
djangoproject.com

Django

Quick Start DocumentationGet Django v1.4

Django Download Documentation Weblog Community Code Jobs

Meet Django
Django is a high-level Python Web framework that encourages rapid development and
clean, pragmatic design.

Developed by a fast-moving online-news operation, Django was designed to handle two challenges: the
intensive deadlines of a newsroom and the stringent requirements of the experienced Web developers
who wrote it. It lets you build high-performing, elegant Web applications quickly.

Django focuses on automating as much as possible and adhering to the DRY principle.

Dive in by reading the overview →

When you're ready to code, read the installation guide and tutorial.

The Django framework
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin neque arcu, venenatis et
tincidunt tempus, consectetur imperdiet justo.

Object-relational mapper
Define your data models entirely in Python.
You get a rich, dynamic database-access API
for free — but you can still write SQL if
needed.

Template system
Use Django's powerful, extensible and
designer-friendly template language to
separate design, content and Python code.

Elegant URL design
Design pretty, cruft-free URLs with no
framework-specific limitations. Be as flexible
as you like.

Internationalization
Django has full support for multi-language
applications, letting you specify translation
strings and providing hooks for language-
specific functionality.

Automatic admin interface
Save yourself the tedious work of creating
interfaces for people to add and update
content. Django does that automatically, and
it's production-ready.

Cache system
Hook into memcached or other cache
frameworks for super performance — caching
is as granular as you need.

Weblog Community
DjangoCon Europe 2012 is just 2 months away
by Daniele Procida and Russell Keith-Magee

Apr. 6, 2012 - DjangoCon Europe 2012 in Zürich, Switzerland is
only two months away now. The conference runs from 4th to 6th
June, followed by two days of sprints.

Read more

Django 1.4 released
by James Bennett

Mar. 23, 2012 - The Django team is pleased to announce the
release of Django 1.4.

Read more

Django 1.4 release candidate 2 issued
by James Bennett

Mar. 14, 2012 - Today the Django team has issued Django 1.4
release candidate 2, a preview/testing package for the upcoming
Django 1.4 release.

Read more

Community blog posts ▶

Django Q&A ▶

New / updated Django packages ▶

Django jobs ▶

Django links ▶

Maling list django-users on Google Groups ▶

IRC channel #django on freenode.net ▶

Contributing to Django ▶

Who's using Django?

The Web framework for perfectionists with deadlines
Django makes it easier to build better Web apps more quickly and with
less code. Learn More.

© 2005-2012 Django Software Foundation unless otherwise noted. Django is a registered
trademark of the Django Software Foundation. Linux Web hosting graciously provided by
Media Temple.

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

Download

Documentation

Weblog

Community

Code

Django was originally developed at World Online, the Web department of a newspaper in
Lawrence, Kansas, USA. Django’s now run by an international team of volunteers; you can
read all about them over at the list of committers.

djangoproject.com

Django

Quick Start DocumentationGet Django v1.4

Meet Django
Django is a high-level Python Web framework that encourages rapid development and
clean, pragmatic design.

Developed by a fast-moving online-news operation, Django was designed to handle two challenges: the
intensive deadlines of a newsroom and the stringent requirements of the experienced Web developers
who wrote it. It lets you build high-performing, elegant Web applications quickly.

Django focuses on automating as much as possible and adhering to the DRY principle.

Dive in by reading the overview →

When you're ready to code, read the installation guide and tutorial.

The Django framework
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin neque arcu, venenatis et
tincidunt tempus, consectetur imperdiet justo.

Object-relational mapper
Define your data models entirely in Python.
You get a rich, dynamic database-access API
for free — but you can still write SQL if
needed.

Template system
Use Django's powerful, extensible and
designer-friendly template language to
separate design, content and Python code.

Elegant URL design
Design pretty, cruft-free URLs with no
framework-specific limitations. Be as flexible
as you like.

Internationalization
Django has full support for multi-language
applications, letting you specify translation
strings and providing hooks for language-
specific functionality.

Automatic admin interface
Save yourself the tedious work of creating
interfaces for people to add and update
content. Django does that automatically, and
it's production-ready.

Cache system
Hook into memcached or other cache
frameworks for super performance — caching
is as granular as you need.

Weblog Community
DjangoCon Europe 2012 is just 2 months away
by Daniele Procida and Russell Keith-Magee

Apr. 6, 2012 - DjangoCon Europe 2012 in Zürich, Switzerland is
only two months away now. The conference runs from 4th to 6th
June, followed by two days of sprints.

Read more

Django 1.4 released
by James Bennett

Mar. 23, 2012 - The Django team is pleased to announce the
release of Django 1.4.

Read more

Django 1.4 release candidate 2 issued
by James Bennett

Mar. 14, 2012 - Today the Django team has issued Django 1.4
release candidate 2, a preview/testing package for the upcoming
Django 1.4 release.

Read more

Community blog posts ▶

Django Q&A ▶

New / updated Django packages ▶

Django jobs ▶

Django links ▶

Maling list django-users on Google Groups ▶

IRC channel #django on freenode.net ▶

Contributing to Django ▶

Who's using Django?

The Web framework for perfectionists with deadlines
Django makes it easier to build better Web apps more quickly and with
less code. Learn More.

© 2005-2012 Django Software Foundation unless otherwise noted. Django is a registered
trademark of the Django Software Foundation. Linux Web hosting graciously provided by
Media Temple.

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

Download

Documentation

Weblog

Community

Code

Django was originally developed at World Online, the Web department of a newspaper in
Lawrence, Kansas, USA. Django’s now run by an international team of volunteers; you can
read all about them over at the list of committers.

Django Download Documentation Weblog Community Code Jobs

Quick Start Guide

$ pip install django

$ django-admin.py start project myproject

$ cd myproject

$ django-admin.py startapp myapp

$ django-admin.py runserver

Download and install the Django

Create a new project

Create a new app inside the project

Run the development server

1

2

3

4

Continue to the tutorial →

Close

djangoproject.com

Django

Quick Start DocumentationGet Django v1.4

Django Download Documentation Weblog Community Code Jobs

Meet Django
Django is a high-level Python Web framework that encourages rapid development and
clean, pragmatic design.

Developed by a fast-moving online-news operation, Django was designed to handle two challenges: the
intensive deadlines of a newsroom and the stringent requirements of the experienced Web developers
who wrote it. It lets you build high-performing, elegant Web applications quickly.

Django focuses on automating as much as possible and adhering to the DRY principle.

Dive in by reading the overview →

When you're ready to code, read the installation guide and tutorial.

The Django framework
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin neque arcu, venenatis et
tincidunt tempus, consectetur imperdiet justo.

Object-relational mapper
Define your data models entirely in Python.
You get a rich, dynamic database-access API
for free — but you can still write SQL if
needed.

Template system
Use Django's powerful, extensible and
designer-friendly template language to
separate design, content and Python code.

Elegant URL design
Design pretty, cruft-free URLs with no
framework-specific limitations. Be as flexible
as you like.

Internationalization
Django has full support for multi-language
applications, letting you specify translation
strings and providing hooks for language-
specific functionality.

Automatic admin interface
Save yourself the tedious work of creating
interfaces for people to add and update
content. Django does that automatically, and
it's production-ready.

Cache system
Hook into memcached or other cache
frameworks for super performance — caching
is as granular as you need.

Weblog Community
DjangoCon Europe 2012 is just 2 months away
by Daniele Procida and Russell Keith-Magee

Apr. 6, 2012 - DjangoCon Europe 2012 in Zürich, Switzerland is
only two months away now. The conference runs from 4th to 6th
June, followed by two days of sprints.

Read more

Django 1.4 released
by James Bennett

Mar. 23, 2012 - The Django team is pleased to announce the
release of Django 1.4.

Read more

Django 1.4 release candidate 2 issued
by James Bennett

Mar. 14, 2012 - Today the Django team has issued Django 1.4
release candidate 2, a preview/testing package for the upcoming
Django 1.4 release.

Read more

Community blog posts ▶

Django Q&A ▶

New / updated Django packages ▶

Django jobs ▶

Django links ▶

Maling list django-users on Google Groups ▶

IRC channel #django on freenode.net ▶

Contributing to Django ▶

Who's using Django?

The Web framework for perfectionists with deadlines
Django makes it easier to build better Web apps more quickly and with
less code. Learn More.

© 2005-2012 Django Software Foundation unless otherwise noted. Django is a registered
trademark of the Django Software Foundation. Linux Web hosting graciously provided by
Media Temple.

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

Download

Documentation

Weblog

Community

Code

Django was originally developed at World Online, the Web department of a newspaper in
Lawrence, Kansas, USA. Django’s now run by an international team of volunteers; you can
read all about them over at the list of committers.

PIP Install from terminal
$ pip install django

Source Tarball
Click to download latest release 1.4

Github Repository
$ git clone https://github.com/django/django.git

Latest version 1.4
Released on Mar. 23, 2012

Open sourced under
BSD license

djangoproject.com

Django

Field types

Field options

Automatic primary key fields

Verbose field names

Relationships

 • Many-to-one relationships

 • Many-to-many relationships

 • Extra fields on many-to-

 many relationships

 • One-to-one relationships

Models across files

Field name restrictions

Custom field types

Django Download Documentation Weblog Community Code Jobs

© 2005-2012 Django Software Foundation unless otherwise noted. Django is a registered
trademark of the Django Software Foundation. Linux Web hosting graciously provided by
Media Temple.

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

Download

Documentation

Weblog

Community

Code

Django was originally developed at World Online, the Web department of a newspaper in
Lawrence, Kansas, USA. Django’s now run by an international team of volunteers; you can
read all about them over at the list of committers.

Documentation for Django 1.4

Models
A model is the single, definitive source of data about your data. It contains the essential fields and
behaviors of the data you’re storing. Generally, each model maps to a single database table.

The basics:
• Each model is a Python class that subclasses django.db.models.Model.
• Each attribute of the model represents a database field.
• With all of this, Django gives you an automatically-generated database-access API; see Making

 queries.

Quick example
This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and
each attribute maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:

The name of the table, myapp_person, is automatically derived from some model metadata but can be
overridden. See Table names for more details..
An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.
The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it's worth noting
Django uses SQL tailored to the database backend specified in your settings file.

Using models
Once you have defined your models, you need to tell Django you're going to use those models. Do this
by editing your settings file and changing the INSTALLED_APPS setting to add the name of the module
that contains your models.py.

For example, if the models for your application live in the module mysite.myapp.models (the package
structure that is created for an application by the manage.py startapp script), INSTALLED_APPS should
read, in part:

INSTALLED_APPS = (
 #...
 'mysite.myapp',
 #...
)

When you add new apps to INSTALLED_APPS, be sure to run manage.py syncdb.

Fields
The most important part of a model -- and the only required part of a model -- is the list of database fields
it defines. Fields are specified by class attributes.

Example:

class Musician(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

Fields
Each field in your model should be an instance of the appropriate Field class. Django uses the field class
types to determine a few things:

• The database column type (e.g. INTEGER, VARCHAR).
• The widget to use in Django's admin interface, if you care to use it (e.g. <input type="text">,

 <select>).
• The minimal validation requirements, used in Django's admin and in automatically-generated

 forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference.
You can easily write your own fields if Django's built-in ones don't do the trick; see Writing custom model
fields.

Field options
Each field takes a certain set of field-specific arguments (documented in the model field reference). For
example, CharField (and its subclasses) require a max_length argument which specifies the size of the
VARCHAR database field used to store the data.

There's also a set of common arguments available to all field types. All are optional. They're fully
explained in the reference, but here's a quick summary of the most often-used ones:

null
If True, Django will store empty values as NULL in the database. Default is False.

blank
If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If a
field has blank=True, validation on Django's admin site will allow entry of an empty value. If a field has
blank=False, the field will be required.

choices
An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, Django's admin
will use a select box instead of the standard text field and will limit choices to the choices given.

Search

Django 1.4 ▼

Quick example

Using models

Fields

Meta options

Model methods

Model inheritance

djangoproject.com

Django

Field types

Field options

Automatic primary key fields

Verbose field names

Relationships

 • Many-to-one relationships

 • Many-to-many relationships

 • Extra fields on many-to-

 many relationships

 • One-to-one relationships

Models across files

Field name restrictions

Custom field types

Django Download Documentation Weblog Community Code Jobs

© 2005-2012 Django Software Foundation unless otherwise noted. Django is a registered
trademark of the Django Software Foundation. Linux Web hosting graciously provided by
Media Temple.

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

Download

Documentation

Weblog

Community

Code

Django was originally developed at World Online, the Web department of a newspaper in
Lawrence, Kansas, USA. Django’s now run by an international team of volunteers; you can
read all about them over at the list of committers.

Documentation for Django 1.4

Models
A model is the single, definitive source of data about your data. It contains the essential fields and
behaviors of the data you’re storing. Generally, each model maps to a single database table.

The basics:
• Each model is a Python class that subclasses django.db.models.Model.
• Each attribute of the model represents a database field.
• With all of this, Django gives you an automatically-generated database-access API; see Making

 queries.

Quick example
This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and
each attribute maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:

The name of the table, myapp_person, is automatically derived from some model metadata but can be
overridden. See Table names for more details..
An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.
The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it's worth noting
Django uses SQL tailored to the database backend specified in your settings file.

Using models
Once you have defined your models, you need to tell Django you're going to use those models. Do this
by editing your settings file and changing the INSTALLED_APPS setting to add the name of the module
that contains your models.py.

For example, if the models for your application live in the module mysite.myapp.models (the package
structure that is created for an application by the manage.py startapp script), INSTALLED_APPS should
read, in part:

INSTALLED_APPS = (
 #...
 'mysite.myapp',
 #...
)

When you add new apps to INSTALLED_APPS, be sure to run manage.py syncdb.

Fields
The most important part of a model -- and the only required part of a model -- is the list of database fields
it defines. Fields are specified by class attributes.

Example:

class Musician(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

Fields
Each field in your model should be an instance of the appropriate Field class. Django uses the field class
types to determine a few things:

• The database column type (e.g. INTEGER, VARCHAR).
• The widget to use in Django's admin interface, if you care to use it (e.g. <input type="text">,

 <select>).
• The minimal validation requirements, used in Django's admin and in automatically-generated

 forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference.
You can easily write your own fields if Django's built-in ones don't do the trick; see Writing custom model
fields.

Field options
Each field takes a certain set of field-specific arguments (documented in the model field reference). For
example, CharField (and its subclasses) require a max_length argument which specifies the size of the
VARCHAR database field used to store the data.

There's also a set of common arguments available to all field types. All are optional. They're fully
explained in the reference, but here's a quick summary of the most often-used ones:

null
If True, Django will store empty values as NULL in the database. Default is False.

blank
If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If a
field has blank=True, validation on Django's admin site will allow entry of an empty value. If a field has
blank=False, the field will be required.

choices
An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, Django's admin
will use a select box instead of the standard text field and will limit choices to the choices given.

Search

Django 1.4 ▼

Quick example

Using models

Fields

Meta options

Model methods

Model inheritance

Django 1.0

Django 1.1

Django 1.2

Django 1.3

Django dev

Quick Start

Documentation

Latest version Django v1.4

The Web framework for
perfectionists with deadlines
Django makes it easier to build better
Web apps more quickly and with less
code. Learn More.

Who's using Django?

Latest version Django v1.4

Who's using Django?

Meet Django
Django is a high-level Python Web
framework that encourages rapid

Meet Django
Django is a high-level Python Web
framework that encourages rapid
development and clean, pragmatic
design.

Developed by a fast-moving online-news
operation, Django was designed to handle two
challenges: the intensive deadlines of a
newsroom and the stringent requirements of the
experienced Web developers who wrote it. It lets
you build high-performing, elegant Web
applications quickly.

Django focuses on automating as much as
possible and adhering to the DRY principle.

Dive in by reading the overview →

When you're ready to code, read the installation
guide and tutorial.

When you're ready to code, read the installation
guide and tutorial.

The Django framework
Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Proin
neque arcu, venenatis et tincidunt
tempus, consectetur imperdiet justo.

Object-relational mapper
Define your data models entirely in
Python. You get a rich, dynamic
database-access API for free — but
you can still write SQL if needed.

Automatic admin interface
Save yourself the tedious work of
creating interfaces for people to add
and update content. Django does
that automatically, and it's

Elegant URL design
Design pretty, cruft-free URLs with
no framework-specific limitations. Be
as flexible as you like.

Template system
Use Django's powerful, extensible
and designer-friendly template
language to separate design,
content and Python code.

Internationalization
Django has full support for multi-
language applications, letting you
specify translation strings and
providing hooks for language-
specific functionality.

Cache system
Hook into memcached or other
cache frameworks for super
performance — caching is as
granular as you need.

Weblog

DjangoCon Europe 2012 is just 2
months away
by Daniele Procida and Russell Keith-Magee

Apr. 6, 2012 - DjangoCon Europe 2012 in Zürich,
Switzerland is only two months away now. The
conference runs from 4th to 6th June, followed by
two days of sprints.

Read More

Django 1.4 released
by James Bennett

Mar. 23, 2012 - The Django team is pleased to
announce the release of Django 1.4.

Read More

announce the release of Django 1.4.

Read More

Community

▶

▶

Community blog posts

Django Q&A

New / updated Django packages

▶

▶

▶

Maling list django-users on Google Groups

IRC channel #django on freenode.net

Contributing to Django

▶

Django links ▶

About
A technical overview of Django

Documentation
Everything you need to know

Community
Mailing lists, blogs, and more

Tutorial
Writing your first Django app

Installation Guide
Getting Django installed

More
There's a lot of info here

i Django was originally developed at World
Online, the Web department of a
newspaper in Lawrence, Kansas, USA.
Django’s now run by an international team
of volunteers; you can read all about them
over at the list of committers.

© 2005-2012 Django Software Foundation
unless otherwise noted. Django is a
registered trademark of the Django
Software Foundation. Linux Web hosting
graciously provided by
Media Temple.

Close

	Home
	Quuick Start
	Download :hover
	Internal
	Internal :click
	Canvas 6

