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Abstract
In materials science the orientation of a crystal lattice is described by means 
of a rotation relative to an external reference frame. A number of rotation 
representations are in use, including Euler angles, rotation matrices, unit 
quaternions, Rodrigues–Frank vectors and homochoric vectors. Each 
representation has distinct advantages and disadvantages with respect to the 
ease of use for calculations and data visualization. It is therefore convenient 
to be able to easily convert from one representation to another. However, 
historically, each representation has been implemented using a set of often 
tacit conventions; separate research groups would implement different sets 
of conventions, thereby making the comparison of methods and results 
difficult and confusing. This tutorial article aims to resolve these ambiguities 
and provide a consistent set of conventions and conversions between 
common rotational representations, complete with worked examples and a 
discussion of the trade-offs necessary to resolve all ambiguities. Additionally, 
an open source Fortran-90 library of conversion routines for the different 
representations is made available to the community.
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1.  Introduction

While the laws of physics are usually expressed in a frame-invariant form, in practice, one must 
nearly always select one or more reference frames with respect to which physical quantities are 
expressed. In materials science and engineering, we use a variety of reference frames to describe 
crystal structures and material properties (the Bravais lattice); orientations of grains in micro-
structures (typically expressed in the sample reference frame); grid coordinates in scanning-type 
data acquisitions (e.g. an acquisition grid for electron back-scatter diffraction data sets); and so 
on. With the exception of crystallographic reference frames, the majority of reference frames 
used in the materials community are basic Cartesian frames, with orthonormal basis vectors.

The crystallographic reference frames have been defined for all crystal systems by the 
International Union for Crystallography in the international tables  for crystallography (ITC), 
Volume A [1]. While the conventions of ITC are not always strictly followed (e.g. crystal struc-
tures are often described in a non-standard space group setting), on the whole the conventions of 
ITC-A are followed rather closely by most researchers in the field. When crystallographic quan-
tities are converted to a Cartesian reference frame, however, there are several possible choices 
for the basis vectors (see section 2.1 for more details) so that one must always be cautious when 
interpreting crystallographic data that has been transformed to a Cartesian frame; for instance, 
among the different commercial vendors of electron back-scatter diffraction (EBSD) systems, 
different reference frame conventions are in use, making it sometimes difficult to compare data 
for non-orthogonal crystal systems in particular. In this paper, we will restrict our attention to the 
case of 3D rotations only, and assume that all reference frames have the same origin.

The origin of this paper lies in a series of conversations between the co-authors regarding 
the details of transformations between various rotation representations. It became clear rather 
quickly that even in this small group of researchers, several different conventions were being 
used, leading to different representations of the same rotation and conflicting results. A small-
scale ‘rotation round-robin’ was organized based on the following simple question: For the 
Euler angle triplet ( ) ( )θ ϕ ϕ= Φ =, , 2.721 670, 0.148 401, 0.148 8861 2  (radians) in the Bunge 
convention, what are the equivalent numerical expressions for the axis–angle pair, quater-
nion, Rodrigues–Frank vector, rotation matrix, and homochoric representations? All of these 
rotation representations will be defined in detail later in this paper. The outcome of the round 
robin was rather surprising: no two authors obtained exactly the same results, with the most 
common difference being conflicting signs in those rotation representations that involve the 
rotation axis explicitly. It should also be noted that only two of the authors had implemented 
all six rotation representations; the others provided results for a subset of the six representa-
tions. Given that all co-authors have many years of experience in the field, it was quite surpris-
ing to find such a level of disagreement for what was originally planned to be just an initial test 
to start a larger scale round robin.

While it is possible to perform nearly all texture-related computations using Euler angles, 
recent years have seen an increased interest in the use of the so-called neo-Eulerian represen-
tations of the form ˆ ( )ωfn , where n̂ is a unit vector along the rotation axis and ω the rotation 
angle. These representations, which will be defined in detail in the next section, offer several 
advantages over Euler angles, but are perhaps not as broadly understood in the materials 
community. With the recent availability of open source software for 3-D materials science  
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(e.g. the DREAM.3D package [2], MTEX [3], or the orilib library [4]), which implements 
many of these alternative representations, it is becoming increasingly important for researchers 
to be aware of all sign conventions when sharing source code. This tutorial paper is the direct 
result of a detailed analysis of all orientation representations used in the materials community 
as well as all possible sources for sign errors or ambiguities. The objective of this paper is to 
describe methods that can be used to obtain accurate and consistent results when transforming 
from one reference frame to another, independent of how the rotation is represented.

2.  Definitions

In this section, we begin with the definition of the standard Cartesian reference frame. Then 
we introduce the concept of a 3D rotation and define six different representations or param-
eterizations commonly used in the materials field. Along the way, we have several opportuni-
ties to make a selection between two options (for instance, left-handed versus right-handed, 
clockwise versus counterclockwise, etc); for each such selection, we will explicitly state our 
choice as a convention. Some conventions will appear to be obvious, but to avoid any uncer-
tainty in later sections of this paper, we will explicitly state even the obvious conventions.

2.1.  Reference frames

The Bravais lattice is characterized by basis vectors ai ( )= …i 1, , 3 , with unit cell edge lengths 

(a, b, c) and angles ( )α β γ, , . The reciprocal lattice with basis vectors a*
j  is then defined by the 

relation

δ⋅ =a a* ,i j ij� (1)

where δij is the Kronecker delta; the reciprocal lattice parameters are ( )a b c*, *, *  and ( )α β γ*, *, * . 
Using these two crystallographic lattices one then defines the standard Cartesian (orthonor-
mal) reference frame by the unit vectors ei. Although there are infinite possibilities to do so, 
only a few orthonormalizations, shown in table 1, are frequently used.

These are all right-handed reference frames, i.e. ( )⋅ × = +e e e 11 2 3 . Note that this conven-
tion is not followed in all branches of science; for instance, in computer graphics, left-handed 
Cartesian frames are quite common [6]. Hence, we formulate the first convention:

Convention 1.  When dealing with 3D rotations, all Cartesian reference frames will be 
right-handed.

2.2.  3D rotations

The turning of an object or a reference frame by a given angle ω about a fixed point d is 
referred to as a rotation. Such an operation preserves the distances between the object points 

Table 1.  Frequently used orthonormalizations [5].

e1 aa /1 aa*/ *1 aa*/ *1

e2 ×e e3 1 ×e e3 1 ba /2

e3 ca*/ *3
ca /3 ×e e1 2

Note: The first column is the preferred choice listed in the international tables for  
crystallography [1].
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as well as the handedness of the object. Each rotation has an invariant line, represented by the 
unit vector n̂, which is known as the rotation axis; if the rotation is represented by the operator 
R, then the action R( ˆ )n  produces n̂ again.

Consider a rotation characterized by d, n̂, and ω. The rotation angle ω is taken to be positive 
for a counterclockwise rotation when looking from the end point of n̂ towards the fixed point 
d. For simplicity, and without loss of generality, we will from here on take the fixed point to 
coincide with the origin of the reference frame, i.e. =d 0.

Convention 2.  A rotation angle ω is taken to be positive for a counterclockwise rotation 
when viewing from the end point of the rotation axis unit vector n̂ towards the origin.

2.3.  Rotation matrices and active and passive interpretations

A rotation can be viewed as operating on the object, which is the active interpretation, or oper-
ating on the reference frame, which is the passive interpretation. An active rotation transforms 
object coordinates to new coordinates in the same reference frame; for the passive interpreta-
tion, the initial and final reference frames are different.

If we represent the rotated reference frame by the Cartesian basis vectors ′ei, then the com-
ponents of these vectors with respect to the original basis ej form a transformation matrix αij, 
defined in terms of the nine dot products:

α = ⋅′e e .ij i j� (2)

The matrix αij defines a passive rotation from the old to the new reference frame, i.e. α=′e ei ij j, 
where we have used the Einstein summation convention for repeated indices. For a vector p 
with components pj with respect to the basis vectors ej and ′pi with respect to ′ei, we have the 
transformation rule:

α=′p p .i ij j� (3)

Rotation matrices belong to the set of special orthonormal matrices, SO(3), and have the fol-
lowing properties: the determinant of the matrix is equal to  +1; the transpose of the matrix is 
equal to its inverse; and the sum of the squares of the entries in each column/row equals  +1.

It is common practice in the materials field, and particularly in the texture community, to 
always consider 3D rotations as operating on reference frames, i.e. the passive interpretation. 
We will follow this practice and formulate the third convention as:

Convention 3.  Rotations will be interpreted in the passive sense.

Therefore, for a crystal whose standard Cartesian reference frame is rotated with respect 
to the specimen reference frame, the orientation of the crystal will be described as a passive 
rotation of the sample reference frame to coincide with the crystal’s standard reference frame; 
in other words, the reference frame ei is the specimen reference frame, and ′ei represents the 
grain’s reference frame. The choice of the passive rotation interpretation is a sensible choice, 
since the grains in a polycrystalline material do not actually rotate; they have a stationary 
orientation with respect to the specimen reference frame (except, perhaps, during deforma-
tion). In other fields of science and engineering, the active rotation interpretation is the more 
natural one, for instance in the description of the orientation of the segments of a robotic arm; 
in this case, the segments actually do rotate themselves so that the active interpretation is more 
suitable.
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2.4.  Euler angles

Euler has shown that any arbitrary 3D rotation can be decomposed into three successive rota-
tions around the coordinate axes. Since there are three independent axes, denoted xyz for 
simplicity, there are several possibilities for the decomposition. The name Euler angles is 
reserved for those decompositions for which two of the three axis symbols are equal, as in zxz 
or yzy. Hence, there are six possible Euler angle conventions. When the three axes are differ-
ent, one refers to the angle triplet as Tayt–Briant angles; while they are used infrequently in 
materials science, they find frequent application in other fields, for instance in aviation (roll, 
pitch, and yaw motions of an airplane).

In texture analysis, the most commonly used definition of the Euler angles is the Bunge 
convention [7], which has an axis triplet zxz, with corresponding rotation angles ( )ϕ ϕΦ, ,1 2  
(applied from left to right).

Convention 4.  Euler angle triplets ( )θ ϕ ϕ= Φ, ,1 2  are implemented using the Bunge con-
vention, with the angular ranges as [ ]ϕ π∈ 0, 21 , [ ]πΦ∈ 0, , and [ ]ϕ π∈ 0, 22 .

Note that, according to convention 3, the Euler angles are interpreted to represent a rotated 
reference frame. To obtain the active interpretation, one must apply the rotations with opposite 
angles, in the opposite order, ( )ϕ ϕ− −Φ −, ,2 1 . The range of the Euler angle triplet defined 

above results in a total volume in Euler space of ∫ ∫ ∫π ϕ ϕ= Φ Φ8 sin d d d2
1 2.

2.5.  Axis–angle pair

The axis angle pair representation, ( ˆ )ωn,  provides a convenient way of writing down a rota-
tion in terms of the angle ω and the axis n̂, which is typically represented either by a crystal-
lographic direction [uvw] or by a set of direction cosines [ ]c c c1 2 3 . Note that for non-cubic 
crystal systems, the normalization must be carried out on direction indices that first have been 
transformed to the Cartesian reference frame. Often, the axis angle pair is written in the form 

ˆω n@ .

Convention 5.  The rotation angle ω is limited to the interval [ ]π0, .

For angles in the range ] [π π, 2 , the sign of the unit axis vector n̂ must be reversed, and 
ω replaced by π ω−2 . For angles outside the range [ [π0, 2 , the angle must first be reduced 
to the interval [ [π0, 2  by adding or subtracting the appropriate integer multiple of π2 . The 
main reason for limiting ω to the interval [ ]π0,  is to allow for a seamless conversion to the 
Rodrigues–Frank vector introduced in section 2.7.1.

2.6.  Quaternions

A quaternion, q, is defined as a four-component number of the form = + + +q q q q qi j k0 1 2 3, 
where the imaginary units ( )i, j, k  satisfy the following relations:

= = = − = − =
= − = = − =

i j k 1; ij ji k;
jk kj i; ki ik j.

2 2 2

� (4)

The quaternion is often written as ( )=q q q,0  with q0 the scalar part and q the vector part; in 
component notation we have ( )=q q q q q, , ,0 1 2 3  or ( )=q q q, i0  with = …i 1 3. The definition 
(4) of the pairwise (ordered) products of the imaginary units leads to the following expression 
for the quaternion product:

Tutorial﻿Modelling Simul. Mater. Sci. Eng. 23 (2015) 083501
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ε
( )
( )

= − ⋅ + + ×
= − + +

pq p q q p

p q p q q p p q p q

p q p q p q, ;

, ,r r i i ijk j k

0 0 0 0

0 0 0 0
� (5)

where εijk is the permutation symbol, equal to  +1 for even and  −1 for odd permutations. The 
presence of a vector cross-product in the vector part of the quaternion product implies that 
quaternion multiplication does not commute, i.e. ≠pq qp.

The norm of a quaternion is defined as:

q q q q q .0
2

1
2

2
2

3
2 1

2∣ ∣ [ ]= + + +� (6)

Quaternions with unit norm are known as unit quaternions or versors, and they have a special 
relationship with 3D rotations, similar to the relation between regular unit complex numbers 
and 2D rotations. Unit quaternions can always be written in the form

( )ω ω
= + + +q c c ccos

2
sin

2
i j k ,1 2 3� (7)

where ci are the direction cosines of the rotation axis unit vector n̂. As a consequence of con-
vention 5, the scalar part ( )ω=q cos /20  of a unit quaternion representing a rotation will always 
be positive (or 0 for rotations with rotation angle π).

Unit quaternions are located on the sphere S3 inside the 4D quaternion space. The 3D sur-
face area of this sphere is equal to π2 2. One can show that the unit quaternions q and  −q repre-
sent the same rotation so that all rotations can be represented by selecting the entire Northern 
( ⩾ )q 00  hemisphere, which has surface area π2. Pure quaternions have a zero scalar part and 
they will turn out to be useful to carry out rotations of vectors. Despite the more complicated 
definition for quaternion multiplication, the quaternion representation of rotations is numeri-
cally very convenient and widely used.

It is well known that a regular vector, r, can be rotated by means of quaternion multiplica-
tions, provided we convert the vector to a quaternion/versor. We define the quaternion rotation 
operator ( )Lp , with p a unit quaternion, as follows:

( ) [ ( ) ]≡L p pr rvec 0, * ,p� (8)

where p* is the conjugate quaternion [ ]−p p,0 , and vec[ ] stands for the vector part of the argu-
ment. In vector notation we obtain:

( ) ( ∥ ∥ ) ( ) ( )= − + ⋅ + ×L p pr p r p r p p r2 2 .p 0
2 2

0� (9)

The operator ( )L rp  rotates the vector from one orientation to another orientation and is hence 
an active operator. A simple example illustrates the use of the quaternion rotation operator. 
Consider a rotation of [ ]°120 @ 1 1 1 ; the corresponding unit quaternion is given by:

[ ]
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟π π

= =p cos
3

,
1

3
1 1 1 sin

3

1

2
,

1

2
,

1

2
,

1

2
.

Taking [ ]=r 1 0 0  and using the vector expression (9) for the operator ( )Lp , we obtain

([ ]) [ ]=L 1 0 0 0 1 0 ,p

as expected for an active rotation. If the conjugate of p is used, then we obtain:

([ ]) [ ]=L 1 0 0 0 0 1 ,p*

so that passive rotations can be obtained simply by conjugating the quaternion p. This is 
equivalent to transposing a rotation matrix to switch between active and passive rotations.
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The sign choices in equation (4) have become standard in the mathematical literature 
and wherever quaternions are used in applications. It is therefore rather interesting that 
in 1844, Sir Hamilton himself [8] discussed the possibility of a different sign convention 
for the definition of quaternion multiplication. In section  5 of his 18-installment paper 
published between 1844 and 1850, Hamilton writes that an entirely consistent alternative 
definition of the quaternion product can be obtained by changing the order in which the 
imaginary units are considered from the traditional ( )i, j, k  to ( )k, j, i  so that the defining 
products become:

= = = − = − = = − = = − =i j k 1; ji ij k; kj jk i; ik ki j.2 2 2 � (10)

Note the sign reversals with respect to the standard definition. As a consequence of this alter-
nate definition, the quaternion product becomes:

pq p q q p

p q p q q p p q p q

p q p q p q, ;

, ,r r i i ijk j k

0 0 0 0

0 0 0 0

( )
( )

= − ⋅ + − ×
= − + − ε� (11)

It is not too difficult to see that the standard definition of the quaternion product, equation (5), 
corresponds to a right-handed triad ( )i, j, k  of imaginary units, whereas the alternate definition 
in equation (11) corresponds to a left-handed triad ( )k, j, i . While the right-handed quaternion 
product has become the standard in modern mathematics, there is no reason not to consider 
the left-handed product as being on an equal footing. One should note, and this will become 
important in the following section, that one could also redefine the permutation symbol, εijk, 
to be  −1 for even permutations and  +1 for odd permutations; in that case, one could maintain 
the plus sign in front of the vector cross-product in equation (5) and the sign change caused 
by the left-handed imaginary triad ( )k, j, i  would be hidden in the permutation symbol. In the 
remainder of this paper, we prefer to keep the standard definition of the permutation symbol, 
and we will change the definition of quaternion multiplication as needed by the application, 
as discussed in section 4.

2.7.  Neo-Eulerian representations

The term neo-Eulerian was coined by Frank [9] and refers to rotation representations of the 
form ˆ ( )ωfn , where f is a suitably chosen monotonic function of the rotation angle. While there 
are many possible choices for this function, we will only introduce two particular choices: the 
Rodrigues–Frank vector, and the homochoric vector.

2.7.1.  Rodrigues–Frank vector.  The Rodrigues–Frank vector, ρ, is obtained by setting 
( ) ( )ω ω=f tan /2 :

ˆρ ω
= n tan

2
.� (12)

Since the rotation angle belongs to the interval [ ]π0, , all rotations around an axis n̂ are repre-
sented by points along the half-line formed by this unit vector, with a rotation by π represented 
by the point at infinity (+∞). Rotation angles in the range [ ]π π, 2  are equivalent to setting the 
unit vector equal to its opposite, ˆ−n, and using a positive angle π ω−2 . Restricting the rota-
tion angle to [ ]π0,  (convention 5) has the added advantage that ( )ωtan /2  is always positive and 
is thus equal to the length of the Rodrigues-Frank vector ρ. Angles outside this range may 
cause a negative value for the tangent, which would conflict with the positive nature of vector 
norms.
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Given a Rodrigues–Frank vector ρ, the corresponding rotation angle can be derived from 
(∣ ∣)ρω = 2 arctan , which always results in an angle in the range [ ]π0, , in agreement with con-

vention 5. Note that in source code, a Rodrigues–Frank vector should be stored as a four-
component vector, first the unit axis vector n̂, then the vector length ( )ωtan /2  in the fourth 
position. This is necessary so that a °180  rotation around an arbitrary axis can be correctly rep-
resented without causing numerical overflows. The ANSI/IEEE Standard 754-1985 (Standard 
for Binary Floating Point Arithmetic) defines how the number +∞ is represented digitally; 
proper implementations of the Rodrigues–Frank representation should adhere to this standard.

2.7.2.  Homochoric vector.  The homochoric representation is defined as a generalization of 
the standard Lambert equal-area mapping, which projects the 2D sphere S2 (i.e. the collection 
of all 3D vectors with unit norm) onto a 2D disk. The generalization takes the 3D unit quater-
nion hemisphere S+

3 , and maps it onto a 3D ball with a radius selected so that the ball volume 
is equal to the surface area of the Northern hemisphere of the unit quaternion sphere, π2.

The homochoric representation of rotations is defined by the following form of the func-
tion ( )ωf :

( ) ( ) [ ]
⎡
⎣⎢

⎤
⎦⎥ω ω ω ω π= − ∈f

3

4
sin for 0, .

1
3� (13)

The maximum value of ( )ωf  is given by ( ) ( )π π=f 3 /4 1/3, which is the radius of the homoch-
oric ball; hence its volume equals π2, as required for an equal-volume mapping. Note that for 

] [ω π π∈ , 2 , one would have to use the following definition for the function ( )ωf :

f
3

4
2 sin for , 2 .

1
3( ) ( ) ] [

⎡
⎣⎢

⎤
⎦⎥ω π ω ω ω π π= − + ∈

The homochoric vector, h, is defined as:

ˆ ( )
⎡
⎣⎢

⎤
⎦⎥ω ω= −h n

3

4
sin .

1
3

Note that the sign limitations on the axis–angle pair are sufficient to guarantee that the above 
definition is all that is needed. The homochoric representation is an equal-volume representa-
tion, which, at least in principle, makes it easy to sample orientation space uniformly. The 
homochoric ball is isomorphic with the set SO(3).

The homochoric representation can be transformed into the cubochoric representation, via 
an equal-volume transformation between a ball and a cube [10]. The cubochoric representa-
tion allows for a straightforward uniform sampling of SO(3), starting from a uniform 3D cubi-
cal grid, which is trivially constructed in numerical implementations. Since the cubochoric 
representation is essentially a convenient transformation of the homochoric representation, we 
will not consider it any further in this paper.

3.  Relations between rotation parameterizations

3.1.  Introductory comments

The conventions listed in the previous section become important when one frequently needs 
to transform between various rotation representations and parameterizations. If any one of the 
rotation representations is used by itself, then there is no need to apply any of the conventions, 
as long as the selected representation is applied in an internally consistent way. To consistently 
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implement transformations between pairs of rotation representations, however, requires the 
introduction of one additional convention.

As stated in the Introduction, a consistent implementation of conversion routines between 
rotation representations is made difficult by the fact that one can, in principle, make a sign selec-
tion for each individual representation. Consistency between representations can be achieved by 
a careful consideration of the relations between the representations, which we will describe in 
detail in the remainder of this section; however, achieving such consistency may come at the cost 
of having to give up long held understandings or intuitive insights as to how 3D rotations ought 
to work. At the end of section 2.6, we alluded to the fact that the left-handed quaternion product 
can be written as a right-handed product, provided the definition of the permutation symbol is 
changed. It turns out that a proper handling of this sign choice is the key to a consistent imple-
mentation of rotation conversions. Instead of changing the definition of the permutation symbol 
εijk, we opt to replace the permutation symbol, wherever it occurs, by the following notation:

ε ε→ P ;ijk ijk� (14)

the integer P can take on the values ±1, and we will see that each choice gives rise to an inter-
nally consistent set of rotation conversion relations. One choice, P  =  +1, produces conver-
sion routines that are fully consistent with all standard mathematical definitions and concepts 
(e.g. the quaternion product) but produces some counter-intuitive results; the opposite choice, 
P  =  −1, requires us to abandon common mathematical definitions (e.g. the redefinition of the 
quaternion product discussed in section 2.6), but produces results that agree with our typi-
cal understanding of how rotations ought to work. Since both choices for P produce a fully 
consistent set of conversion algorithms, it is up to the user to select which approach should 
be followed, either the one that follows traditional mathematical definitions, but results in 
counter-intuitive conversions, or the one that uses non-standard mathematical definitions, but 
agrees better with our intuition. As we will see, the selection of P is also closely related to the 
difference between the active and passive rotation interpretations.

In the following section, we list an overview of the most important analytical conversion 
relations between rotation representations. In a numerical implementation, such direct con-
versions are useful, because they can be concatenated to produce conversions between rep-
resentations for which a direct conversion either does not exist in simple analytical form, or 
would be cumbersome to implement. In table 2 we list the conversion routines (a checkmark 
indicates a direct conversion, a letter or letter sequence indicates an indirect conversion via 
intermediate representations). The cubochoric representation, while not discussed in detail in 
this paper, is included for completeness.

3.2.  Conversions between rotation representations

In this section, we list several analytical conversion formulae between a number of rotation 
representations. More explicit conversion algorithms are described in Appendix A for all of 
the checkmarks in table 2. Each conversion is labeled by a string of the form ‘xx2yy’, where xx 
and yy are two-letter abbreviations for the representations: Euler angles (eu); rotation/orienta-
tion matrix (om); axis–angle pair (ax); Rodrigues–Frank vector (ro); unit quaternion (qu); and 
homochoric vector (ho). In all cases, it is assumed that all five conventions introduced before 
are followed. In addition, we introduce the modified symbol εP ijk for the permutation symbol 
wherever it appears. In most cases, the equations listed are consistent with those in reference 
[11], although the notation may be slightly different. The two routines involving the cubo-
choric representation are not discussed in the appendix and can be found in [10].
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There are several transformation relations that involve the use of the permutation symbol. 
The first one is known as the Rodrigues formula and relates the components of the axis–angle 
pair, ( ˆ )ωn, , to the orientation matrix αij:

ε( )α δ ω ω ω= + − −n n ncos 1 cos sin .ij ij i j ijk k� (15)

The second relation involves the transformation from quaternion components qi to the rotation 
matrix αij:

ε( )α δ= − + −q q q q q q q2 2 .ij k k ij i j ijk k0
2

0� (16)

In both cases, the permutation symbol must be replaced by the modified symbol so that the 
transformation relations become:

ε( )α δ ω ω ω= + − −n n P ncos 1 cos sin ;ij ij i j ijk k� (17)

ε( )α δ= − + −q q q q q P q q2 2 .ij k k ij i j ijk k0
2

0� (18)

4.  Discussion

4.1.  Revisiting active versus passive interpretations

The 19 conversion relations presented in Appendix A provide efficient numerical pathways 
to switch from one rotation representation to another. They are fully consistent with each 
other, regardless of the value of the constant P. The routines have been implemented in an 
open source fortran-90 library, which is made available to the community via the source code 
repository github.com [12].

In this section, we take a closer look at the active versus passive interpretation, in particu-
lar in the context of the conversion routines. While it is clear that the rotation matrix, αij, as 
defined in section 2.3, represents a passive rotation (the reference frame is rotated from the 
old vectors ej to the new vectors ′ei), it is not straightforward to recognize the active or passive 
nature of a rotation once it has been cast into one of the other representations. As an example, 
consider the Bunge Euler angle triplet ( )θ π= /2, 0, 0 , i.e. a counterclockwise rotation by °90  
around the e3 axis. If we set P  =  +1 in the conversion routines, then we obtain the following 
representations (the subscript θ indicates that the representations were derived from the Euler 
angle triplet using the ‘eu2yy’ conversion routines of appendix A):

Table 2.  Table of direct (✓) and indirect transformation routines between rotation 
representations, which are identified by single letters: Euler angles (e); rotation/
orientation matrix (o); axis–angle pair (a); Rodrigues–Frank vector (r); unit quaternion 
(q); homochoric vector (h); and cubochoric vector (c).

↓  from\to  → e o a r q h c

e — ✓ ✓ ✓ ✓ a ah
o ✓ — ✓ e ✓ a ah
a o ✓ — ✓ ✓ ✓ h
r o a ✓ — a ✓ h
q ✓ ✓ ✓ ✓ — ✓ h
h ao a ✓ a a — ✓
c hao ha h ha ha ✓ —
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	 •	Passive rotation matrix:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α = −θ

0 1 0
1 0 0

0 0 1
;

	 •	Quaternion:

⎛
⎝
⎜

⎞
⎠
⎟= −θq

1

2
, 0, 0,

1

2
;

	 •	Axis–angle pair:

( ˆ ) ([ ] )ω = °θn, 001 , 90 ;

	 •	Rodrigues–Frank vector:

( )ρ = −θ 0, 0, 1 ;

	 •	Homochoric vector:

( )= −θh 0, 0, 0.753 6693 .

However, if we use our intuition of what a °90  counterclockwise rotation around the e3 axis 
should look like in the axis–angle representation, then we would likely write:

( ˆ ) ([ ] )ω = °n, 0 0 1 , 90 ;

note that the rotation axis unit vector here is [ ]0 0 1 , and not [ ]001  as in the list above. The 
reason for this discrepancy is that, in determining this representation ( ˆ ) ([ ] )ω = °n, 0 0 1 , 90 , 
we have ignored the fact that the axis–angle pair should represent a passive rotation. All four 
representations in the list above (quaternion, axis–angle pair, Rodrigues–Frank vector and 
homochoric vector) must have the same set of plus and/or minus signs in order to be consis-
tent with each other; the sign displayed above may disagree with our intuition, but the sign is 
consistent with the rotation matrix and Euler angle representations.

The rotation conversions obtained by setting P  =  +1 are mathematically consistent with 
each other, and they give rise to the expected expressions for the rotation of a vector by means 
of quaternions (see next section). However, they do not necessarily agree with our expecta-
tion or intuition, likely due to the fact that we do not usually think of the distinction between 
active and passive interpretations in the vector-based rotation representations (quaternion, 
Rodrigues–Frank, axis–angle, and homochoric). If we ignore the passive nature of the rota-
tion in the vector-based representations, then a conversion to the rotation matrix will result in 
an active rotation matrix, not a passive one. By selecting the value of P and consistently using 
this value, we obtain a fully consistent set of rotation transformations; the choice P  =  +1 
results in conversions that follow traditional mathematical relations, but produce a counter-
intuitive result for all vector-based representations, whereas the choice P  =  −1 produces rela-
tions that are in agreement with intuition, but require a redefinition of the quaternion product, 
as we will discuss in detail in the following section.

To obtain a consistent set of transformation routines between rotation representations, we 
must re-define all representations that depend on the unit rotation axis vector n̂. For a counter-
clockwise rotation by an angle ω about the n̂ axis, and assuming that conventions 1–5 are 
satisfied, we have the following definitions for passive rotation representations:

  ( ˆ )ω− −Pnaxis angle pair : , ;� (19)
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  ˆρ ω
− = −PnRodrigues Frank vector : tan

2
;� (20)

  ˆ ( )⎜ ⎟
⎛
⎝

⎞
⎠ω ω= − −Ph nhomochoric vector :

3

4
sin ;

1
3� (21)

ˆ⎜ ⎟
⎛
⎝

⎞
⎠

ω ω
= −q Pnquaternion : cos

2
, sin

2
.� (22)

In addition to these definitions, we also need to redefine the quaternion multiplication 
operation:

( )≡ − ⋅ + + ×pq p q q p Pp q p q p q, ,0 0 0 0� (23)

As a consequence, the rotation operator ( )L rp  must also be modified as follows:

( ) ( ∥ ∥ ) ( ) ( )≡ − + ⋅ + ×L p Ppr p r p r p p r2 2 .p 0
2 2

0� (24)

The introduction of the factor P in the quaternion rotation operator guarantees that the rotation 
representations will be fully consistent for all the transformation relations listed in appendix 
A, regardless of the choice of P. Since rotations are considered to be passive (convention 3), 
the operator ( )L rp  will produce the components of the passively rotated vector r with respect 
to the rotated basis vectors; we will illustrate below that this remains true for the concatenation 
of multiple rotations.

4.2.  Vector transformations and quaternion-based consecutive rotations

4.2.1.  Illustration of the use of the redefined quaternion product.  As an example of the trans-
formation relations and redefined quaternion operations introduced in the previous section, we 
consider here a counter-clockwise rotation of °120  around the [ ]1 1 1  direction, illustrated in 
figure 1. In the active interpretation, this rotation takes the vector ( )= zr 0, 0,  and transforms it 
to components (z, 0, 0); in the passive interpretation, shown in figure 1(b), the original vector 
r now lies along the new ′ey axis so that the passive components are given by (0, z, 0). We will 
now show that either choice of P produces the correct results for the transformed coordinates.

We begin by setting P  =  −1. The quaternion q is then given by ⎡⎣ ⎤⎦, , ,1

2

1

2

1

2

1

2
, using equa-

tion (22). The resulting rotation matrix, αij is derived from:

( ) ( )

( ) ( )

( ) ( )

α =

+ − +

+ + −

− + +

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

q q q q Pq q q q Pq q

q q Pq q q q q q Pq q

q q Pq q q q Pq q q q

2 2 2

2 2 2

2 2 2

,q

1
2

1 2 0 3 1 3 0 2

1 2 0 3 2
2

2 3 0 1

1 3 0 2 2 3 0 1 3
2

� (25)

with ( )= − + +q q q q q0
2

1
2

2
2

3
2 , which produces the rotation matrix:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α =

0 1 0
0 0 1
1 0 0

.q

This is a passive rotation matrix, by convention 3, and operation on the vector components  
(0, 0, z) produces the components (0, z, 0) with respect to the basis vectors ′ei, as expected. The 
quaternion operator ( )L rq  can be written as:
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( ) ( ∥ ∥ ) ( ) ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − + ⋅ − ×

= − + − − =

L q q

z
z

z
z z

r q r q r q q r2 2 ;

1

2

0
0

1/2
1/2
1/2

/2
/2

0

0

0
,

q 0
2 2

0

which is the correct result for a passive rotation, as shown in figure 1(b).

For the opposite sign choice, P  =  +1, the quaternion becomes ⎡⎣ ⎤⎦= − − −q , , ,1

2

1

2

1

2

1

2
,  

following equation (22). The rotation matrix αq remains the same, due to the fact that the fac-

tor P in equation (25) compensates for the sign change. The quaternion rotation operator now 
becomes:

( ) ( ∥ ∥ ) ( ) ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − + ⋅ + ×

= − + +
−

=

L q q

z
z

z
z z

r q r q r q q r2 2 ;

1

2

0
0

1/2
1/2
1/2

/2
/2
0

0

0
,

q 0
2 2

0

which is once again the correct result. Note that the sign change of the last term with respect 
to the P  =  −1 case illustrated before is compensated by the sign change in the vector part of 
the quaternion.

4.2.2.  Illustration of rotation combinations.  Combinations of rotations are usually described 
by matrix products, or by quaternion products. We must therefore verify that the modified 
definitions introduced before remain consistent when two or more rotations are combined. 
Throughout this section, we will use the following two rotations: rotation A by °120  around 
[ ]1 1 1 , and rotation B by °180  around [ ]1 1 0 ; rotation A will be carried out first, followed 
by rotation B. Figure 2 illustrates the consecutive action of the two rotations, in the active 
mode (a) and in the passive mode (b). In terms of rotation matrices, we have the following 
relations:

″ β= ′e e ,i ij j

and

α=′e e ,j jk k

Figure 1.  Illustration of active (a) and passive (b) rotations corresponding to 
[ ]°120 @ 1 1 1 .
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with αjk representing the passive rotation A, and βij the passive rotation B. Combining the 
transformations, keeping in mind the passive nature of the rotation matrices, we have:

″ α β γ= =e e e ,i ij jk k ik k

where the passive rotation matrix γ α β=ik ij jk represents the combined rotation.
Selecting P  =  +1, the two rotations are represented by the quaternions (using equation (22))

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= − − − =
− −

q q
1

2
,

1

2
,

1

2
,

1

2
, 0,

1

2
,

1

2
, 0 ,A B

and the resulting rotation matrices (using equation (25)):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α β= =

−

0 1 0
0 0 1
1 0 0

,
0 1 0
1 0 0
0 0 1

.

The combined rotation is then represented by

1 0 0
0 0 1
0 1 0

.
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟γ αβ= = −

It is easy to verify that this matrix transforms the coordinates of the point (0, 0, z) to (0,−z, 0) 
with respect to the double-primed reference frame. The active matrix γT transforms the point 
(0, 0, z) to (0, z, 0), in agreement with the graphical representation in figure 2(a).

In quaternion form, the combined rotation C can be derived by consecutive application 
of the quaternion operators ( )L rqA

 and ( )L rqB
 in the correct order; since these quaternions, 

Figure 2.  Illustration of the active (a) and passive (b) combination of two rotations.
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according to convention 3, represent passive rotations, we must combine them in the order 
q qA B, similar to the order of the passive matrices above. This results in:

( ( )) ( ( ) ) ( ) ( )( )( ) ( )( )= = = =L L L q q q q q q q q q q Lr r r r r0, * 0, * * 0, * .q q q B B A B B A A B A B q qA B A A B

For the present case of P  =  +1, and using equation (23), this product q qA B is given by:

( )
⎛
⎝
⎜

⎞
⎠
⎟

= = − ⋅ + + ×

=
− −

q q q q q q qq q q q q q, ;

1

2
,

1

2
, 0, 0 .

C A B A B A B B A A B A B0 0 0 0

According to convention 5, the scalar part of the quaternion must be positive, so we change the 
sign of all the quaternion components. Using the quaternion rotation operator ( )L rqC

 (equation 
(24)) with ( )= zr 0, 0,  we find:

( ) ( ∥ ∥ ) ( ) ( ) ( )= − + ⋅ + × = −L q q zr q r q r q q r2 2 0, , 0 ,q C C C C C C0
2 2

0C

in agreement with figure 2(b).
For the case P  =  −1, the quaternions are given by (using equation (22)):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= =q q
1

2
,

1

2
,

1

2
,

1

2
, 0,

1

2
,

1

2
, 0 ,A B

and the resulting rotation matrices (using equation (25)) are identical to the matrices listed 
before. Using equation (23), we have for the quaternion product:

⎛
⎝
⎜

⎞
⎠
⎟= =

−
q q q

1

2
,

1

2
, 0, 0 ,C A B

where convention 5 has been applied. Using the quaternion operator ( )L rqC
 (equation (24)) 

with ( )= zr 0, 0,  we find:

( ) ( ∥ ∥ ) ( ) ( ) ( )= − + ⋅ − × = −L q q zr q r q r q q r2 2 0, , 0 ,q C C C C C C0
2 2

0C

once again in agreement with figure 2(b). To achieve active rotations, the quaternion qC must 
be conjugated before the operator ( )L rqC

 is applied, i.e. ( )L rq*
c

.
The conclusion from this explicit example is that the revised definitions of the quaternion 

operators found in section 4.1 provide a consistent framework for transformations between 
rotations, as well as for the concatenation of multiple rotations. Either sign choice for P leads 
to a fully internally consistent set of transformation and composition rules, valid across all the 
rotation representations described in this paper.

5.  Summary

In this tutorial paper, we have described a consistent approach to conversions between 
different rotation representations and parameterizations commonly used in the materials 
community. We have stated six conventions (mostly sign conventions) that need to be 
followed to achieve an internally consistent set of transformation routines; 19 explicit 
transformation routines between representations are described in the appendix. This paper 
is the result of a small scale ‘rotation round-robin’, carried out amongst the authors, which 
revealed several sign differences between individual author’s implementations. The recent 
availability of open source software for 3-D materials science (e.g. DREAM.3D), for 
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which many researchers are contributing code, has made it clear that there is a need for 
agreed-upon rotation conventions so that, from the start, source code generated by different 
research groups can be written in a way that is readily compatible with the larger project 
code. When dealing with 3-D rotation representations, there are too many opportunities 
for sign errors and confusion, and it is hoped that the present paper will provide a guide to 
researchers in the field.

The main message of this tutorial paper is that there are two alternative ways of 
implementing rotation transformation routines. The two approaches can be selected by 
means of a simple parameter, P, which takes on the values ±1, and are readily imple-
mented in any modern programming language; a Fortran-90 version, an Interactive Data 
Language (IDL, [13]) version, and a MatLab version are available from the authors, and 
a C/C++ version has been implemented as part of the DREAM.3D open source package. 
Effectively, the introduction of the parameter P as part of a redefined permutation symbol, 
ε ε→ Pijk ijk, must be carried through in all rotation transformation expressions, as well as 
in the definition of the quaternion product. All neo-Eulerian rotation representations are 
also redefined in terms of the parameter P. It is suggested that the selection of P be made 
at compilation time and that the selection be described explicitly in the package documen-
tation. An extensive test program that exercises all the transformations through a series of 
general and special rotation cases is also available from the authors; such a test program 
may prove to be valuable when implementations in other programming languages are 
undertaken.
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Appendix A.  Conversions between rotation representations

In the following subsections, nineteen explicit rotation conversion algorithms are described. 
For each conversion, the section title provides a shorthand indicator of the conversion, with 
the first two letters describing the input representation, and the last two characters the output 
representation; thus, eu2ro refers to the algorithm that converts an Euler angle triplet into 
a Rodrigues–Frank vector, and ho2ax takes a homochoric vector as input and converts it to 
an axis–angle pair. All algorithms below strictly adhere to the sign conventions described 
in the main body of this paper. Upon implementing these relations, the reader should exer-
cise caution when using numerical implementations of the arc-tangent function, for which 
both single argument and two-argument versions exist in many programming languages; it 
is recommended that the two argument version be used in order for the angular range to be 
[ ]π0, 2 , taking care to note which of the arguments is the abscissa (denominator) and which 
the ordinate (numerator). Care must then be taken to ensure that the resulting angle satisfies 
convention 5.
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A.1.  eu2om

The Euler angle triplet ( )θ ϕ ϕ= Φ, ,1 2  can be converted into a rotation matrix by multiplica-
tion of the individual (passive) rotation matrices:

( ) ( ) ( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

θα α ϕ α α ϕ= Φ

=
− +

− − − +
−

″ ′

c c s c s s c c c s ss
c s s c c s s c c c sc

s s c s c

;z x z2 1

1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

� (A.1)

where ϕ=c cosi i, ϕ=s sini i, = Φc cos , and = Φs sin .

A.2.  eu2ax

The axis–angle pair ( ˆ )ωn,  can be obtained from the Bunge Euler angles by using the follow-
ing relation:

( ˆ ) ⎜ ⎟
⎛
⎝

⎞
⎠ω

τ
δ
τ

δ
τ

σ α= − − −
P

t
P

t
P

n, cos , sin , sin ,� (A.2)

where

( ) ( )σ ϕ ϕ δ ϕ ϕ

τ σ α
τ
σ

=
Φ

= + = −

= + =

t

t

tan
2

;
1

2
;

1

2
;

sin ; 2 arctan
cos

.

1 2 1 2

2 2
� (A.3)

If α π> , then the axis angle pair is given by:

( ˆ ) ⎜ ⎟
⎛
⎝

⎞
⎠ω

τ
δ
τ

δ
τ

σ π α= −
P

t
P

t
P

n, cos , sin , sin , 2 .� (A.4)

A.3.  eu2ro

This conversion involves first the conversion to the axis–angle pair, followed by application of 
the definition of the Rodrigues–Frank vector in equation (12).

A.4.  eu2qu

Starting from Euler angles in radians, we define

( ) ( )σ ϕ ϕ δ ϕ ϕ= + = − =
Φ

=
Φ

c s
1

2
;

1

2
; cos

2
; sin

2
;1 2 1 2� (A.5)

Table A1.  Coefficients γi needed for the conversion from homochoric coordinates to 
axis angle pair, described in section A.19.

i γ +i4 1 γ +i4 2 γ +i4 3 γ +i4 4

0 1.000 000 000 001 885 −0.500 000 000 219 485 −0.024 999 992 127 593 −0.003 928 701 544 781
1 −0.000 815 270 153 545 −0.000 200 950 042 612 −0.000 023 979 867 761 −0.000 082 028 689 266
2 0.000 124 487 150 421 −0.000 174 911 421 482 0.000 170 348 193 414 −0.000 120 620 650 041
3 0.000 059 719 705 869 −0.000 019 807 567 240 0.000 003 953 714 684 −0.000 000 365 550 014
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The quaternion is then given by:

( )σ δ δ σ= − − −q c Ps Ps Pccos , cos , sin , sin .� (A.6)

If q0 becomes negative, then the sign of the entire quaternion has to be reversed, →−q q so 
that the resulting quaternion will lie in the Northern hemisphere of the unit quaternion sphere.

A.5.  om2eu

Let the rotation matrix be given by αij, then, if ∣ ∣α ≠ 133 , compute ζ as

ζ
α

=
−

1

1
.

33
2� (A.7)

Then use the following relations to determine the angles:

( ( ) ( ) ( ))θ α ζ α ζ α α ζ α ζ= −atan2 , , arccos , atan2 , .31 32 33 13 23� (A.8)

where atan2 is the standard two argument implementation of the arc-tangent function, i.e. 
atan2(y, x) produces the angle for which the tangent equals y/x. Note that the order of the argu-
ments needs to be reversed for some programming languages.

If ∣ ∣α = 133 , i.e. Φ = 0 or π, then we can not determine a unique value for ϕ1 and ϕ2. We will 
use the convention that the entire angle is represented by ϕ1, and set ϕ = 02 , and we obtain:

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠θ α α

π
α= −atan2 , ,

2
1 , 0 .12 11 33� (A.9)

A.6.  om2ax

Starting from the rotation matrix αij, we compute the rotation angle via the trace of the matrix:

( ( ) )⎜ ⎟
⎛
⎝

⎞
⎠ω α= −arccos

1

2
Tr 1

If the rotation angle equals zero, the axis–angle pair becomes ( ˆ ) ([ ] )ω =n, 0 0 1 , 0 . For the 
direction cosines of the rotation axis, we determine the eigenvector of the rotation matrix cor-
responding to the eigenvalue  +1; it is well known that every rotation matrix has three eigen-
values ( )ω ω−1, e , ei i . For each component of the (right) eigenvector, E, we must then verify the 
sign as follows:

( ( )) ( )
( ( )) ( )
( ( )) ( )

α α α α
α α α α
α α α α

= − ≠
= − ≠
= − ≠

E E P
E E P
E E P

sign , ;
sign , ;
sign , .

1 1 32 23 32 23

2 2 13 31 13 31

3 3 21 12 21 12

� (A.10)

The sign function takes two arguments, and returns the first argument with the sign of the 
second argument.

A.7.  om2qu

Consider a rotation matrix αij. The corresponding quaternion can be determined as follows:
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	 •	compute the quaternion components:

α α α

α α α

α α α

α α α

= + + +

= + − −

= − + −

= − − +

q

q
P

q
P

q
P

1

2
1 ;

2
1 ;

2
1 ;

2
1 .

0 11 22 33

1 11 22 33

2 11 22 33

3 11 22 33

	 •	Modify the component signs if necessary:

α α
α α
α α

= − <
= − <
= − <

q q

q q

q q

if ;

if ;

if .

1 1 32 23

2 2 13 31

3 3 21 12

	 •	normalize the quaternion:

∣ ∣
=q

q

q	

�
(A.11)

A.8.  ax2om

For the axis angle pair ( ˆ )ωn, , the orientation/rotation matrix for P  =  −1 is given by:

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

c c n c n n s n c n n s n

c n n s n c c n c n n s n

c n n s n c n n s n c c n

1 1 1

1 1 1

1 1 1

ij

1
2

1 2 3 1 3 2

1 2 3 2
2

2 3 1

1 3 2 2 3 1 3
2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

α =
+ − − + − −

− − + − − +

− + − − + −

� (A.12)

with ( )ω=c cos , ( )ω=s sin . For P  =  +1, the matrix αij should be transposed.

A.9.  ax2ro

For an axis–angle pair ( ˆ )ωn, , compute

ˆρ ω
= n tan

2
.� (A.13)

Note that proper care must be taken of the case ω π= .

A.10.ax2qu

Given the axis–angle pair ( ˆ )ωn, , the quaternion is given by:

ˆ⎜ ⎟
⎛
⎝

⎞
⎠

ω ω
=q ncos

2
, sin

2
.� (A.14)
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A.11.  ax2ho

Given the axis–angle pair ( ˆ )ωn, , compute the following parameter:

( )⎜ ⎟
⎛
⎝

⎞
⎠ω ω= −f

3

4
sin ;

1
3� (A.15)

the homochoric vector, h, is then given by

ˆ= fh n .� (A.16)

A.12.  ro2ax

Consider the Rodrigues–Frank vector ρ. First define

∣ ∣ρρ= .� (A.17)

Then compute the axis–angle pair as:

( ˆ )
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ω

ρ
ρ=n, , 2 arctan .� (A.18)

A.13.  ro2ho

For a Rodrigues–Frank vector ρ, consider the vector length, ρ; if ρ = 0 then ( )=h 0, 0, 0 . If 
ρ = ∞, then set π=f 3 /4, otherwise set ( )ω ω= −f 3 sin /4 with ( )ω ρ= 2 arctan ; then we 
have

ˆ= fh n .
1
3� (A.19)

A.14.  qu2eu

For a given unit quaternion q, compute = +q q q03 0
2

3
2, = +q q q12 1

2
2
2, and χ = q q03 12. 

Distinguish between the following cases:

	 •	If χ = 0 and q12  =  0, then

( ( ) )θ = − −Pq q q qatan2 2 , , 0, 00 3 0
2

3
2� (A.20)

	 •	If χ = 0 and q03  =  0, then

( ( ) )θ π= −q q q qatan2 2 , , , 01 2 1
2

2
2� (A.21)

	 •	If χ≠ 0, then

( )
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎞
⎠
⎟

θ
χ χ

χ

χ χ

=
− − −

−

+ −

q q Pq q Pq q q q
q q

Pq q q q q q Pq q

atan2 , , atan2 2 , ,

atan2 ,

1 3 0 2 0 1 2 3
03 12

0 2 1 3 2 3 0 1

� (A.22)

Note that all the terms that contain q0 are multiplied by P.
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A.15.  qu2om

Consider a unit quaternion q and define ( )= − + +q q q q q0
2

1
2

2
2

3
2 . Then the (passive) rotation 

matrix α is given by:

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

q q q q Pq q q q Pq q

q q Pq q q q q q Pq q

q q Pq q q q Pq q q q

2 2 2

2 2 2

2 2 2

.ij

1
2

1 2 0 3 1 3 0 2

1 2 0 3 2
2

2 3 0 1

1 3 0 2 2 3 0 1 3
2

( ) ( )

( ) ( )

( ) ( )

α =

+ − +

+ + −

− + +

� (A.23)

A.16.  qu2ax

First compute the rotation angle ( )ω = q2 arccos 0 . If ω = 0, then ( ˆ ) ([ ] )ω =n, 0 0 1 , 0 . 
Otherwise:

	 •	if q0  =  0, ( ˆ ) ([ ] )ω π= q q qn, , , ,1 2 3 .
	 •	if ≠q 00 , compute

( )
=

+ +
s

q

q q q

sgn 0

1
2

2
2

3
2

where sgn returns ±1 according to the sign of its argument; then we have ( ˆ ) ([ ] )ω ω= sq sq sqn, , , ,1 2 3 .

A.17.  qu2ro

Set = + +s q q q1
2

2
2

3
2 and ( ( ))=t qtan arccos 0 ; then we have:

⎡
⎣⎢

⎤
⎦⎥ρ =

q

s

q

s

q

s
t, , , .1 2 3� (A.24)

Care must be taken when s becomes very small. Recall that the Rodrigues–Frank vector is best 
stored as a four-component vector, with the fourth element equal to ( )ωtan /2 .

A.18.  qu2ho

Compute ( )ω = q2 arccos 0 ; if ω = 0, then =h 0, otherwise compute = + +s q q q1/ 1
2

2
2

3
2, set 

ˆ [ ]= sq sq sqn , ,1 2 3 , and ( )ω ω= −f 3 sin /4; then the homochoric vector is given by:

ˆ= fh n .
1
3� (A.25)

A.19.  ho2ax

Define a 16-component constant vector γ with components listed in table A1; set ∣ ∣=h h 2; if 
h  =  0, then ( ˆ ) ([ ] )ω =n, 0, 0, 1 , 0 . Otherwise, set =′ hh h/  and compute the sum:

∑ γ=
=

−s h ;
i

i
i

1

16
1
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The axis angle pair is then given by ( ˆ ) ( ( ))ω = ′ sn h, , 2 arccos . This numerical expansion is 
needed because there is no closed-form analytical expression for the rotation angle in terms of 
the components of the homochoric vector.
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