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ABSTRACT

Engineered metabolic pathways often suffer from
flux imbalances that can overburden the cell and
accumulate intermediate metabolites, resulting in
reduced product titers. One way to alleviate such
imbalances is to adjust the expression levels of
the constituent enzymes using a combinatorial ex-
pression library. Typically, this approach requires
high-throughput assays, which are unfortunately
unavailable for the vast majority of desirable target
compounds. To address this, we applied regression
modeling to enable expression optimization using
only a small number of measurements. We chara-
cterized a set of constitutive promoters in Saccha-
romyces cerevisiae that spanned a wide range of
expression and maintained their relative strengths
irrespective of the coding sequence. We used a
standardized assembly strategy to construct a com-
binatorial library and express for the first time in
yeast the five-enzyme violacein biosynthetic path-
way. We trained a regression model on a random
sample comprising 3% of the total library, and
then used that model to predict genotypes that
would preferentially produce each of the products
in this highly branched pathway. This generalizable
method should prove useful in engineering new
pathways for the sustainable production of small
molecules.

INTRODUCTION

Metabolic engineering offers the promise of inexpensive
and clean biosynthesis of both high value products, such
as pharmaceuticals (1,2), and commodity chemicals, such

as transportation fuel replacements (3,4). As noted in a
recent review of the field (5), standardized engineering
frameworks will be key in enabling faster iteration of the
‘design-build-test’ cycle, leading to more productive
strains. Recent advances in DNA assembly (6–12) have
dramatically improved our ability to efficiently build
multi-gene pathway libraries where we can vary expression
levels, enzyme homologs and mutants, and other attri-
butes in a combinatorial fashion. Once assembled, the
large size inherent to these combinatorial libraries
demands high-throughput analysis to isolate a high-per-
formance strain. However, the majority of target mol-
ecules cannot be measured in high-throughput, which
places the natural inclination to approach optimization
of multiple variables via library screening at odds with
the strict requirement to minimize the number of measure-
ments. Here, we describe a strategy that overcomes this
limitation by coupling regression modeling with multi-
gene combinatorial libraries and show that sparse
sampling of those libraries can be sufficient to optimize
metabolic pathways.
To achieve efficient bioconversion, it is often crucial to

balance the relative activity of each enzyme in a pathway
to avoid detrimental effects from accumulated intermedi-
ate metabolites (13–15). Additionally, it can be a burden
on the cell to support a highly expressed foreign pathway
(16,17), and, indeed, in some cases, lowering expression of
certain enzymes in a pathway has been shown to increase
product titers (2,18), highlighting the importance of
determining the right balance (Figure 1A).
Perhaps the most straightforward approach to

balancing enzyme expression levels would be to begin at
an arbitrary starting expression level and then iteratively
adjust expression of each gene to identify its optimum.
However, this approach is time-consuming, particularly
as the number of genes to balance increases. A more
elegant solution is to survey all possible expression levels

*To whom correspondence should be addressed. Tel: +1 510 643 4616; Fax: +1 510 642 9725; Email: jdueber@berkeley.edu

Nucleic Acids Research, 2013, 1–11
doi:10.1093/nar/gkt809

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

 Nucleic Acids Research Advance Access published September 12, 2013
 at M

IT
 L

ibraries on M
ay 5, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

``
''
 2
http://nar.oxfordjournals.org/


combinatorially, which has the advantage of not only
reducing the time cost but also reveals the overall multi-
dimensional production landscape. To date, few produc-
tion landscapes have been explored owing to the prior
difficulties both in building libraries as well as determining
enzyme expression levels. Close inspection of two land-
scapes that have been explored, the isoprenoid pathway
for taxadiene production in Escherichia coli (2) and xylose
fermentation in Saccharomyces cerevisiae (19), show that
iterative expression tuning could potentially fail to identify
the true optimum depending on the order in which
operons or enzymes were tuned. Although combinatorial
libraries enable researchers to avoid these traps, one major
difficulty faced is the limited scale that can be practically
surveyed. The library diversities in the aforementioned
examples were 16 and 8 combinations, respectively,
allowing these libraries to be exhaustively sampled.
Much larger libraries that include more expression
levels, operons or enzymes approach a limit where ex-
haustive sampling is not feasible.
A notable exception to this limit exists for pathways

with a phenotype that can be assayed in high throughput,
such as growth rate or production of a colored molecule.
Recently, another xylose-using S. cerevisiae strain was
isolated from a library of �1000 combinations via selec-
tion on xylose as the sole carbon source (20). In another
study, expression levels of 24 genes involved in lycopene
biosynthesis in E. coli were optimized using multiplex
automated genome engineering (21). These stunning

examples of large-scale optimization demonstrate the
power of combinatorial expression libraries; however, har-
nessing this enormous diversity required a high-through-
put screen or selection to efficiently comb through the vast
assortment of genetic variants. Unfortunately, the
majority of small molecules of interest, including most
biofuels and specialty chemicals, must be quantified
using analytical methods such as high performance
liquid chromatography (HPLC), gas chromatography-
mass spectrometry (GC-MS), liquid chromotography-
mass spectrometry (LC-MS) and so forth, which provide
insufficient throughput to warrant the use of these
emerging technologies for constructing massive libraries
for combinatorial searches.

We propose that computational modeling can provide
the necessary link between large searches and targets that
are difficult to screen. If gene expression can be reliably
controlled, the production landscape of a molecule can be
discretized into a multi-dimensional grid of expression
space, and, by sampling this space, we can fit a function
that relates gene expression to product titer. To that end,
we constructed and characterized an S. cerevisiae pro-
moter set that exhibited robust control over gene expres-
sion. We developed a standardized assembly strategy to
build combinatorial libraries, as well as a rapid genotyping
method to determine the promoter identity for each gene
in a given library member. We then used linear regression
to fit a model to the genotype and titer measurement data.
As a challenging test of this relatively straightforward
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Figure 1. Metabolic enzyme expression balancing and modeling. (A) A hypothetical two-gene metabolic pathway. Overexpression of enzymes may
cause a burden to the cell; the intermediate may be non-productive by reacting with alternative enzymes, causing cytotoxicity, or leaving the cell by
active or passive transport. (B) The associated production landscape showing that for one or a combination of the above-stated scenarios, moderate
gene expression is optimal. (C) An example of the landscape predicted by a regression model trained on 100 randomly sampled points from the true
landscape. The correlation coefficient shown is between the predicted and true values in the 20-by-20 discretized space.
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modeling approach, we examined the highly complex
violacein biosynthetic pathway. This pathway exhibited
several characteristics that commonly plague metabolic
engineers: a branched pathway structure leading to off-
target side reactions, both enzymatic and spontaneous;
promiscuous enzymes that can recognize multiple inter-
mediates as their substrate; and, being the first report to
our knowledge to express the pathway in S. cerevisiae,
uncertainty in enzyme activity in the heterologous host.
Despite these traits, we successfully produced violacein
in yeast, and we used a regression model to predict
strains that selectively maximized production of any one
of the four primary products in the pathway.

MATERIALS AND METHODS

Strains and growth media

The base S. cerevisiae strain for all experiments in this article
was BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0). Wild-
type yeast cultures were grown in YPD (10g/l Bacto Yeast
Extract; 20 g/l Bacto Peptone; 20g/l Dextrose). Yeast trans-
formed with plasmids containing the MET15, HIS3, LEU2
or URA3 auxotrophic markers were selected and grown on
synthetic complete media (6.7 g/l Difco Yeast Nitrogen Base
without amino acids; 2 g/l Drop-out Mix Synthetic Minus
appropriate amino acids, without Yeast Nitrogen Base (US
Biological); 20 g/l Dextrose).

Yeast expressing the violacein pathway was grown on
selective media for 48 h at 30�C. Cells grown on solid
media containing 2% agar often took an additional 24–
48 h (at 4�C) for color to develop fully.

Restriction cloning reactions were transformed in TG1
and DH10B chemically competent E. coli. Gibson
assembly reactions were transformed in TransforMax
EPI300 (Epicentre) electrocompetent E. coli. Transformed
cells were selected on Lysogeny Broth (LB) containing
antibiotics ampicillin or kanamycin.

Standard yeast cloning vectors

Yeast cloning vectors derived from pRS316 were con-
structed to include unique restriction sites that flank
each modular region of an expression cassette as well as
allow for BglBrick-style cloning of protein fusions (using
BglII, BamHI and XhoI) (22) and BioBrick-style idempo-
tent cloning of entire cassettes (using EcoRI, SpeI, XbaI
and PstI) (23). Cloning vectors are listed in Supplementary
Table S1.

Yeast fluorescent protein measurement

Yeast transformed with plasmids expressing one or more
fluorescent proteins were grown to saturation shaking in
96-deep-well blocks at 30�C. Cell density (OD600) and
fluorescence were measured using a TECAN Safire2.

Violacein biosynthetic pathway

Genes for the violacein biosynthetic pathway were
amplified from plasmid BBa_K274002 obtained from the
Registry of Standard Biological Parts (partsregistry.org). A
list of primers used for cloning the violacein genes are listed

in Supplementary Table S2, and a list of plasmids express-
ing those genes are listed in Supplementary Table S1.

One-step isothermal assembly

Standard vectors were constructed, flanked by pairs of
homology sequences derived from yeast barcodes (24) at
the ends of each expression cassette. We reasoned that as
these barcode sequences were designed to be orthogonal,
they could serve a dual purpose of reducing the probabil-
ity of mis-annealing and dictating the assembly order of
multiple cassettes. vioA was flanked by an ‘A’ and ‘C’
homology sequence; vioB by ‘A’ and ‘B’; vioC by ‘C’
and ‘D’; vioD by ‘B’ and ‘C’; vioE by ‘C’ and ‘D’;
backbone vectors contained ‘A’ and ‘D’ receiving se-
quences. Entire 50 homology-promoter-gene-terminator-
30 homology cassettes were amplified by PCR; backbone
vectors were also amplified by PCR or double-digested
using SpeI/XbaI (n.b., Taq DNA Ligase in the Gibson
enzyme mix does not ligate compatible 4 bp overhangs).
Thus, vioAC and vioBDE plasmids were assembled using
the compatible homology regions as the overlapping
sequences for one-step isothermal assembly, which were
performed as described in Gibson et al. (6). See
Supplementary Tables S1 and S2 for a list of plasmids
and amplification primers.
There were some instances of mis-assembly where one

or more cassettes may not be incorporated; however, this
represented a relatively low percentage in three-gene
assemblies (�25–33%) and even lower for two-genes
(�8%). Additionally, in many of these cases of mis-
assembly, homology of the inserts with the middle of the
vector backbone resulted in the loss of the yeast replica-
tion origin and/or selection marker such that on trans-
formation into yeast, the fraction of correctly assembled
constructs that propagated in yeast was considerably
higher.

Library plasmid purification

Libraries constructed by restriction or one-step isothermal
assembly were transformed and plated on LB-agar plates
containing antibiotic. After colonies appeared, plates were
scraped, and the pooled collection of colonies was used for
plasmid purification.

Extraction of pathway products

Yeast clones were grown in 1ml of synthetic media split
into two wells in a 96-deep-well block in an ATR shaker at
30�C for 48 h. Cultures were recombined and pelleted in a
microcentrifuge for 3min at 14 000 rpm. The pellets were
resuspended in 500 ml of methanol and boiled at 95�C for
15min, vortexing halfway through. Resuspensions were
pelleted, and the supernatant (extract) was transferred to
new microcentrifuge tubes and pelleted to remove remain-
ing cell debris. Final extracts were transferred to glass vials
for analysis on HPLC.

HPLC analysis of pathway products

Ten microliters of extract were run on an Agilent Rapid
Resolution SB-C18 column (30� 2.1mm, 3.5 mm particle
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size) on an Agilent 1200 Series LC system with the follow-
ing method (Solvent A is 0.1% formic acid in water;
Solvent B is 0.1% formic acid in acetonitrile): start at
5% B; hold at 5% B for 1.5min; 16.9%/min to 98% B;
hold at 98% B for 2min; 3.1%/s to 5% B; hold at 5% B
for 2.5min. The column temperature was 30�C, and ab-
sorbance was measured with a UV/VIS detector. All meas-
urements presented here reflect the peak area at a specified
elution time and wavelength (5.5min/565 nm for violacein;
5.9min/565 nm for deoxyviolacein; 5.1min/600nm for
proviolacein; 5.4min/610 nm for prodeoxyviolacein) (see
Supplementary Figure S1 for sample chromatogram and
absorbance spectra). Pure standards for our target com-
pounds were commercially unavailable, and therefore
absolute mass measurements were not possible; a mixed
extract of violacein/deoxyviolacein could be purchased
(Sigma-Aldrich), and we estimate that a peak area of
150 au corresponds to �10mg/l violacein.

TaqMan rapid analysis of combinatorial assemblies (TRAC)

A slightly modified version of the TaqMan protocol
described in Kong et al. (25) was used to identify each
unique promoter. A list of probes and their sequences
(labeled oligonucleotides provided by Integrated DNA
Technologies) are available in Supplementary Table S3,
and a list of amplification primers are listed in
Supplementary Table S2. A universal probe mix (2 mM
each dye-strand, 2.4 mM each quencher-strand) was
prepared in water. Template for PCR was prepared by
resuspending a 1mm-diameter yeast colony in 25 ml of
20mM NaOH or by pelleting and resuspending a
saturated yeast culture in 2.5 volumes of 20mM NaOH,
then boiling for 10min, pelleting and recovering the super-
natant. A 25 ml of a TRAC reaction included: 2.5ml of 10�
PCR buffer [100mM Tris–HCl, 500mM KCl, 15mM
MgCl2 (pH 8.3) @ 25�C], 0.5ml of 10mM dNTP mix,
1 ml of each 10 mM PCR primer, 0.75 ml of probe mix,
2.5ml of template, 0.5 ml of Taq DNA polymerase and
16.25ml of water. PCRs were run as follows: initial
denaturing at 94�C for 5min, 50 amplification cycles
(94�C for 10 s, 50�C for 30 s, 68�C for 1min) and a final
elongation at 68�C for 10min. Twenty microliters of the
reaction were diluted with 80 ml of water and loaded onto
a Costar 96-well flat bottom polystyrene assay plate and
measured for fluorescence using a TECAN Safire2.
For a sufficiently large number of randomly sampled

colonies, fluorescence measurements for each channel
segregated into two distinct clusters corresponding to
background (quenched) and positive hits (released)
(Supplementary Figure S2).

RESULTS

Modeling a production landscape using linear regression

Modeling the intricate network of enzymes and metabol-
ites of cell metabolism presents a daunting task. There are
many parameters to be considered, such as enzyme
kinetics and intracellular metabolite concentrations, but
these data are often unavailable, especially for
heterologously expressed genes. Additionally, gene

clusters taken from exotic organisms may not be fully
characterized, and even the order of the reactions and
identity of the intermediates of the pathway could be
unknown. Therefore, it can be advantageous to take a
simpler modeling approach that is somewhat naı̈ve to
the complexities of biology.

We chose to use a linear regression model (26) trained
on empirical data to relate expression level combin-
ations to product titer. As an initial test, we generated a
hypothetical production landscape of a two-gene path-
way designed to mimic that of the taxadiene pathway
described by Ajikumar et al. (2) where intermediate ex-
pression levels were optimal (Figure 1B). We discretized
the continuous expression of each gene into 20 levels (e.g.
promoter strengths) and sampled 100 random points
from the resulting lattice. The model we trained is a cat-
egorical model, wherein the presence or absence of each
promoter-gene combination is represented as an inde-
pendent variable, rather than a relative expression level
for each gene (see Supplementary Information for
more details). A predicted landscape representative of
100 simulations is shown in Figure 1C. Although the
model is not perfect in accurately predicting every
point, it is certainly able to determine that moderate ex-
pression of both enzymes is preferred over high or low
expression.

The limitations of the model’s predictive power are a
consequence of the assumptions necessary to maintain
simplicity. First, we assumed that each enzyme contributes
to pathway flux independently. We know that this may be
biologically inaccurate, owing to potential interactions
between enzymes or regulation that would result in co-
dependence of two or more enzymes. However, including
these non-linear interactions would greatly increase the
amount of data necessary to train the model, a quantity
we sought to limit. By extension, we assumed that produc-
tion landscapes in general are relatively smooth and
contain a single peak. Naturally, these assumptions will
prevent the model from successfully identifying the
optimum for certain outstanding cases, but for most
pathways, it should provide an excellent first-pass
analysis of how the pathway responds to changing gene
expression.

Constitutive promoters provide robust control over protein
expression

To implement the modeling approach described earlier in
the text, we first needed control over protein expression,
which we accomplished by varying promoters. We defined
several criteria for designing a promoter library: (i) a wide
range of transcriptional strengths that are evenly
distributed; (ii) minimal variation in strength with
respect to different coding sequences; and (iii) orthogonal
DNA sequences to minimize recombination and simplify
genotyping. Thus, we avoided promoter mutagenesis, such
as the commonly used TEF1 library (27,28), because of the
high degree of homology between those promoters and
their relatively limited range of 10-fold expression.
Instead, we collected a set of sequences taken from
upstream of the translational start site of several yeast
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genes observed to have a broad range of expression levels
(29), and we cloned 700 bp as canonical ‘promoters’ in
front of three fluorescent reporters, mKate2 (red
fluorescent protein, RFP), Venus (yellow fluorescent
protein, YFP) and cyan fluorescent protein (CFP), to
test against our criteria.

We identified a set of five promoters—pTDH3 (only
680 bp), pTEF1, pRPL18B, pRNR2 and pREV1—that
had all of our desired characteristics. The promoters
spanned nearly three orders of magnitude in red and
yellow fluorescence, with relatively even separation
between members on a log-scale (Figure 2A, see
Supplementary Figure S3 for all promoters tested). We
were concerned that the strength of these promoters
would be influenced by the downstream coding
sequence, as is often observed in E. coli owing to inter-
actions with the ribosome binding site (30–32). To address
this, we cloned our promoter set in front of a random
sequence of 24 nucleotides fused to YFP and saw that
the relative rank order of promoters was remarkably
well maintained (Figure 2B and C). Because we are only
controlling transcription, we cannot ensure absolute
protein levels, which may be influenced by other factors

such as transcript and polypeptide length, folding or
translation rate; however, these effects are largely depend-
ent on sequence, not concentration, and so high and low
amounts of a given transcript should be affected equally,
giving rise to the consistency of relative promoter
strengths for a particular coding sequence.
In contrast to the simulated scenario, we decided to use

these five promoters rather than 20 for practical reasons.
First, although having more promoters would provide
higher resolution of the landscape, it would also increase
the total diversity of the library, thus requiring a higher
sampling rate. Second, given the limits on the dynamic
range that can be accessed by changing the promoter at
single copy (approximately three orders of magnitude),
having 20 promoters would means that each promoter
resulted in only 50% more protein than the next lowest
promoter. It could prove difficult to deconvolve the con-
tributions of these small differences in expression and
noise in sample measurement. Rather, the larger,
roughly 500% increments from a five-member library
are more likely to provide meaningful data.
Although we avoided highly homologous sequences for

each promoter, because we intended to use them in long
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pathways, we were still concerned about recombination,
as the same promoter could appear more than once in a
single plasmid. Thus, we cloned RFP and YFP onto a
single plasmid with both genes driven by the same
promoter (e.g. pTDH3-RFP-terminator-pTDH3-YFP-ter-
minator) and used loss of fluorescence as an indicator of
homologous recombination between repeated promoter or
terminator sequences. We also reversed the order of the
genes (YFP-RFP) and included CFP (RFP-YFP-CFP).
Only �1% of colonies lost a fluorescent reporter
(Supplementary Table S4), and in the absence of any se-
lective pressure to recombine, transformants with fully
intact plasmids remained stable after subculturing every
24 h for 5 days, with zero clones of 48 losing any of
their reporters.

Construction of multi-gene libraries

Using this characterized set of promoter sequences, we
sought to generate combinatorial libraries in which we
simultaneously titrated the expression of all pathway
genes. We designed standardized modular cloning
vectors for constructing multi-gene plasmids using
Gibson assembly (6,33) (Supplementary Figure S4),
which allowed us to combine arbitrary combinations of
genes and promoters easily. To test our cloning strategy,
we took three separate fluorescent protein libraries (RFP,
YFP and CFP) and assembled them into a single plasmid
library (complexity of 53=125 members). In comparing
the fluorescence of colonies picked from the three-fluores-
cent protein library to that of colonies picked from each of
the single fluorescent protein libraries, we saw that the
triple-library roughly covered all of the 3D ‘expression
space’ spanned by our promoters (Figure 2D and
Supplementary Figure S5). As can be seen in
Supplementary Figure S5, fluorescence of the triple-
library clones clustered around the discrete intervals set
by the promoters, occupying a lattice of points. We
expect to see a similar pattern of coverage for the n-di-
mensional expression space of an n-gene system.

TRAC, a rapid genotyping assay

Although the goal of our modeling approach was to
reduce the number of sample measurements, our cloning
strategy was intended to be unrestrictive in the number of
genes that could be expressed. Therefore, we anticipated a
need for a rapid and inexpensive method for identifying
the unknown promoters driving each gene for a given
clone isolated from the library. The turnaround time
compared with purification and sequencing of plasmids
or PCR products could be considerably reduced with an
assay that directly determined promoter identity.
As our promoter sequences were highly orthogonal, we

were able to easily adapt the TaqMan method used in
quantitative real-time PCR and allelic discrimination. For
our assay, TaqMan Rapid Analysis of Combinatorial
assemblies (TRAC), we designed five orthogonal DNA
oligonucleotide duplex probes (25), specific for each of
the five promoter sequences and labeled with spectrally
distinct, fluorescent dyes and Förster resonance energy
transfer quenchers (Supplementary Table S3). When

these probes were included in a PCR reaction with gene-
specific primers amplifying an unknown promoter, only
one fluorescent dye was released, which corresponded to
the promoter present at that locus (Supplementary
Figures S2 and S6). This fluorescent signal could be read
on a standard plate reader, which simplified the genotyping
process by eliminating the need for a downstream gel, puri-
fication or sequencing reaction. Not only was the time
required for genotype identification low but also the add-
itional cost of oligonucleotide probes added only cents per
reaction.

Because the specificity of the gene is determined by the
PCR primers and not the fluorescent probes, this
genotyping method is scalable to any number of genes.
However, we were curious whether we could expand the
number of unique sequences that could be identified by
TRAC, in case a larger set of promoters were needed for
future applications. There is a limit to the number of
probes that can be used simultaneously due to overlapping
excitation and emission spectra of the dyes. However, by
designing sequences that contained either complementary
or non-complementary sequences for all five probes in a
row, we were able to detect 32 (25) unique ‘TRAC
barcodes’ (Supplementary Figure S7 and Supplementary
Table S5). A sixth fluorescent dye, Alexa Fluor� 750,
available from Integrated DNA Technologies, has excita-
tion and emission spectra that do not overlap with our
current set of five, although we have not tested it. If it
proved to be compatible, it would enable detection of up
to six unique sequences by standard TRAC, or up to 64
(26) unique TRAC barcodes.

Violacein biosynthesis as a model pathway

With the tools in hand to construct and analyze metabolic
pathways, we demonstrated our approach using the five-
gene violacein biosynthetic pathway (vioABEDC) from
Chromobacterium violaceum (34) (Figure 3 and
Supplementary Figure S8). The primary reason we chose
this pathway as a model system was not for its final
product, but rather for the interesting characteristics of
the pathway itself. First, the pathway is highly branched,
leading to several potential products. This would allow us
to raise the question of whether regression modeling can
be used to predict strains that preferentially direct flux
down a particular branch. Second, the enzyme encoded
by vioC is known to act on two pathway intermediates
(protoviolaceinic acid and protodeoxyviolaceinic acid) as
substrates. Finally, not only had this pathway not been
previously expressed in yeast but also much of the
pathway was only recently characterized (34,35), and
some of the side pathway reactions have yet to be
determined. Together, we felt these traits made violacein
a challenging pathway for our strategy and one that was
representative of many metabolic engineering efforts.

We transformed yeast with the assembled combinatorial
pathway library (55=3125 combinations), and the result-
ing colonies had a wide range of colors and intensities
(Supplementary Figure S9). Although the pathway’s
products exhibit a color phenotype, we recognized that
the majority of chemical compounds are not colored.
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Therefore, we decided to forego a colorimetric screen in
favor of HPLC, a low-throughput analytical method that
would be more representative of other pathways of
interest (Supplementary Figure S1). HPLC analysis
revealed that when the pathway was expressed in yeast,
four major compounds—violacein, deoxyviolacein,
proviolacein and prodeoxyviolacein—were produced in
significant quantities, while only trace amounts of deoxy-
chromoviridans, chromoviridans and oxychromoviridans
were detected in some samples. The reaction mechanism
for the formation of the chromoviridans compounds has
neither been previously determined nor is it clear why that
reaction would be inefficient in yeast.

Model predictions of the violacein pathway

We sampled 91 random transformants from our expres-
sion library, identified their promoter genotypes using
TRAC and measured their production titers for each of
the four primary products. Using these data, we trained
four models—one for each target—and then tested them
against a test set of 96 additional, unique and random
clones. Despite the complexities of the pathway, we
found the correlation between the models’ predictions,
and our empirical measurements were high (Pearson cor-
relation coefficients were 0.80 for violacein, 0.77 for
deoxyviolacein, 0.83 for proviolacein and 0.92 for
prodeoxyviolacein) (Figure 4). To test the effect of
training set size on predictive power, we took random
subsets of the original training set and measured

correlation between the resulting models’ predictions and
the full 96-member test set data (Supplementary Figure
S10). We repeated this experiment 100 times for subsets
of size: 5, 10, 20 and 50 (and 91). Interestingly, beyond the
initial dramatic increase in correlation coefficient, only
modest improvements were seen when increasing the
training set to 50 or 91 samples. This suggests that a rela-
tively low sampling rate (in this case, between 1 and 2%)
may be sufficient for generating a predictive model.
We observed that a large number of samples in both the

training and test sets had production levels below the limit
of detection of our extraction and measurement protocols.
Because of this, the models were trained on inherently
flawed data on the low-production end, and therefore
could not be expected to be as successful in predicting
that range. However, it is encouraging that the models
show much better correlation for highly productive
strains (Pearson correlation coefficients were 0.84 for
violacein, 0.90 for deoxyviolacein, 0.88 for proviolacein
and 0.92 for prodeoxyviolacein) (Figure 4), suggesting
that the models’ predictive power could be easily
improved with higher quality data.
A far more interesting test of a model is whether it can

forward-predict strains that would result in a desired
phenotype. In this case, we took advantage of the
branched nature of the violacein pathway and considered
whether the models could predict genotypes that direct
flux down any particular branch. We cloned the top five
predicted combinations for each of the four products and
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indole-3-pyruvic acid imine 
(IPA imine)

IPA imine dimer
(exact structure unknown)

protodeoxyviolaceinic
acid

protoviolaceinic
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violaceindeoxyviolacein

deoxyviolaceinic
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VioB

DoiVEoiV
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Figure 3. The violacein biosynthetic pathway. Violacein is synthesized through five enzymatic steps and one non-enzymatic reaction from two
molecules of tryptophan. Side-products detectable by HPLC after expression in yeast include deoxyviolacein, proviolacein, and prodeoxyviolacein.
Additional side-products (in gray) deoxychromoviridans, chromoviridans, and oxychromoviridans are reported in the literature but are not produced
in significant quantities in our strain; the precise mechanism of the reaction forming these products is still uncertain. See Supplementary Figure S8 for
a detailed pathway with molecule structures.
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measured product titers from the resulting strains. We
found the models were able to accurately capture the
behavior of the pathway and provided predictions that
preferentially produced one of the four possible products
(Figure 5 and Supplementary Table S6). For a given
product queried, the predicted strains produced greater
amounts of the desired target while minimizing the
amount of off-target production as compared with
strains predicted for any of the other three compounds.

DISCUSSION

Synthetic biology strives to engineer biological systems to
meet desired specifications using rigorously tested parts

and models to achieve predictable behaviors. Given our
incomplete understanding of the cell and its metabolism,
but bolstered by our knowledge that metabolic flux is
highly impacted by enzyme concentrations, systematically
varying expression provides a promising approach for
increasing production titers. The utility of these expression
libraries can be augmented by using robust well-
characterized promoters that enable researchers to infer
expression phenotype from genotype and consequently
gain insight into the design principles of a particular
pathway. The promoters we constructed reliably span a
wide range of expression strengths while maintaining their
relative rank ordering, irrespective of the coding sequence
of the expressed gene. The steps of library construction
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Figure 4. Model predictions. Comparison of model predictions with empirical measurements for a test set of 96 unique combinations. Black circles
indicate the upper 48 combinations sorted by predicted titer for each respective product; gray circles indicate the lower 48. The gray lines and
correlation constants were calculated using all 96 data points; the black lines and correlation constants were calculated using only the upper 48 data
points (i.e. to roughly omit data that could be below the limit of detection). Axes are the logarithm of the titer, where titer is measured by the HPLC
peak area in arbitrary units, n.b. negative values indicate a titer less than 1 au, not a net negative production; error bars indicate s.d.; n=3.
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and analysis are designed to be both generalizable to other
pathways and scalable to increased numbers of enzymes to
enable researchers to adopt the approach with relative
ease. Additionally, this strategy need not be limited to
this set of promoters or even to S. cerevisiae, as the only
data required are production output and a measure for
gene expression. The ability to link expression levels
directly to the DNA sequence by using reliable well-
characterized control elements—whether they be tran-
scriptional, translational or post-translational—is essen-
tial for rapidly gathering data from many clones on
several genes. For example, a newly developed expression
architecture termed ‘bicistronic design’ could provide
robust control in E. coli, where it had previously been
lacking (32). Certainly, manipulating expression alone
cannot be expected to yield a perfect strain, but these
combinatorial libraries are compatible with classical
methods such as protein engineering and directed
evolution.

A recent review of metabolic engineering proposed that
the goal of new engineering frameworks is to gain as much
information as possible from a small number of experi-
ments to allow researchers to hone in on the relevant areas
and directions to explore (5). Our modeling strategy is
much aligned with this idea, as it only requires a modest
number of measurements, unlike traditional combinator-
ial library approaches, which necessitate a high-through-
put screen or selection. Although linear regression may
appear to be an overly simplified representation of a meta-
bolic pathway, this is not the first time that linear regres-
sion has been used to describe a highly complex biological

phenomenon. Linear regression was used in protein engin-
eering to great effect to improve activity of a halohydrin
dehalogenase (36) and predict thermostability in engin-
eered cytochrome P450s (37).
Although protein-folding energy landscapes are

commonly thought to be highly irregular owing to the
numerous semi-stable conformations that a protein may
access, we believe that metabolic production landscapes
are generally smoother. Although it has been previously
shown that moderate gene expression can sometimes be
optimal (2,20), it is not clear whether the inverse is
possible—a multi-peaked landscape where moderate ex-
pression is detrimental and both high and low expression
are beneficial. The model would likely be incapable of ac-
curately describing a landscape containing multiple peaks,
depending on the relative size and sharpness of the peaks
and the sampling bias in the training set. However, we
would expect this type of scenario to be rare. A more
likely occurrence is a pathway that produces a toxic inter-
mediate, where the relationship between enzymes (e.g. the
ratio or the sum of activities) must be maintained, which
we suspect would result in a ridge-like topology. These
ridges would still present a challenge to the model, as
they are incongruent with our assumption of enzyme in-
dependence, and so depending on the particular shape of
the ridge (e.g. a shallow slope along the top of the ridge),
the model may not succeed in identifying the true
optimum. The objective for this modeling strategy is to
provide an estimation of the production landscape for
newly engineered pathways, and, as such, failure to accur-
ately describe and predict expression-level dependent per-
formance, while problematic, highlights the possible
presence of interesting biology to investigate in more
detail.
In conclusion, we have developed a novel approach for

optimizing enzyme expression for an engineered metabolic
pathway that integrates combinatorial libraries with re-
gression modeling to guide the researcher with a map of
the production landscape. A major advantage of this
strategy is that it requires no knowledge of absolute
protein or metabolite levels, enzyme kinetics or thermo-
dynamics, or even the order of the reactions. As such, the
method is particularly useful when engineering new
pathways that are not fully characterized, e.g. gene
clusters mined from metagenomic studies or pathways
with enzymes that have not been or cannot be easily
purified and biochemically characterized. The results
from an initial modeling attempt could be used as a
starting point to investigate other avenues of optimization,
be they as simple as further expression optimization or as
involved as mutagenesis and directed evolution. In concert
with these and other established metabolic engineering
techniques, our strategy should dramatically accelerate
the development of highly optimized strains as a sustain-
able replacement for chemical production.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [38].
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Figure 5. Strains with directed flux. The top five predicted combin-
ations for each product and their associated relative titers. The five
predictions for a given product are grouped by color: purple for
violacein, pink for deoxyviolacein, teal for proviolacein, green for
prodeoxyviolacein. Each predicted group shows preferential production
of one product over the other three. Axes are relative product titer
(HPLC peak area) in arbitrary units; each point is an average of
four biological replicates (error bars not shown for clarity, but values
are provided in Supplementary Table S6). Each closed loop represents a
single strain, and the vertices indicate the titers of the four products.
For example, strain 1 (solid line) produces equal amounts of violacein
and proviolacein as strain 2 (dotted line) but half as much
deoxyviolacein and prodeoxyviolacein (inset).
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