1:

[N I =9

[=}]

cution...g

Notice—in each across loop (above), we declare the ITERABLE thing (e.g. 1 |..|

10) and then reference a call to “.new_cursor”. The notation of “+ 2” 4qs then

applied to the result of new_cursor, causing that ITERABLE thing to start on

an item, skip 2, and land on the next item (e.g. 1 .. 4 .. 7

10).

Not only can we “increment” (e.g. “+ n”), we may also “decrement” (e.g. “-

n”). In the case of READABLE_INDEXABLE_ITERATION_CURSOR objects, we can use

the () and “_”

“decremented”.

notation as an “alias” for calls to “incremented” and

55 acress ("This is my string").nsw_cursor + 2'as ic loop
56 print (ic.cursor index. ny mye TR
57 E:-J::i.r.‘_ (ic.item ._.:: "R
58 end
?EADHELE_:HDEHHELE_:_E?H_:DH_CUQSﬁ?
T4 incrementedialia “+“§Hn: like stepﬁ: like Current
75 -- <Precurseor>
T6 do
7T Result := twin
T8 Result.set_step (step + n)
75 end

