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ABSTRACT In many cases, genes for commonly used genetic markers in model or-
ganisms have not been identified; therefore, it is of interest to identify the causative
genes. Whole-genome sequencing was used to identify potential causative muta-
tions for a col-4 allele of Neurospora crassa.

The low cost of genomic sequencing has made it feasible to bypass traditional
genetics-based methods of gene identification and to approach this directly by

sequencing the entire genome of interest. This has become very common in model
systems with small genomes but is now being applied on a much larger scale to larger
genomes (specifically, human genomes) in various cancer genome projects. The col-4
locus of Neurospora crassa, on linkage group (LG) IVR, has a colonial phenotype and has
long been used in genetic studies. A single allele, Y152M43;30(r) 70007, was isolated in
1949 (1) and was originally used to mimic colonial growth before the advent of
sorbose-containing media. The gene for col-4 has not been characterized, and finding
a candidate gene (or genes) for col-4 is the major goal of this project.

N. crassa strains FGSC 3017 (mating type a, his-2;mtr col-4) and FGSC 2489 (mating
type A) were obtained from the Fungal Genetics Stock Center (2). Standard media with
appropriate supplements were used (3). N. crassa strain 3017 was crossed to N. crassa
strain 74A, and a single spore progeny (TR1) (mating type a, his-2;mtr col-4) was used
for further analysis; mtr (encoding a neutral amino acid permease), on LG IV �1 map
unit from col-4, has been well characterized, but this mtr allele has not. Similarly, the
his-2 allele (encoding ATP phosphoribosylpyrophosphate pyrophosphorylase) on LG IR
has not been characterized. DNA was isolated from N. crassa TR1 (4), and 50 �g was
shipped to Operon MWG (Huntsville, AL) for sequencing. DNA was nebulized to 500 bp,
one lane of 100-bp paired-end sequence was generated with the Illumina HiSeq 2000
platform using TruSeq chemistry, and 146,243,715 paired-end sequence reads in fastq
format were obtained (approximately 600� coverage of N. crassa). FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc) was used for quality control. No
quality trimming or adapter trimming was found to be necessary. For single-nucleotide
polymorphism (SNP)/indel identification, two separate subsets of 20 million reads from
each paired-end fastq file were loaded onto the Galaxy analysis platform (https://
usegalaxy.org) (5). The N. crassa reference sequences (build 10) for LG I and LG IV in
fasta format were downloaded from the Broad Institute website (https://www
.broadinstitute.org/fungal-genome-initiative) and loaded onto the Galaxy platform.
Reads were aligned to each reference sequence with BWA 0.6.0 (6), and SNPs and indels
were determined with the mpileup function of SAMtools 1.9 (7), by manual inspection.
Three candidates for col-4 were identified, namely, an A-to-G transition 100 bp up-
stream of locus NCU06625 (base 1842866, LG IV), a T-to-C transition upstream of locus
NCU16770 (base 1882007, LG IV), and an �/A indel between locus NCU06628 and locus
NCU06629 (base 1863899, LG IV); all are intergenic and are likely to be regulatory. These
were the only sequence differences from the 74A reference between the mtr gene and
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the beginning of a stretch of sequence from the Mauriceville background, which
demarcates the location within which col-4 must be found. Additionally, single candi-
date mutations within the open reading frames of the his-2 and mtr genes were
identified, i.e., a G-to-C transversion causing Ala to Pro (A32P) and a C-to-G transversion
causing Tyr290 to the TAG stop codon, respectively.

Data availability. The original sequencing data have been deposited in GenBank
with BioProject accession number PRJNA548559.
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